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Abstract

In this paper, we explore a new type of extrinsic method

to directly align two geometric shapes with point-to-point

correspondences in ambient space by recovering a defor-

mation, which allows more continuous and smooth maps to

be obtained. Specifically, the classic coherent point drift is

revisited and generalizations have been proposed. First, by

observing that the deformation model is essentially defined

with respect to Euclidean space, we generalize the kernel

method to non-Euclidean domains. This generally leads to

better results for processing shapes, which are known as

two-dimensional manifolds. Second, a generalized proba-

bilistic model is proposed to address the sensibility of co-

herent point drift method to local optima. Instead of directly

optimizing over the objective of coherent point drift, the new

model allows to focus on a group of most confident ones,

thus improves the robustness of the registration system. Ex-

periments are conducted on multiple public datasets with

comparison to state-of-the-art competitors, demonstrating

the superiority of our method which is both flexible and effi-

cient to improve the matching accuracy due to our extrinsic

alignment objective in ambient space.

1. Introduction

Non-rigid shape matching lies at the core of many ap-

plications in computer vision and graphics, ranging from

statistical shape analysis, information and style transfer to

the generation of new shapes among others [68]. Unlike the

rigid counterpart, non-rigid shape matching is much more

intractable since the matching cannot be exactly modeled by

a small number of parameters. As a result, matching extrin-

sically by determining the deformation in ambient space,

i.e. 3D Euclidean space, is deemed as a very difficult task

and most attention has been given to intrinsic methods.

The group of intrinsic methods is favorable for match-

ing shapes involving complex motions because the intrin-
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Figure 1. A demonstration of our method. The first and second

shapes are a matching pair produced by MWP [34], where the

result is presented by color transfer (unmatched point in white).

Given the imperfect result, our method proceeds by robustly esti-

mating a transformation from the first to the second shape, which

results in the third transformed shape. The refined matching result

is manifested in the fourth shape (in comparison to the first).

sic properties or features are invariant to extrinsic changes.

In particular, a prominent strategy is to exploit the spec-

tral quantities using eigen-decomposition of the Laplace-

Beltrami operator [61], which is in theory invariant to iso-

metric shape deformations. The strategy has proven to

be very effective, represented by the framework of func-

tional maps [52] and its numerous follow-up works in recent

years [46, 56, 58]. In essence, these methods are to find a

well-defined feature space to represent each point in shape,

so that Euclidean metrics can be used to establish corre-

spondences or maps. However, some fundamental prob-

lems exist in this category. The maps recovered in feature

space normally do not have the properties such as continu-

ity or smoothness. Moreover, the transformation of points

inevitably means loss of information which inherently pro-

hibits accurate alignment at fine scales, especially in less

prominent areas such as flat regions.

In contrast, extrinsic methods have the potential advan-

tages to preserve the desired properties of maps and obtain

more accurate alignment, since the objective is based on

ambient space. Efforts in this line of work are relatively

less compared to the intrinsic methods. In particular, the

classic coherent point drift (CPD) [51] and its extended

variants [4,31], deformation based on vector field flow [15]

and divergence-free field [19] have been proposed in recent

years. However, their performances are restricted due to

some commonly-known major obstacles. To begin with,
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the deformation which requires a high degree of freedom

is hard to model in an efficient way. In addition, the opti-

mization can easily get stuck in local optima because of the

complexity of deformation.

Our method belongs to the category of extrinsic meth-

ods, although intrinsic information may be utilized for op-

timal performance as input. Our method is both a revisit

and a generalization of the classic CPD. The generalization

mainly includes two aspects to address the weaknesses of

CPD which prevent it from application to general-purpose

shape matching. The first aspect is regarding the deforma-

tion model. In CPD, a regularized functional framework is

utilized, in which the solution is established as a use of the

kernel trick. In this paper, we further analyze the direction

and generalize the original framework based on Euclidean

space to non-Euclidean domains. We show that the ker-

nel method can be extended for shapes with non-Euclidean

structures, by connecting the notion of Laplace operator to a

non-Euclidean one, i.e. Laplace-Beltrami operator. We also

show that the new deformation model has a more economic

and intuitive alternative expression. The second aspect is

regarding the intractability of optimizing the objective of

CPD. We observe that this is due to the large search space

of the problem. To address this issue, we borrow ideas from

the image matching community [26, 44]. In image match-

ing tasks, direct matching of two feature sets is intractable,

thus a prevalent approach is to find the most confident cor-

respondences by nearest-neighbor descriptor matching, and

geometric models may be found from the set of initial cor-

respondences. To extend the idea to shape matching, we

generalize the probabilistic model of CPD to handle such

a restrictive set, which also admits a smart and efficient

Expectation-Maximization (EM) method. An exemplary

demonstration of our method is presented in Fig. 1.

To summarize, the main contributions of this paper in-

clude the following three aspects. First, a generalization

of the regularized functional framework of CPD to non-

Euclidean domains is proposed. Second, a generalization

of the probabilistic model of CPD to handle an arbitrary

outlier-contaminated initial confident correspondence set is

presented. Third, by extensive experimental validation on

multiple datasets and experimental analyses on different

settings, we demonstrate the effectiveness of our method.

2. Related Work

Metric Space Methods. In metric spaces, a metric value

shall be defined and given for each pair of points, and

metric space methods in shape matching attempt to pre-

serve the geodesic distance metric between every pair of

points as well as possible. The procedure known as mul-

tidimensional scaling [8, 11] embed shapes into an inter-

mediate space, in which the shapes can be seen as rigid

and methods like ICP [6] can be used to perform match-

ing. This idea are firstly suggested in [23], followed by a

number of works such as [36, 39, 45, 62]. Although this

idea is appealing for its simplicity, the error can be sub-

stantial. A more straightforward idea is to avoid interme-

diate simple space, by embedding one shape directly into

another. This formulation is firstly developed in [9], and

its solver is built on the Gromov-Hausdorff distance frame-

work [49]. A spectral decomposition method is subse-

quently proposed in [1] to further reduce the complexity.

Mathematically, the Quadratic Assignment Problem (QAP)

has strong and direct connections to the optimization prob-

lem raised by Gromov-Hausdorff distance [32] or its relax-

ation form Gromov-Wasserstein distance [48], as indicated

in [47,57,66]. Essentially, many methods adopt a QAP for-

mulation by incorporating geodesic distance preservation

into a quadratic objective, and optimizing over permutation

matrices [5, 12, 18, 66].

Functional Maps Methods. The seminal work of func-

tional maps is originally introduced in [52]. In this formu-

lation and equipped with the spectral decomposition of the

Laplace-Beltrami operator, the matching problem reduces

to linear optimization over a small functional map matrix,

from which dense correspondences can be extracted. This

new perspective has encouraged a large volume of works,

including partial shape matching [41,42,58], additional reg-

ularization [37,54,55], orientation-preserving operator [56],

and alternative functional space representations [38, 72].

Recently, it has been observed that the conversion step from

functional maps to dense point-to-point correspondences is

also difficult and prone to error [25, 59]. In light of this, a

group of methods have been proposed to improve the ac-

curacy and achieved state-of-the-art. These include CPD in

the spectral domain [59], kernel density estimation in the

product space [70], coarse-to-fine spectral upsampling [46]

and its sinkhorn variant [53], among others [25, 34, 56, 73].

In addition, deep neural networks are also investigated for

functional maps [17, 28, 33, 40, 60, 63].

Extrinsic Methods. The above two categories leverage

the intrinsic properties of shapes. A more closely related

line of work to ours is the extrinsic methods, which attempts

to align shapes in the Euclidean (ambient) space directly.

Due to fundamental difficulties of extrinsic shape modeling,

the volume of methods are much smaller. In early period,

many popular deformation models have been adopted, in-

cluding Reproducing Kernel Hilbert Space [51], Thin-Plate

Splines [13], PCA type representation [43], locally affine

model [2], and as-rigid-as-possible model [35]. However,

these models pose strong assumptions on the deformation

and cannot handle large and uneven deformations ubiqui-

tously existing in shape matching. Time-dependent mod-

els are more powerful and permit a broader range of defor-

mations, which is adopted in shape matching in [71] and

more recently in [19] on divergence-free fields. However,
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the complexity of such methods is prohibitive. Notably,

a vector field flow method in [15] refines the functional

maps rather than aligns the shape in ambient space. More

recently, the smooth shells method [20] provides a hierar-

chical framework that combines functional maps and as-

rigid-as-possible deformation to align shapes in an intrinsic-

extrinsic embedding space. Most recently, deformation-

based deep learning methods are also emerging [21,22,27].

3. Methodology

We assume two shapes X and Y are given, which can

be seen as 2D Riemannian manifolds with embeddings in

R
3. Note that here “embedding” takes a different meaning

where R3 is the embedding space. In other contexts, embed-

ding also refers to a feature transform from ambient space

R
3 to a high-dimensional embedding space, e.g. the process

of spectral embedding. Typically, the shapes X and Y are

discretized and represented using triangle meshes. We de-

note the vertices as point sets X ∈ R
N×3 and Y ∈ R

M×3,

respectively. The aim of shape matching is to find the point-

to-point mapping T : X → Y , i.e. to find the (partial) per-

mutation matrix Π between X and Y in the discrete setting.

3.1. Generalized Functional Deformation

3.1.1 Deformation based on Regularization Theory

The core idea of CPD is to impose a smooth constraint on

the displacement function of points in the registration pro-

cess. To solve the problem, a variational formulation is pro-

posed in [51], which originates from a broader framework,

known as Regularized Network [24]. Basically, it investi-

gates a classic machine leaning problem to minimize the

empirical risk functional plus a regularization term:

H[f ] = 1
l

∑l
i=1 c(f(xi), yi) +

λ
2 ∥Pf∥2, (1)

where l is the number of input data pairs (xi, yi), and c(·) is

cost function. Practically, P can be seen as an operator that

“extracts” some parts of the function for regularization.

For a detailed discussion to derive the solution of Eq. (1),

we refer to the seminal work of [24, 30]. The main conclu-

sion is related to the kernel trick in machine learning, that

under rather general conditions the solution can be written

in the following form:

f(x) =
∑l

i=1 wiK(xi,x),

∥Pf∥2 = wTKw,
(2)

where wi denotes the weights, K(·, ·) denotes a particu-

lar kernel function, w = [w1, · · · , wl]
T denotes the weight

vector, and K denotes the kernel matrix Kij = K(xi,xj).
An important perspective that allows us to generalize the

framework later is to observe the relation between the regu-

larization operator P and the kernel functionK. In [65], the

following theorem has been proved which illuminates this

relation using the concept of Green’s function [29].

Theorem 1 (Green’s Function and Mercer Kernels)

Let P be a regularization operator, and K be the Green’s

function of self-adjoint operator P̂P (with P̂ denoting the

adjoint operator to P ). Then K is a Mercer Kernel that

minimizes Eq. (1) with P as the operator.

Theorem 1 indicates that given the predefined operator, the

kernel function can be accordingly derived which character-

izes the solution form in Eq. (2).

With the theoretical background established, now we can

turn to the idea of CPD. In practice, the regularization term

is usually used without specifying the operator, which ad-

mits the following form:

ϕ(f) = ∥Pf∥2 = ⟨f, P̂Pf⟩ =
∫
RD |f̂(ω)|2r(∥ω∥2)dω,

(3)

where f̂(ω) denotes the Fourier transform of f , r(∥ω∥2)
is a function typically increasing in ∥ω∥2 to penalize high

frequency components. In essence, CPD adopts a Gaussian

function, i.e. r(∥ω∥2) = eβ∥ω∥2

, to regularize the displace-

ment function, which induces a Gaussian Kernel to formu-

late the solution in Eq. (2).

3.1.2 Generalized Coherent Point Drift

The original CPD utilizes a regularized framework to model

the smooth displacement function f ∈ L2(RD). Clearly,

the concepts here are established on the basis of Euclidean

space, and the smoothness of function is also defined w.r.t.

Euclidean space. This poses a major limitation to its range

of application, especially when the data are endowed with a

non-Euclidean structure, e.g. natural shapes.

In current literature of shape analysis, shapes are con-

stantly considered as a low-dimensional manifold embed-

ded in R
3 and presented as 3D meshes, and an enormous

amount of studies making use of the intrinsic properties of

shapes have proven to be very successful. Thus it is natural

to generalize the idea of CPD to non-Euclidean domains.

The generalization is proposed based on several observa-

tions and conclusions that have been made in [64]. As we

will shortly see, the kernel trick in Euclidean space can be

readily generalized to non-Euclidean domains.

The first observation is that the regularization term in

Eq. (3) can be equivalently written in terms of Laplace op-

erator as

∫
RD |f̂(ω)|2r(∥ω∥2)dω = ⟨f, r(∆)f⟩, (4)

where ∆ denotes the Laplace operator and and r(∆) is the

extension of r to operators simply by applying r to the spec-

trum of ∆

⟨f, r(∆)f ′⟩ = ∑
i⟨f, ψi⟩r(λi)⟨ψi, f

′⟩, (5)
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where {(ψi, λi)} is the eigensystem of ∆.

Remark 1. The importance of Eq. (4) is that it links

the Laplace operator to the self-adjoint operator P̂P as in

Eq. (3). Thus by the definition of r(∆) we may determine

the form of the kernel function by virtue of Theorem 1.

Now, when we are studying a shape, or equivalently a

manifold M embedded in R
3, the notion of Laplace opera-

tor for Euclidean space is not applicable, but there exists a

counterpart, i.e. the Laplacian-Beltrami operator. Thus, we

may define the regularization term in complete analogy to

Eq. (4). Note that since the input shapes are a set of dis-

crete samples of the manifold, the Laplacian-Beltrami op-

erator degenerates to a matrix, denoted by L. In the spirit of

Eq. (5), we may define

r(L) = ∑
i r(λi)υiυ

T

i , (6)

where {(λi, υi)} constitutes the eigensystem of L. Under

this equation, kernel trick can be readily extended to non-

Euclidean domain [64]. Particularly, r(L) plays the same

role of P̂P of the continuous case, and the kernel matrix in

discrete case is exactly the inverse of r(L) (pseudo-inverse

if not invertible), i.e. the discrete Green’s function as de-

fined in [14]:

K = r(L)−1 =
∑

i r
−1(λi)υiυ

T

i . (7)

The different definitions of function r(·) would result in dif-

ferent regularization operators, and equivalently, different

kernels. This completes our generalization since the form

of solution is determined by the form of the kernel, in com-

plete analogy to Eq. (2).

An Alternative Representation. Analogously to the

continuous case, the kernel trick suffers from high compu-

tational complexity since K ∈ R
N×N , where N denotes

the number of data points. This is a major limitation for

processing shapes since high-resolution shapes can be of

tens of thousands points. In this sense, the kernel trick may

be inferior to explicitly specifying the form of solution by

utilizing the Fourier transform, i.e. the eigensystem of the

Laplace-Beltrami operator L.

Using the intuitive idea of using low-frequency truncated

bases, we may express the function of interest as

f =
∑

i wiυi = Uw, (8)

where f is a vector representing a function over M evalu-

ated on sample points. U = [υ1, υ2, . . . , υk] is the matrix

of k truncated bases. The regularization term by applying

Eq. (6) now becomes

ϕ(f) =
∑

i r(λi)w
2
i . (9)

Practically, we can always use a truncated basis for repre-

senting f , then the number of variables for representing f is

identical to the number of bases used, and independent of

the number of data points.

Remark 2. The expression of Eq. (8) is a simple and

rather intuitive result, which has been used in previous work

to model deformation [20]. Our analysis here theoretically

connects it to the regularization theory and kernel method,

and leads to a new algorithm under the CPD framework.

3.2. Generalized Probabilistic Registration

3.2.1 Probabilistic Registration Framework

The Gaussian Mixtures Model (GMM) is a classic and

prevalent method for the task of registration, where the goal

is to simultaneously learn the permutation of points as well

as a deformation T (·) that aligns two point sets. Follow-

ing the conventions in [51], we consider the points in Y as

the GMM centroids and the points in X as the data points

generated by GMM. For simplicity, equal isotropic covari-

ances σ2 and equal membership probabilities are adopted.

To account for outliers, an additional uniform distribution 1
a

is used. Consequently, the mixture model takes the form

p(xn) = γ 1
a + (1− γ)

∑M
m=1

1
M p(xn|m), (10)

where p(xn|m) = 1
(2πσ2)D/2 e

−
∥xn−T (ym,θ)∥2

2σ2 , θ denotes

the parameters that control the deformation, and γ denotes

the weight accounting for outliers.

Adopting the i.i.d. data assumption, a Maximum Like-

lihood Estimate (MLE) objective can be defined utilizing

Eq. (10) as p(X) =
∏N

n=1 p(xn). To circumvent the diffi-

culties of optimizing the MLE objective, a smart EM algo-

rithm can be used. The idea of EM is the iterations between

an E-step and an M-step. The E-step is to use current pa-

rameters to compute a posteriori probability distributions

of mixture components

p(m|xn) =
e−

∥xn−T (ym,θ)∥2

2σ2

∑M
k=1 e

−
∥xn−T (yk,θ)∥2

2σ2 + (2πσ2)D/2 γ
1−γ

M
N

.

(11)

The M-step is to update new parameters by minimizing the

expectation of the complete negative log-likelihood func-

tion, which, if ignoring independent terms, is written as

Q(θ, σ2) =
∑N

n=1

∑M
m=1 p(m|xn)

∥xn−T (ym,θ)∥2

2σ2

+
NpD
2 log σ2, (12)

where Np =
∑N

n=1

∑M
m=1 p(m|xn).

Note that to facilitate the estimation of deformation,

regularization terms are commonly required in addition to

Eq. (12). This can be embedded in the GMM probabilistic

framework by specifying prior information for deformation,

but essentially boils down to minimizing the following ob-

jective

Q′(θ, σ2) = Q(θ, σ2) + λ
2ϕ(θ), (13)
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where ϕ(θ) is the regularization term.

Now having Eq. (13) in hand as objective, we may dis-

cuss how to update the parameters, i.e. θ and σ2. Based

on our discussion in Sec. 3.1.2, the deformation is defined

using displacement function

T (Y,W) = Y + v(Y) = Y +UW, (14)

where U ∈ R
M×k stacks the truncated k bases of the

Laplacian-Beltrami operator L, and W ∈ R
k×D is the

weight matrix to be solved. The regularization term takes

the form

ϕ(W) = WTRW, (15)

where R is a diagonal matrix and the diagonal elements are

the penalizing function of the eigenvalues of the Laplacian-

Beltrami operator L, i.e. Rii = r(λi). Applying Eq. (14)

and Eq.(15) to Eq. (13), we can obtain an analytical solution

by solving the following linear system

(UTd(P1)U+λσ2R)W = UTPX−UTd(P1)Y, (16)

where P has elements Pmn = p(m|xn), 1 represents the

column vector of all ones, and d(·) denotes the transform

from vector to diagonal matrix. In addition, parameter σ2

can also be derived analytically using simple linear algebra

σ2 = 1
NpD

∑N
n=1

∑M
m=1 p(m|xn)∥xn − T (ym, θ)∥2 =

1
NpD

(tr(XTd(PT1)X− 2tr((PXT) + tr(TTd(P1)T)),

(17)

where T = Y+UW. This completes the whole EM algo-

rithm for GMM-based registration.

3.2.2 Generalized Probabilistic Model

The major drawback of the aforementioned GMM frame-

work for registration is its highly non-convex objective,

which makes it prone to failures caused by bad initializa-

tion. To address this issue, we borrow the idea from image

matching [26,44]. First, we create a set of initial correspon-

dences by nearest matching of feature descriptors, and then

estimate transformation from the initial correspondence set.

The initial correspondence set contains the most confident

correspondences and significantly reduces the search space

for registration.

In shape matching, feature descriptors have also been ex-

tensively studied in analogy to image matching. For exam-

ple, SHOT [67] is a frequently used one. In a general sense,

the functional maps framework provides a more sophisti-

cated and powerful feature descriptor for shape matching,

which greatly enhances spectral embeddings for matching.

Thus, we can safely assume that the initial correspondences

are given and turn to the next step.

The problem we need to concern for initial correspon-

dence set is the noise, and more importantly, the outlier is-

sue (false correspondences). We next propose a probabilis-

tic framework to address this problem.

Suppose we have obtained a set of putative correspon-

dences S = {ci}li=1, where each ci = (xi,yi). To identify

the inlier set I ⊆ S, we aim to recover from S the under-

lying deformation, i.e. T : RD → R
D in our context, such

that xi = T (yi) for ci ∈ I. For the inliers, we assume that

the noise is isotropic Gaussian with zero mean and variance

σ2. For the outliers, we assume its distribution to be uni-

form 1
a with a denoting the volume of this region. We also

use γ as the weight to account for outliers. Consequently,

the probabilistic model takes the form

p(ci) =
1−γ

(2πσ2)D/2 e
−

∥xi−T (yi)∥
2

2σ2 + γ 1
a . (18)

Remark 3. We note the resemblance between Eq. (10)

and Eq. (18). In essence, our probabilistic model to handle

initial correspondences makes a more restricted assumption

of the data distribution, i.e. the mixture model contains only

two components instead of M + 1 in Eq. (10).

Given the assumption of data distribution in Eq. (18), we

may now determine the objective as p(S) =
∏l

i=1 p(ci),
using the spirit of MLE. To derive the optimal solution un-

der the MLE objective, the EM algorithm can also be used.

In this case, we may also proceed by the iteration of an E-

step and an M-step. The E-step to compute a posteriori

probability distributions of mixture components now read

pi =
(1− γ)e−

∥xi−T (yi)∥
2

2σ2

(1− γ)e−
∥xi−T (yi)∥

2

2σ2 + γ
(2πσ2)D/2

a

. (19)

The M-step to update new parameters is conducted by

minimizing the expectation of the complete negative log-

likelihood function as

Q(θ, σ2) =
∑l

i=1 pi
∥xi−T (yi,θ)∥

2

2σ2 + D
2 log σ2

∑l
i pi.

(20)

Analogously, the regularization term can be included and

the final objective is

Q′(θ, σ2) = Q(θ, σ2) + λ
2ϕ(θ), (21)

where ϕ(θ) is the regularization term.

In a similar way, we may apply Eq. (14) and Eq. (15)

to Eq. (21). This leads to a closed-form solution for the

deformation parameter matrix W

(UTd(p)U+ λσ2R)W = UTd(p)X−UTd(p)Y, (22)

where p is the vector of a posteriori probability distribu-

tions, i.e. pi = pi, and X ∈ R
l×D and Y ∈ R

l×D stack xi
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Algorithm 1 Generalized Coherent Point Drift

Input: The initial confident correspondence set S, two

shapes X with point set X and Y with point set Y repre-

sented as 3D meshes, parameters γ, λ and k.

Output: Point-to-point correspondences C.

1: Initialize γ, λ, T = 0l×2, p = 1;

2: Initialize σ2 by Eq. (23);

3: Compute the smallest first k eigenvalues and eigenfunc-

tions of the Laplace-Beltrami operator L on shape Y to

form basis Matrix U and regularization matrix R;

4: while Q not converge do

5: E-step:

6: Update p by Eq. (19);

7: M-step:

8: Update W by Eq. (22), T by Eq. (14), and σ2 by

Eq. (23);

9: end while

10: Initialize T by Eq. (14);

11: while Q not converge do

12: E-step:

13: Update P by Eq. (11);

14: M-step:

15: Update W by Eq. (16), T by Eq. (14), and σ2 by

Eq. (17);

16: end while

17: Establish point-to-point correspondences C by nearest

matching between X and T.

and yi in a correspondence ci respectively. Using simple

linear algebra, σ2 has the closed-form solution as

σ2 =
tr((Y − T)Td(p)(Y − T))

D · tr(d(p)) , (23)

where T = Y + UW, and W ∈ R
k×3. This completes

the whole EM algorithm for deformation estimation using a

generalized probabilistic model.

Algorithmic Summary of Our Method. Our method

assumes that a set of confident initial correspondences are

provided, thus we use the generalized probabilistic model to

estimate a deformation, and subsequently we use the orig-

inal GMM-based registration framework to refine the esti-

mation. We name our algorithm as Generalized Coherent

Point Drift (GCPD) and summarize it in Alg. 1.

3.3. Implementation Details

Computational Complexity. Assuming the initial cor-

respondences are given, the most time-consuming step is

the process of evaluating a posteriori probability distribu-

tions as in Eq. (11), takingO(MN) time by straightforward

computation. The Fast Gauss Transform is used in CPD to

mitigate this issue, which achieves O(M +N) complexity.

In our method, we utilize a more accurate Figtree method as

proposed in [50], which is also of O(M +N) complexity.

Initial Confident Correspondences. Note that a

plethora of methods have been proposed for establishing

confident correspondences in the literature, based on de-

scriptor matching. In some sense, the Functional Maps

methods can also be seen as of this category, which out-

put correspondences based on matching of spectral embed-

dings. For optimal performance, the output of a Functional

Maps method is favored, as will be used in our experiment.

4. Experimental Results

4.1. Benchmark Comparison

We use three commonly used benchmark datasets, i.e.

FAUST [7], TOSCA [10] and SCAPE [3] to evaluate the

proposed GCPD and other competitor methods.

FAUST. FAUST is composed of 10 poses of 10 human

subjects with significant variability between different hu-

man subjects. Instead of the standard meshes, we use the

version provided in [56] where each shape was re-meshed

individually. This makes it more challenging and also more

realistic, since for real-world scans the sampling of surfaces

is generally incompatible. The meshes all have approxi-

mately 5k vertices. In our evaluation, we use the 300 match-

ing pairs provided in the dataset, which consists of both iso-

metric and non-isometric pairs.

TOSCA. TOSCA consists of 76 shapes in 8 different cat-

egories ( human and animal shapes) with vertex numbers

ranging from 4k to 50k. The high-resolution shapes make

this dataset computationally very challenging. In our evalu-

ation, we randomly generate 200 isometric matching pairs.

SCAPE. SCAPE contains 71 registered meshes of a par-

ticular human subject in different poses. The meshes have

identically 12500 vertices. The dataset is a relatively sim-

ple one where the meshes are consistent and the resolution

is moderate. In our evaluation, we also randomly generate

200 matching pairs for evaluation.

Evaluation Metric. We use the Princeton benchmark

protocol [36] to evaluate the matching accuracy of methods.

Specifically, given the ground-truth match (x, y∗) where

x ∈ X and y∗ ∈ Y , the error of the calculated match (x, y)
is given by the geodesic distance between y and y∗ normal-

ized by diameter of Y: ϵ(x) =
dgeo(y,y

∗)√
area(Y)

. All evaluated

correspondences are summarized by a cumulative distribu-

tion curve which indicates the final matching performance.

Competitors and Settings. The competitors include

BIM [36], PMF [70], KernelMatching [69], BCICP [56],

SmoothShells [20], MWP [34], ZoomoutSinkhorn [46, 53]

and DIR [73]. Among them, we use the provided results

in the dataset of [56] for BIM, BCICP, and KernelMatch-

ing. We use SHOT [67] matching results to initialize MWP,
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Figure 2. Evaluation results of our GCPD and other competing methods on FAUST, TOSCA and SCAPE, in terms of matching accuracy.

Figure 3. Qualitative demonstration using color transfer. For each group of results, the first and last shapes are target and source shapes

with ground-truth matching, the second shape represents result of SmoothShells, and the third shape represents result of GCPD.

DIR and ZoomoutSinkhorn. We use the results of MWP to

initialize PMF, and use the single-scale version of it.

GCPD Settings. In our evaluation, we use the results

of MWP to initialize our GCPD for optimal performance.

Specifically, for high-resolution shape pairs, we use the out-

put of MWP to produce 5000 sparse matching samples. For

low-resolution shape pairs, we directly use all correspon-

dences produced by MWP as initialization. Note that differ-

ent initialization strategies are analyzed in the next section.

We set γ = 0.1, λ = 10 and k = 500 in our experiments.

We empirically choose r(λi) = λ
1/2
i for regularization.

Discussion of Results. We have provided the compari-

son results measured by the cumulative distribution curve

of matching accuracy in Fig. 2. Some qualitative exam-

ples are given in Fig. 3 with comparison to SmoothShells.

We also compare the mean runtime of each method on

SCAPE dataset and runtime on some representative mod-

els from TOSCA in Tab. 1. Note that the runtime includes

all pre-processing cost, such as SHOT matching and eigen-

function computation. From the results, we can observe

that the recently proposed functional maps variants, such

as BCICP, ZoomoutSinkhorn and MWP, significantly out-

perform previous methods. Among them, the most recent

MWP has the best performance, in terms of both match-

ing accuracy and efficiency. This validates our choice for

initialization with MWP. Notably, PMF, like our method,

also requires initial correspondences. However, PMF fails

to improve over MWP input. Among all methods, our

GCPD and SmoothShells have the best performance, this

is because each method recovers a deformation for match-

ing. Both methods have near-optimal performance, while

our method is significantly faster, almost 10 times faster

than SmoothShells on SCAPE dataset. This establishes our

Table 1. The runtime comparison (in seconds) of GCPD and state-

of-the-arts. We report the average runtime on SCAPE dataset, and

runtime of models from TOSCA dataset which reflect different

resolutions. SS: SmoothShells; ZS: ZoomoutSinkhorn.

Model SCAPE Wolf Centaur Horse Cat David

Vertices 12500 4344 15768 19248 27894 52565

SS [20] 410.9 149.8 506.2 709.9 986.8 2035.5

ZS [53] 32.8 4.3 43.6 52.6 104.1 583.9

MWP [34] 18.5 2.5 26.3 26.6 58.5 404.1

GCPD 29.4 6.8 81.8 86.1 160.1 813.2

method as the best performer.

Remark 4. The DIR method has also been adopted

for comparison. However, we only present its results on

SCAPE dataset. This is because on TOSCA dataset, the

required memory of DIR exceeds the limitation of our ma-

chine (64 GB) for high-resolution pairs, due to the need to

compute geodesic distance matrix. Also on FAUST, we find

that DIR almost fails on each pair, which may be due to the

low-resolution of the shapes. Thus although DIR exhibits

promising results on SCAPE, it still has some serious limi-

tations in contrast to our method.

4.2. Further Analyses

Ablation Study. We provide an ablation study of the

proposed generalized functional deformation and robust ini-

tialization strategy in Fig. 4a. The experiment is con-

ducted on FAUST, which contains both isometric and non-

isometric matching pairs. Explanation of settings: To find

transformation from Y to X , naive initialization as used in

CPD is to perform matching directly (initialized with Y it-

self) with GMM ( Sec. 3.2.1). The proposed initialization
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Figure 4. Further analytical results. (a) Ablation study w.r.t. the generalized functional deformation and robust initialization strategy.

(b) Evaluation results of GCPD w.r.t. different initializations. Full line: GCPD refined results; Dashed Line: Initialization methods without

GCPD. (c) Evaluation results of GCPD, MWP and ZoomOut for partial shape matching. Full line: cuts dataset; Dashed line: holes dataset.

Figure 5. Qualitative examples showing how our GCPD improves

over MWP. For each group, the left two shapes present the match-

ing result of MWP, and the right two shapes present the refined

matching result of our GCPD. Note that here the unmatched points

are colored as white.

utilizes a different probabilistic model first ( Sec. 3.2.2) with

initial correspondences (MWP) to obtain T , then T is fed

into GMM instead of Y. CPD and GCPD simply refers to

different functional deformation frameworks. Clearly, the

proposed initialization and generalized functional deforma-

tion are important for non-rigid shape matching. It is also

consistent with the common view for CPD that without a

good initialization, the GMM framework fails easily.

Initialization Choice. One important aspect of our

method is the choice for initialization. We have shown

that GCPD initialized by MWP can achieve superior per-

formance, but it remains unclear to what extent the initial-

ization would influence the matching result. Next we pro-

vide an experimental analysis of this point. In particular,

we additionally use ZoomoutSinkhorn and also plain SHOT

matching to provide initial correspondences for our GCPD.

The experiments are conducted on FAUST, and the results

are presented in Fig. 4b. It can be observed that although

GCPD improves the matching accuracy over different ini-

tial correspondences, there is a gap between different initial-

ization methods. A better matching result can be expected

if the initial correspondence set is better. We also provide

some qualitative results involving both isometric and non-

isometric pairs in Fig. 5, showing the initial matching result

of MWP and how GCPD improves over it.

Partial Matching. A prominent advantage of our GCPD

method compared to other methods, such as SmoothShells,

Figure 6. Qualitative examples of our GCPD and MWP using

color transfer for partial matching. For each group, the first and

last columns are target and source shapes with ground-truth match-

ing, the second column represents the results of MWP, and the

third column represents the results of our GCPD.

is its flexibility. We make the least of assumptions of the

input shapes, and only require a set of initial matches. This

property renders our method directly applicable to partial

matching. To demonstrate this point, we take the SHREC16

Partial Correspondence benchmark [16] for evaluation. The

dataset consists of 8 types of isometric human or animal

shapes in different poses with regular “cuts” and irregular

“holes”. We test our method by matching each partial shape

to the corresponding full shape. For initialization, we still

use MWP. The quantitative results are presented in Fig. 4c

with comparison to the MWP and ZoomOut [46] method

using the tailored partial matching code provided by the au-

thors. The qualitative results are presented in Fig. 6. We can

see that our method can enhance the results of MWP even

in the partial matching setting.

5. Conclusion

In this paper, we have revisited and generalized the clas-

sic CPD method for non-rigid shape matching. First, the

deformation model has been generalized to non-Euclidean

domains, which makes the method applicable to shapes that

involve manifold structures. Second, we have proposed a

generalized probabilistic model which can handle outlier-

contaminated initial correspondences. This avoids the lo-

cal optima issue in optimizing the GMM-registration objec-

tive. Extensive experiments have been conducted on mul-

tiple benchmark datasets which proves the efficacy of the

proposed method.
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