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Abstract
Understanding 2D computer-aided design (CAD) draw-

ings plays a crucial role for creating 3D prototypes in ar-
chitecture, engineering and construction (AEC) industries.
The task of automated panoptic symbol spotting, i.e., to spot
and parse both countable object instances (windows, doors,
tables, etc.) and uncountable stuff (wall, railing, etc.) from
CAD drawings, has recently drawn interests from the com-
puter vision community. Unfortunately, the highly irreg-
ular ordering and orientations set major roadblocks for
this task. Existing methods, based on convolutional neural
networks (CNNs) and/or graph neural networks (GNNs),
regress instance bounding boxes in the pixel domain and
then convert the predictions into symbols. In this paper,
we present a novel framework named CADTransformer,
that can painlessly modify existing vision transformer (ViT)
backbones to tackle the above limitations for the panop-
tic symbol spotting task. CADTransformer tokenizes di-
rectly from the set of graphical primitives in CAD draw-
ings, and correspondingly optimizes line-grained seman-
tic and instance symbol spotting altogether by a pair of
prediction heads. The backbone is further enhanced with
a few plug-and-play modifications, including a neighbor-
hood aware self-attention, hierarchical feature aggregation,
and graphic entity position encoding, to bake in the struc-
ture prior while optimizing the efficiency. Besides, a new
data augmentation method, termed Random Layer, is pro-
posed by the layer-wise separation and recombination of
a CAD drawing. Overall, CADTransformer significantly
boosts the previous state-of-the-art from 0.595 to 0.685 in
the panoptic quality (PQ) metric, on the recently released
FloorPlanCAD dataset. We further demonstrate that our
model can spot symbols with irregular shapes and arbi-
trary orientations. Our codes are available in https:
//github.com/VITA-Group/CADTransformer.

1. Introduction

1.1. A Primer for CAD Panoptic Symbol Spotting

Symbol spotting [42, 43, 45, 47] refers to a particular
application of pattern recognition, in which symbols with
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Figure 1. CADTransformer makes predictions on graphic entities,
without converting the predicted 2D bounding boxes on pixel im-
ages to the label on graphical entities. (a) and (d): Panoptic anno-
tations. (b) and (e): Results from the proposed CADTransformer.
(c) and (f): Results from PanCADNet [17]. Red arrows indicate
spotting results of adjacent symbols, bounding box in (c) shows
one of predicted boxes of [17] for stair symbol.

domain-specific semantics are localized and recognized to
predefined symbol types. Symbols with simple line seg-
ment groups with an engineering, electronics or architec-
tural flair, which constitute some examples of symbols.
Therefore, symbol spotting plays a crucial role for docu-
ment image analysis community [42] and architecture, engi-
neering and construction (AEC) industries [17]. In architec-
ture, a 2D computer-aided design (CAD) drawing typically
contains accurate geometric and rich semantic information
of a cross-section of a 3D design [17]. With the perception
of such CAD drawings, 3D prototypes and the according
3D model can be efficiently and precisely reconstructed.

However, unlike images which are arranged on regular
pixel grids, a CAD drawing is composed of graphical prim-
itives (e.g., arc, circle, polyline, etc.). It is non-trivial to spot
each symbol (set of graphical primitives) in CAD drawing
due to the presence of occlusion, cluster, appearance vari-
ations, and large unbalanced distribution of the categories.
Traditional symbol spotting methods are typically carried
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out as query-by-example [31, 32, 45], and are impractical
for real-world datasets since they can not cope with the
tremendous graphical notation variability [17, 43] caused
by the producer. Recent learning-based symbol spotting
methods [19, 43] proposed to apply convolutional neural
networks (CNNs) to real-world symbol spotting datasets.
However, they formulate symbol spotting as symbol de-
tection [19, 41, 43, 65] and simply treat vector CAD data
as pixel images, leaving the gap between images and vec-
tor graphics and leading to inaccurate predictions for real-
world applications.

The latest work [17] proposed a large-scale FloorPlan-
CAD dataset from industry with annotations for graphical
entities (visualization on several CAD drawing examples
from the dataset, with irregular shapes and slanting orien-
tation, can be seen in Figure 1.). Similar to the panoptic
segmentation task [7] which integrates instance and seman-
tic segmentation as one visual recognition task, the panoptic
symbol spotting task was formulated to unify the spotting of
countable instances (e.g., a single door, a window, a table,
etc.) and the recognition of uncountable stuff (e.g., wall,
railing, etc.) in [17] . The authors [17] address the panoptic
symbol spotting task by introducing Graph Convolutional
Networks (GCNs) [26] to reason the stuff semantics. Par-
allel to the GCN head, another CNN-based detection head
also predicts the 2D box information of each countable in-
stance. However, the CAD graphical primitives come with
irregular ordering, arbitrary scales and orientations, that re-
main to challenge the standard CNNs. Moreover, the GCN
module requires a pre-specified graph topology for infor-
mation propagation; [17] uses an ad-hoc graph manually
crafted by rules, but that might be inaccurate and subject to
structural noise.

1.2. Why Transformer, and Our Contributions

Transformers [10, 12, 23, 40, 51, 54, 55, 59, 61, 64] rea-
son global relationships across tokens without pre-defined
graph connectivity, by instead learning with self-attention.
That makes transformer a promising replacement for GCN
to tackle the panoptic symbol spotting task. However, a
standard transformer is not immediately ready for this task
due to the following challenges: 1). Tokenization and po-
sition encoding of graphical symbols. The standard Vi-
sion Transformers (ViT) [13] splits each image into 14 × 14
or 16 × 16 patches (a.k.a., tokens) with fixed length over
entire dataset. But line segments, as the highly structured
minimum units in CAD drawings, are an unordered set
of vectors represented in the continuous coordinate space,
which differ drastically from raster images. 2). Immense
set of primitives in certain scenes. ViT conducts global
self-attention among tokens which leads to quadratic com-
plexity with respect to the token number. That becomes
intractable for processing CAD drawings, whose maxi-

mum primitive number can be explosively high, e.g., up to
5 × 104. The number of primitives also varies a lot across
drawings. 3). Training data limitation. ViTs are freed
from the inherent inductive biases to CNNs. While that
leads to more flexibility, it also makes the ViT training par-
ticularly data-hungry [13]. Although the latest dataset [17]
contains over 10,000 floor plans, it is still unclear whether
that suffices for training ViTs to generalize.

In view of those roadblocks, we propose the first
transformer-based framework for panoptic symbol spotting,
called CADTransformer. CADTransformer is designed to
be a general framework that can be painlessly plugged into
existing ViT backbones. It is well motivated since trans-
formers can reason the hidden relationships among graphi-
cal primitives without any handcrafted graph topology.

Firstly, in contrary to the common token embeddings
from image pixel patches, CADTransformer tokenizes di-
rectly from the set of graphical primitives in CAD draw-
ings. Correspondingly, to optimize line-grained seman-
tic and instance predictions, we design a semantic head
that predicts the categories of graphical primitives, in par-
allel with another offset head to shift to their respective
ground-truth instance centroids. Further, to enhance the
efficiency-accuracy trade-off, CADTransformer embraces a
few “plug-and-play” improvements over the standard trans-
former backbone, including injecting neighborhood aware-
ness to self-attention to bake-in the structure drawing prior;
and hierarchical feature aggregation, along with graphic en-
tity position encoding. Additionally, we introduce a novel
Random Layer data augmentation approach, which lever-
ages CAD domain knowledge to augment new drawings.

We perform the panoptic symbol spotting via CAD-
Transformer, by plugging our proposed design into two ViT
backbones: ViT [13] and Point Transformer [62]. CAD-
Transformer significantly boosts the previous state-of-the-
art from 0.595 to 0.689 in the panoptic quality (PQ) metric,
on the FloorPlanCAD dataset. We also report a compre-
hensive set of ablation studies to demonstrate the benefit of
each proposed design component.

2. Related Works

2.1. CAD Panoptic Symbol Spotting

Traditional Symbol Spotting Symbol spotting task [42,
45, 47] refers to the retrieval and recognition of symbols
from images or documents. Classical symbol spotting al-
gorithms can be roughly categorized as pixel-based meth-
ods [31, 32, 45] where algorithms make use of statisti-
cal properties of pixels, and vector-based methods [14–16]
where structural properties of symbol primitives are consid-
ered by the proposed methods. However, the retrieval and
recognition of symbols remain challenging in real-world
cases as these handcrafted symbol descriptors cannot cope
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Figure 2. We visualize the minimum L2 distance between sym-
bols of all categories. Nearly all symbols are closely located with
at least one symbol of different kinds, which means inaccurate
predicted bounding boxes on pixel images degrade the accuracy
of panoptic symbol spotting task. Note that, the captions in axes
indicate category ID and the belonging super-class, visualized val-
ues are measured by pixel and are normalized via log10(1+L2(·))

with the graphical notation variability of all kinds [43].
Recently, deep models have been adapted to the sym-

bol spotting field where the popular detection models like
Faster-RCNN [41] or YOLO [48] are used to detect the
bounding box of symbols of interest.

Panoptic Symbol Spotting Although impressive accu-
racy is obtained by the power of neural networks, these
methods mainly focus on synthetical vectorized graphic
documents [11, 44] or collected images dataset from the in-
ternet [19]. Therefore, these methods are unable to tackle
symbols that are closely positioned or with semantics of un-
countable stuff (e.g., wall and rails) which play a main role
in the architecture, engineering and construction industries.
A real-world large-scale floor plan CAD dataset [17] is re-
cently published, containing residential buildings, schools,
hospitals, and large shopping malls with complicated struc-
tures. Up to 35 object classes of interest, including 30
countable thing classes and 5 uncountable stuff classes are
listed and labeled with line-grained annotations.

Panoptic Symbol Spotting with Deep Networks Floor-
planCAD [17] also proposes a CNN-GCN-based frame-
work for solving panoptic symbol spotting. They integrate
CNN features into both a GCN head and a detection head
for semantic symbol spotting and instance symbol spotting
tasks, respectively. The final predictions for panoptic sym-
bol spotting are fused by: (1) projecting lines in the CAD
drawing onto the predicted boxes from the detection head
to acquire the instance indexes of countable things; (2) fol-
lowed by recognizing the categories of uncountable stuff

from the GCN head. Adapting the GCN model into panop-
tic symbol spotting tasks leads to a significant accuracy
improvement, but the detection head for spotting count-
able object instances struggles with the inaccurate predicted
boxes, and imprecise mapping introduced by the extra post-
processing step to project each graphic primitive onto the
predicted 2D boxes. In addition, their GCN head operates
over a manually designed initial topology, composed with
sophisticated handcrafted rules [17].

2.2. Transformer and self-attention

Recent advances [28,34,51] in natural language process-
ing have demonstrated the attention mechanisms can learn
the attentions to soft-search relevant inputs that are impor-
tant to make the prediction [1]. The works of BERT [12]
and GPT [3, 38, 39] parallelize the transformer model via
multi-head self-attention for efficient training and inference
and also lead to superior performance. Inspired by the suc-
cess of transformer applied in natural language processing
field, a growing interests have shown in exploring the use of
transformer framework for computer vision tasks, including
image generation [5, 35], image classification [5, 6, 9, 13,
21, 33, 50, 54], object detection [2, 4], semantic segmenta-
tion [56,63], point cloud processing [20,62], 3D reconstruc-
tion [27], generative adversarial networks [25] and line seg-
mentation [57]. The emergence of transformers unveils the
potential to reason global relationships across tokens with-
out pre-defined graph connectivity [60], by instead learning
with self-attention. Vector graphics are essentially sets of
2D vectors with positional information which are particu-
larly suitable to use self-attention mechanism without any
handcraft initial features and topology [17].

3. Methodology

3.1. Overview

The general panoptic symbol spotting task can be formu-
lated as a mapping Fp : ek 7→ (lk, zk) ∈ L × N , where ek
denotes a graphical entity serves as the basic building block
of a CAD drawing, lk and zk are its semantic label and in-
stance index. For the input vector drawing, we apply a de-
composition at first to split it into basic graphical primitives
(e.g., arc, circle, or polyline) and convert the drawing into
a rasterized image. Token (a.k.a primitive) embeddings are
obtained via projecting the each graphical primitive to the
extracted 2D feature maps using a pre-trained CNN. Input
with the graphical tokens, a standard Vision Transformer
with our proposed “plug-and-play” improvements can be
applied to reason relationships across graphical tokens. The
transformer layers are followed by the Two-Branch Heads
by which we can optimize the line-grained predictions of
vector drawings. Our framework is shown in Figure 3 (a).
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Figure 3. Network architecture of CADTransformer and its components. The input graphic document is decomposed into graphical
primitives and also rasterize the document into a color image. Pre-trained CNN is used to extract rich multi-resolution representations
from the rasterized image. With the extracted feature maps and isolated graphical primitives, the primitives (a.k.a. token) embeddings are
acquired by projecting their middle coordinates onto the feature spaces. A multi-level neighbor-aware ViT takes tokens embeddings as
input and jointly optimizes line-grained semantic and instance predictions with the designed Two-Branch Heads.

Tokenizing with Graphical Primitives: The vanilla to-
kens by image patches [13] apparently cannot capture the
strong geometric structures of CAD drawings. Note that,
besides being treated as a rasterized color image, a CAD
drawing could also be painlessly decomposed into its graph-
ical primitives, since the basic building blocks such as arc,
circle, and polyline are readily available in CAD drawings.

Leveraging this unique structure information, given a
CAD drawing, we employ HRNetV2-W48 [49] pre-trained
on ImageNet classification [46] to extract hierarchical im-
age feature maps from the rasterized color image. Next,
we decompose the CAD drawing into the graphical primi-
tive domain, project the coordinates of the primitive’s mid-
dle position onto the image plane, and compute the bi-
linearly interpolated feature vectors [18, 24]. To be more
specific, we upsample and concatenate the feature from
four resolution branches of HRNetV2-W48, formulating a
(48+96+192+184)×H×W feature tensor. After project-
ing each primitive, linear transformation followed by batch
normalization and ReLU are used to reduce the token em-
bedding dimension. By applying Tokenization Module, we
obtain embeddings f token ∈ RN×C from the input CAD
drawing, whereN represents the number of graphical prim-
itives and C means the embedding dimension. We draw the
workflow of the Tokenization Module in Figure 3 (b).

3.2. Two-Branch Heads: Instance and Semantic
Symbol Spotting

To optimize the line-grained predictions, we propose the
Two-Branch Heads, it takes token with strong geometric
embedding from Transformer Backbone as input. We will
describe Transformer Backbone in section 3.3

Semantic Symbol Spotting Head Applying a MLP on
the output feature from aggregated transformer feature vec-

tors f trans, it can produce the semantic scores S =
(c1, ..., cN ) ∈ RN×lclass for the N entities. Cross-entropy
loss Lsem is applied to regularize the results between pre-
diction and ground truth labels. The predicted semantic
label for entity e is the class with maximum score i.e.,
argmax(ci).
Instance Symbol Spotting Head One major limitation of
detect-and-spot approaches [17, 19, 43] that is: they rely on
the assumption that each graphical entity can be unambigu-
ously encircled by a certain bounding box. However, this
assumption is problematic in most cases of CAD drawing
as symbols are usually closely located (shown in Figure 2).
For example, one side of a single door always overlaps with
the wall, which indicates the predicted box is not always ac-
curate enough to split the closely related line-grained sym-
bols.
Instead of predicting a 2D bounding box in pixel images,
we propose to predict an offset vector per graphic entity
to gather the instance entities around a common instance
centroid. To better cluster relevant primitives into the same
instance, we apply MLPs to encode token embeddings, pro-
ducing N offset vectors O = {o1,o2, ...,oN} ∈ RN×2.
We constrain the learned offset to the belonging instance
centroids by applying a L1 regression loss as

Lreg =
1∑
imi

∑
i

∥oi − (ci − pi)∥ ·mi (1)

where m ∈ {0, 1}N is a binary value to mask uncount-
able stuff primitives out, pi means the 2D coordinates of
each graphic primitive of its middle position, ci indicates
the centroid of each instance that ith entity belongs to,
ci =

1
NI

∑
i∈I pi, where I indicates indices of each count-

able thing instance and i is each graphic element belonging
to I , NI counts the number of all elements within each in-
stance symbol. We make the clustering more robust against
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outliers by modifying a simple and fast clustering algorithm
(e.g., the mean-shift algorithm [8]) to a class-wise cluster-
ing algorithm with class-specific bandwidths.

3.3. Improving Transformer Backbone Design for
Better Spotting

Typical Transformer layers equipped with the proposed
improvements can be applied for graphical primitives’ em-
beddings aggregation. Note that, the transformer backbone
takes the token embeddings from the Tokenization Module
as input, performs self-attention and provides rich represen-
tations for the Two-Branch Heads.
Self-Attention with Neighbor Awareness: Typical Vi-
sion Transformer architecture [13] consists of several con-
secutive transformer layers. Each layer contains a self-
attention module and a feed-forward-network(FFN). The
self-attention is computed using the scaled-dot product:

Attention(Q,K,V ) = softmax

(
QKT

√
C

)
V (2)

where Q,K,V ∈ RN×C are the query, key and value ma-
trix; N and C indicate the token number and the hidden
dimension.

However, the primitive number of a single drawing is up
to 5× 104 in FloorplanCAD dataset [17] and the global at-
tention complexity will be quadratic to the token number,
preventing us from applying typical attention mechanism
over CAD documents. To overcome this issue, we propose
several improvements over vanilla ViT to make it applica-
ble.
Self-attention within k Neighbors We adopt the recent
self-attention network [13] in applying the attention oper-
ation within its nearest k neighbors [36, 37, 62] of each
token. The local neighbor aggregation strategy optimizes
each graphic entity using its local features, making it scal-
able for CAD document of arbitrary size. The minimum
distance is determined by checking the start and end points
among all entities.

ei = {estarti = (xstarti , ystarti ), eendi = (xendi , yendi )}
D(pi,pj) =

√
(xi − xj)2 + (yi − yj)2 (3)

Dmin = minpi∈{estart
i ,eend

i },pj∈{estart
j ,eend

j } |D(pi,pj)|

where estart and eend represent the start and end points of
each graphical entity e. i indicates the queried graph entity
and j indicates all other entities within a CAD document.

In order to increase the model capacity to soft-
search [27] the relevant tokens in a more global perspec-
tive as well as keep the framework efficient, we propose
to enlarge the number of nearest tokens. Specifically, we
take the vanilla transformer layers from [13] which al-
low our improved design to reuse the pre-trained weights.
The architecture includes four stages with layer number =

{2, 2, 6, 2} [29]. Each stage operates on progressively in-
creasing neighborhoods for a larger receptive field and we
set the number of neighborhoods as 2i for each stage where
i indicates stage number. The visualization of the design is
shown in Figure 3 (c).

Multi-resolution Feature Fusion We fuse features
across stages to define a nonlinear local-to-global represen-
tation which has been proven effective in dense prediction
tasks [22, 29, 30]. We represent the fused embedding as
the mean of previous ones from different scales f trans =
mean(

∑
i f

trans
i ) since they have the same embedding di-

mension. Here, i means the stage number.

Graphic Entity Position Encoding In computing self-
attention, we introduce a trainable relative position bias [29,
62] as the 2D coordinates of primitive’s middle position are
natural candidate for position encoding. We formulate the
learned position encoding as b ∈ RN×k×C for each graph-
ical entity to compute similarity matrix:

b = MLP(pi − pk) (4)

Attention(Q,Kk,Vk) = softmax
(

QKk
T

√
C

)
(Vk + b)

where pi ∈ RN×1×2 is the query graphical entity coordi-
nate, pk ∈ RN×k×2 indicates the k neighbors of pi, MLP
represents two linear layers with one ReLU nonlinearity.

3.4. Random Layer Data Augmentation

Given that transformers typically require large datasets,
it would be beneficial if CADTransformer is trained with
more training data. Commonly used data augmentation ap-
proaches (i.e., add noise and blur color images) will disrupt
the rasterized image. It is because the rasterization process
assigns a fixed value for the coordinate occupied by graph-
ical primitives based on a white canvas; Random perturb-
ing each primitive in vector space breaks the precise topol-
ogy of its originality. Random dropping primitives may lose
key structures for spotting algorithms (e.g., the arc of a sin-
gle door). Contrary to existing methods, we start from a
floor plan drawing consists of multiple layers of different
functionality (e.g., furniture, equipment, and appliance) and
the annotation of FloorplanCAD dataset [17] is conducted
layer-wise. Therefore, layers are the primary method for or-
ganizing the graphical symbols and annotations. The avail-
ability of “layer” metadata provides extra insight for us, to
leverage the domain knowledge and augment the labeled
data “for free”.

Specifically, we propose the Random Layer data aug-
mentation. Given an annotated CAD drawing of multi-
ple layers, we traverse and classify all layers into three
categories based on their functionalities (i.e., thing layers,
stuff layers and background layers). We select new lay-
ers over the three layers groups with certain probabilities
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(a) Original Drawing (b) Random Layer 1 (c) Random Layer 2

Figure 4. Examples of Random Layer applied on FloorplanCAD
dataset [17]. (a): Original CAD drawing with full layers, (b):
Randomly chose layers with probabilities of {pth = 0.8, pst =
0.8, pbg = 0.5} from (a), (c): Randomly chose layers with the
same probabilities of (b) but with a different seed.

{pth, pst, pbg}. Finally, we re-organize the selected layers
to generate a new drawing with its original annotations and
topology. A visualization example is provided in Figure 4.

4. Experiments
Implementation Details During training, we use Adam
optimizer with β1 = 0.9 and β2 = 0.999. The initial learn-
ing rate is set to 0.00025, and halved after epoch 20, 40.
All models are trained for 40 epochs. The batch size is
fixed to 4, and we train our method with 4 NVIDIA RTX
A6000 GPUs with 1 training sample on each GPU. Our
CADTransformer and previous PanCADNet [17] are evalu-
ated on the first version of FloorPlanCAD dataset 1(released
in August 13, 2021). AM-Softmax [52] loss is introduced
to replace the original softmax loss to learn large-margin
features. Both the Vision Transformer Backbone [13] and
HRNet [49] are pre-trained and jointly fine-tuning with the
proposed Two-Branch Heads during training process. Our
overall objective is written as L = Lsem+α×Lreg . where
α is a scalar value to balance the two-loss items. We set
α=0.3 in our experimental setting.

4.1. FloorPlanCAD Datasets

The first real-world, large-scale floor plan CAD draw-
ings datasets with line-wise annotations are proposed in
[17]. The proposed datasets are collected from different
sources covering residential buildings, schools, hospitals,
underground parking, and shopping malls with real struc-
tures. The released dataset contains 35 object classes which
is enriched compared with the initial version mentioned
30 object classes in [17]. The released version includes
30 countable thing classes, categorized by super-classes
including doors, windows, stairs, home appliances, furni-
ture, and equipment. In addition, row chairs, parking spots,
wall, curtain wall, and railing are categorized as uncount-
able stuff classes. For a graphical element that belongs to
thing classes, it is annotated with semantic class and in-

1https://floorplancad.github.io/

stance index while an element that belongs to stuff classes
contains solely semantic labeling. Each floor plan drawing
is cut into squared blocks with the dimension of 14m × 14m
in real-world size. The training, testing, and validation set
contains 6965, 3827, and 810 pieces of floor plan drawing,
respectively.

Doors
Wind.

Furn.
Appl.

Stairs
Equip.

Stuff

Figure 5. Visualized attention map among all categories. The x
and y-axis correspond to different categories and the belonging
super classes. Darker color indicates stronger attention. We can
observe primitives 1). with smaller distance, 2). within the same
class or super class, 3). belongs to wall class (semantic Id: 33),
usually have strong attention with other categories.

4.2. Evaluation Metrics

In the setting of panoptic symbol spotting, a generalized
symbol is a set of graphical entities (primitives), represent-
ing either a thing instance (e.g., a single door or a toilet)
or particular stuff (e.g., wall, railing). Therefore, we follow
previous paper [17] to denote a graphical entity (e.g., arc,
circle or polyline) e = (l, z) by a semantic label l and an
instance index z. A symbol is represented by a collection
of entities and is defined as s = {ei∈J | l = li, z = zi},
where J is set of primitives. The panoptic symbol spotting
task requires a map Fp : ek 7→ (lk, zk) ∈ L ×N ,
Following the definition of Panotic Segmentation [7], the
Panoptic Quality metric in symbol spotting is defined as:

PQ = RQ× SQ =

∑
(sp,sg)∈TP IoU(sp,sg)

|TP |+ 1
2 |FP |+ 1

2 |FN | .

RQ = |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN | . (5)

SQ =

∑
(sp,sg)∈TP IoU(sp,sg)

|TP | .

where the metric of RQ can be regarded as F1 score to
measure the symbol matching ability, SQ represents the av-
eraging IoUs of matched symbols. The predicted symbol
sp = (lp, zp) is considered as true positive (TP ) if it can
be matched to a ground truth symbol sg = (lg, zg), other-
wise false positives (FP ). Instead, symbol is false negatives

10991

https://floorplancad.github.io/


Models Total Countable Thing Classes Uncountable Stuff Classes
PQ SQ RQ PQTh SQTh RQTh mAP PQSt SQSt RQSt

PanCADNet [17] 0.5953 0.8258 0.6693 0.6557 0.8614 0.7611 0.5630 0.5872 0.813 0.7222
CADTransormer 0.6732 0.8754 0.7226 0.7713 0.9355 0.8245 - 0.5793 0.8102 0.7151

CADTransormer + RL 0.6894 0.8832 0.7333 0.7849 0.9404 0.8346 - 0.5855 0.8188 0.7151

Table 1. Panoptic symbol spotting results on FloorplanCAD dataset [17]. Top row: the CNN-GCN-based model proposed in [17] with
the claimed optimal setting. Second row and last row: our proposed CADTransformer without and with Random Layer (RL) data
augmentation. Note that, mAP is used for instance symbol spotting branch evaluation in PanCADNet [17]
.

(FN ) if it misses ground truth to match. A certain predicted
symbol is considered as matched if it finds a ground truth
symbol, with lp = lg and IoU(sp, sg) > 0.5, where the in-
tersection over union (IoU) between predicted and ground
truth symbols are computed based on:

IoU(sp, sg) =
Σei∈sp∩sg log(1 + L(ei))

Σej∈sp∪sg log(1 + L(ej))
. (6)

4.3. Main Results on Panoptic Symbol Spotting

We mainly compare with the previous method in [17]
which is the first framework designed for panoptic sym-
bol spotting task. We re-implemented the method since the
source code is not available. To validate the effectiveness of
our CADTransformer architecture and the benefits brought
by Random Layer data augmentation, we apply HRNetV2-
W48 [53] as our CNN for tokenization process which is
pre-trained on 1000 class image classification task of Ima-
geNet [46]. The {pth, pst, pbg} in Random Layer data aug-
mentation set as 0.8, 0.8 and 0.5, respectively. The quanti-
tative results on FloorPlanCAD testing set [17] are shown
in Table 1. We can see that CADTransformer improves
from previous state-of-the-art 0.5953 to 0.6732. When more
training samples are generated using Random Layer, the
performance is further boosted to 0.6894. The qualitative
results are shown in Figure 6, we can see CADTransformer
generates better results for the adjacent primitives belong-
ing to different symbols. The fact that CADTransformer
works well demonstrates that 1). A standard vision trans-
former backbone equipped with proposed improvements
demonstrates its potential for panoptic symbol spotting task.
2). It benefits the predictions on vector data without project-
ing pixel predictions, i.e., bounding boxes, to the label on
graphical entities. 3). A stronger transformer model can be
obtained by enriching the diversity of floor plan drawings.

4.4. Ablation Study

Study the Effect of Nearest Neighbors’ Numbers We
have conducted experiments on the Self-attention within k
Neighbors module to support our design: we try different
neighborhoods k in each stage i. As shown in Table 2, the
accuracy increases with a larger k, and gets saturated when
k comes to [16,16,16,16]. Our multi-scale setting achieves
similar accuracy while reducing ∼30% FLOPs.

Model setting PQ SQ RQ FLOPs

k1 = 2, k2 = 2, k3 = 2, k4 = 2 0.6722 0.8798 0.7185 24.791G
k1 = 4, k2 = 4, k3 = 4, k4 = 4 0.6796 0.8809 0.7272 28.348G
k1 = 8, k2 = 8, k3 = 8, k4 = 8 0.6865 0.8817 0.7322 35.463G

k1 = 16, k2 = 16, k3 = 16, k4 = 16 0.6897 0.8849 0.7314 49.693G
k1 = 2, k2 = 4, k3 = 8, k4 = 16 (Ours) 0.6894 0.8832 0.7333 34.870G

Table 2. Analysis on the effect of attention neighborhood k, where
i is the stage of the model, k is attention neighborhoods.

Methods PQ SQ RQ
CADTransformer-ViT [13] 0.6732 0.8754 0.7226

CADTransformer-PointT [62] 0.6678 0.8786 0.7117

Table 3. The proposed transformer design applied to both ViT [13]
and Point Transformer [62] for panoptic symbol spotting task.

Visualizations To understand the learned attention map
over classes, we visualize the attention maps from the last
layer of CADTransformer-ViT, by sampling all floor plan
drawings from the test set. The visualization is shown in
Figure 5 where each grid indicates the intensity of self-
attention. It can be observed that the neighbor-aware self-
attention learns the relationship among classes that are
aligned well with the real-world layout (e.g., wall usually
distributed throughout the drawing and most elements are
wall-mounted or closed to the wall).
Agnostic Transformer Design The proposed set of de-
signs, including tokenization, neighbor aware self-attention
module, hierarchical feature fusion as well as graphic entity
position encoding, is agnostic to the choice of transformer
backbones for panoptic symbol spotting. To verify the ef-
fectiveness, we introduce the representative vector-based at-
tention, i.e., Point Transformer Block [62], equipped with
our designs which is formulated as:∑

j∈k Softmax(MLP1(φ(ti)− ψ(tj)))⊙ (α(tj) + b)

b = MLP2(pi − pk)

where ti and tj are the queried token and its k neighbor-
ing token feature, respectively. φ, ψ and α are pointwise
feature transformation. b is graphical position encoding. pi

and pk are the queried entity coordinate and its k neighbors.
Here, we adopt eight vanilla Point Transformer layers with-
out transition down and transition up operations as CAD
drawings may contain extremely sparse segments. We for-
mulate them into four stages (2 layers for each stage), set
k as 2, 4, 8, and 16 for each stage. The feature fusion is
conducted by averaging the output features from the output
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Input GT CADTransformer PanCADNet [17]
Figure 6. Qualitative comparisons between CADTransformer and CNN-GCN based method [17] on FloorPlanCAD dataset. Red arrows
indicate regions of adjacent symbols. CADTransformer distinguishes segments that belongs to adjacent symbols and is applicable to CAD
data with arbitrary shapes and orientations. Best view in color and zoom in. See the appendix for annotation details.

of the four stages. We demonstrate the results in Table 3, by
applying the proposed techniques into ViT [13] and Point
Transformer [62]. Both of them achieve promising accu-
racy, validating our module design for existing transformers
in addressing the panoptic symbol spotting task.

Random Layer Data Augmentation As shown in Ta-
ble 4, when implementing Random Layer in training CAD-
Transformer, Random Layer consistently improves the
panoptic quality metric. Specifically, when we add addi-
tional 25% to 50% training samples, the PQ improves from
0.6732 to 0.6894 without any cost during testing. The ex-
perimental results indicate that such a simple setup, with-
out bells and whistles, benefits the transformer model and
achieves better accuracy.

5. Conclusion and Broad Impact

We present the first transformer-based framework for
the panoptic symbol spotting task. By tokenizing graphi-
cal primitives, injecting standard vision transformers with
neighbor-aware self-attention module, hierarchical feature

Methods Train Samples PQ SQ RQ
Baseline 6,965 0.6732 0.8754 0.7226

Aug. 0.25 × 8,796 0.6862 0.8772 0.7335
Aug. 0.50 × 10,448 0.6894 0.8832 0.7333

Table 4. Comparisons on Random Layer data augmentation set-
tings. Augmenting training samples during training improves
model accuracy. Evaluations are on the FloorPlanCAD test set.
aggregation as well as graphic entity position encoding, we
can easily apply a standard vision transformer with vector
CAD drawings as its input. We design two-branch heads
that perform semantic and instance predictions directly on
vector data which significantly advances the state-of-the-
art performance on the FloorPlanCAD dataset. Random
Layer, an intuitive data augmentation scheme, consistently
improves the spotting performance without additional labor
cost. One limitation is that we only perform studies on floor
plan drawings. We will extend the investigation to other
graphical data recognition tasks (e.g. semantic sketch seg-
mentation [58]). We do not see that this work will directly
impose any negative social risk.
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