
Context-Aware Video Reconstruction for Rolling Shutter Cameras

Bin Fan Yuchao Dai* Zhiyuan Zhang Qi Liu Mingyi He
School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China

Abstract

With the ubiquity of rolling shutter (RS) cameras, it is be-
coming increasingly attractive to recover the latent global
shutter (GS) video from two consecutive RS frames, which
also places a higher demand on realism. Existing solu-
tions, using deep neural networks or optimization, achieve
promising performance. However, these methods generate
intermediate GS frames through image warping based on
the RS model, which inevitably result in black holes and no-
ticeable motion artifacts. In this paper, we alleviate these
issues by proposing a context-aware GS video reconstruc-
tion architecture. It facilitates the advantages such as oc-
clusion reasoning, motion compensation, and temporal ab-
straction. Specifically, we first estimate the bilateral motion
field so that the pixels of the two RS frames are warped to a
common GS frame accordingly. Then, a refinement scheme
is proposed to guide the GS frame synthesis along with bi-
lateral occlusion masks to produce high-fidelity GS video
frames at arbitrary times. Furthermore, we derive an ap-
proximated bilateral motion field model, which can serve as
an alternative to provide a simple but effective GS frame ini-
tialization for related tasks. Experiments on synthetic and
real data show that our approach achieves superior perfor-
mance over state-of-the-art methods in terms of objective
metrics and subjective visual quality. Code is available at
https://github.com/GitCVfb/CVR.

1. Introduction
Many modern CMOS cameras equipped with rolling

shutter (RS) dominate the consumer photography market
due to their low cost and simplicity in design, and are also
prevalent in the automotive sector and motion picture indus-
try [16, 48, 52, 62]. Within this acquisition mode, pixels on
the rolling shutter CMOS sensor plane are exposed from top
to bottom in a row-by-row fashion with a constant inter-row
delay. This leads to undesirable visual distortions called
the RS effect (e.g. wobble, skew) in the presence of fast
motion, which is a hindrance to scene understanding and a
nuisance in photography. With the increased demand for
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Figure 1. GS video reconstruction example. The left column
shows two input consecutive RS images, and three ground-truth
GS images at time 0, 0.5, and 1, respectively. Rows to the right
show five GS frames (at times 0, 0.25, 0.5, 0.75, 1) extracted
by [9] (top) and our method (below), followed by two correspond-
ing zoom-in regions. The orange box represents occluded black
holes and the red box indicates motion artifacts specific to mov-
ing objects. Our method recovers higher fidelity GS images due
to contextual aggregation and motion enhancement. Note that the
black image edges by our method are because they are not avail-
able in both RS frames (cf . blue circle). Best viewed on Screen.

high quality and high framerate video of consumer-grade
devices (e.g. tablets, smartphones), video frame interpola-
tion (VFI) has attracted increasing attention in the computer
vision community. Unfortunately, despite the remarkable
success, the currently existing VFI methods [2,18,38,39,56]
implicitly assume that the camera employs a global shutter
(GS) mechanism, i.e. all pixels are exposed simultaneously.
They are therefore unable to produce satisfying in-between
frames with rolling shutter video acquired by e.g. these de-
vices in dynamic scenes or fast camera movements, result-
ing in RS artifacts remaining [9].

To address this problem, many RS correction methods
[13,17,24,43,55,63] have been actively studied to eliminate
the RS effect. In analogy to VFI generating non-existent
intermediate GS frames from two consecutive GS frames,
recovering the latent intermediate GS frames from two con-
secutive RS frames, e.g. [10,24,61,62], serves as a tractable
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goal that overcomes the limited acquisition framerate and
RS artifacts of commercial RS cameras. This is signifi-
cantly challenging because the output GS frames must fol-
low coherence both temporally and spatially. To this end,
traditional methods [61, 62] are often based on the assump-
tion of constant velocity or constant acceleration camera
motion, which struggle to accurately reflect the real cam-
era motion and scene geometry, resulting in the persistence
of ghosting and unsmooth artifacts [9, 24]. Recent deep
learning-based solutions have achieved impressive perfor-
mance, but they typically can only recover one GS image
corresponding to a particular scanline, such as the first [10]
or central [24,60] scanline, limiting their potentials for view
transitions from RS to multiple-GS.

In this paper, we tackle the task of reviving and reliving
all latent views of a scene as beheld by a virtual GS cam-
era in the imaging interval of two consecutive RS frames.
Therefore, we must jointly deal with VFI and RS correction
tasks, i.e. interpolating smooth and trustworthy distortion-
free video sequences. It is worth mentioning that the most
relevant work to our task is [9], which is dedicated to the
geometry-aware RS inversion by warping each RS frame to
its corresponding virtual GS counterpart. Nevertheless, as
illustrated in Fig. 1, the GS images recovered by [9] still
suffers from two limitations:

• Masses of black holes (cf . orange box). This is a com-
mon issue for warping-based methods (e.g. [9, 44, 61–
63]) due to the occlusion between the RS and GS im-
ages, leading to the possibility of permanent loss of
some valuable image contents. To maintain visual con-
sistency, a cropping operation is used to discard the re-
sulting holes, but may degrade the visual experience.

• Noticeable object-specific motion artifacts (cf . red
box). When recording dynamic scenes, the moving ob-
ject violates the constant velocity motion assumption
of RS cameras used in [9], resulting in its inability to
accurately capture motion boundaries specific to mov-
ing objects. Thus severe motion artifacts are generated.

In contrast, we investigate contextual aggregation and
motion enhancement based on the bilateral motion field
(BMF) to alleviate these issues, which aims to synthesize
crisp and pleasing GS video frames by occlusion reason-
ing and temporal abstraction. Specifically, we propose CVR
(Context-aware Video Reconstruction architecture), which
consists of two stages to recover a faithful and coherent GS
video sequence from two input consecutive RS images. In
the first initialization stage, we adopt a motion interpreta-
tion module to estimate the initial bilateral motion field,
which warps the two RS frames to a common GS version.
We design two schemes to achieve this goal. One is based
on [9] which requires a pre-trained encoder-decoder net-
work; the other is our proposed approximation of [9], with-
out resorting to a deep network. Also, we show that this

simple approximation is able to provide a feasible solu-
tion for the initial prediction. Afterward, a second refine-
ment stage is introduced to handle black holes and ambigu-
ous misalignments caused by occlusions and object-specific
motion patterns. As a result of exploiting bilateral motion
residuals and occlusion masks, it can guide the subsequent
GS frame synthesis to reason about complex motion profiles
and occlusions. Furthermore, inspired by [10], we propose
a contextual consistency constraint to effectively aggregate
the contextual information, such that the unsmooth areas
can be enhanced in an adaptive manner. Extensive exper-
imental results demonstrate that our method surpasses the
state-of-the-art (SOTA) methods by a large margin in re-
moving RS artifacts. Meanwhile, our method is capable of
generating high-fidelity GS videos.

The main contributions of this paper are three-fold:

1) We propose a simple yet effective bilateral motion field
approximation model, which serves as a reliable initial-
ization for GS frame refinement.

2) We develop a stable and efficient context-aware GS
video reconstruction framework, which can reason about
complex occlusions, motion patterns specific to objects,
and temporal abstractions.

3) Experiments show that our method achieves SOTA re-
sults while maintaining an efficient network design.

2. Related Work

Video frame interpolation has been widely studied in re-
cent years, which can be categorized into phase-based [31,
32], kernel-based [5, 28, 36], and flow-based [2, 18, 38, 49]
methods. With the latest advances in optical flow estimation
[7, 50, 51], the flow-based VFI methods have been actively
studied to explicitly exploit motion information. After the
seminal work [18], subsequent improvements are dedicated
to better intermediate flow estimation on one hand, such as
quadratic [56], rectified quadratic [26], and cubic [4] flow
interpolations. Moreover, Bao et al. [2] strengthened the
initial flow field using the predicted depth map via a depth-
aware flow projection layer. Park et al. estimated a symmet-
ric bilateral motion [38] to produce the intermediate flows
directly, and they have recently developed an asymmetric
bilateral motion model [39] to refine the intermediate frame.
On the other hand, better refinement and fusion of details
were focused on, including contextual warping [2, 33, 34],
occlusion inference [3, 57], cycle constraints [27, 42] for
more accurate frame synthesis, and softmax splatting [35]
for more efficient forward warping, etc.

All of these VFI approaches work with a common as-
sumption that the camera employs a GS mechanism. Hence,
they are incapable of correctly synthesizing the in-between
frames in the case of RS images. In this paper, we integrate
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Figure 2. RS mechanism over two consecutive frames. We aim at
recovering the latent GS images at time t ∈ [0, 1].

an effective motion interpretation module to boost the reli-
able estimation of the initial flow field, yielding high-quality
results without aliasing.

Rolling shutter correction advocates the mitigation or
elimination of RS distortion, i.e. recovering the latent GS
image, from a single frame [22, 43, 44, 63] or multiple
frames [1, 15, 24, 47, 53, 61]. Dai et al. [6] derived the dis-
crete two-view RS epipolar geometry. Zhuang et al. [61]
proposed a differential RS epipolar constraint to undistort
two consecutive RS images, whose stereo version was fur-
ther explored in [12]. Likewise, Lao et al. [23] developed a
discrete RS homography model to perform the plane-based
RS correction. Zhuang and Tran [62] presented a differ-
ential RS homography to account for the scanline-varying
poses of RS cameras. In addition, some additional assump-
tions are often taken into account, such as pure rotational
motion [14, 22, 44, 45], Ackermann motion [40], and Man-
hattan world [41]. With the rise of deep learning, many
appealing RS correction results have been achieved. For
two input consecutive RS frames, Liu et al. [24] put for-
ward a deep shutter unrolling network to estimate the la-
tent GS frame, and Fan et al. [10] proposed a symmetric
network architecture to efficiently aggregate the contextual
cues. Zhong et al. [60] used a deformable attention module
to jointly solve the RS correction and deblurring problem.
Unfortunately, they can only hallucinate one GS image at
a specific moment, e.g. corresponding to the first [10] or
central [24, 60] scanline time, and thus fall short of recon-
structing a smooth and coherent GS video.

Very recently, Fan and Dai [9] developed the first rolling
shutter temporal super-resolution network to extract a high
framerate GS video from two consecutive RS images. It
warps each RS frame to a latent GS frame corresponding to
any of its scanlines through geometry-aware propagation.
As a result, undesirable holes (e.g. black edges) appear due
to the occlusion between the RS and GS images. Further-
more, it leverages a constant velocity motion assumption,
which does not accurately capture the motion boundaries
and produces artifacts around the moving objects. Two ex-
amples are shown in Figs. 1 and 6. In contrast, we propose a
GS frame synthesis module, which is composed of contex-
tual aggregation and motion enhancement layers, to reason
about complex occlusions and motion patterns specific to
moving objects, resulting in a significantly improved per-
formance of GS video reconstruction.

3. RS-aware Frame Warping
RS image formation model. When an RS camera is in
motion during the image acquisition, all its scanlines are
exposed sequentially at different timestamps. Hence each
scanline possesses a different local frame, as illustrated in
Fig. 2. Without loss of generality, we assume that all pix-
els in the same row are exposed instantaneously at the same
time. The number of rows in the image is h, and the con-
stant inter-row delay time is τd. Therefore, the RS image
formation model can be obtained as follows:

�Ir(x)�s = �Igs(x)�s , (1)

where Igs is virtual GS images captured at time τd(s−h/2),
and �·�s denotes the extraction of pixel x in scanline s.
RS effect removal by forward warping. Since an RS
image can be viewed as the result of successive row-by-
row combinations of virtual GS image sequences within
the imaging duration, one can invert the above RS imaging
mechanism to remove RS distortions by

Ir(x) = Igs(x+ ur→s), (2)

where ur→s is the displacement vector of pixel x from the
RS image Ir to the virtual GS image Igs . Stacking ur→s of
all pixels yields a pixel-wise motion field, a.k.a. undistor-
tion flow Ur→s, which can be used to RS-aware forward
warping analogous to [9, 10, 24, 60]. However, when multi-
ple pixels are mapped to the same location, forward warping
is prone to suffer from conflicts, inevitably leading to over-
lapped pixels and holes. Softmax splatting [35] alleviates
these problems by adaptively combining overlapping pixel
information. Thus, the target GS frame corresponding to
scanline s can be generated by

Îgs = WF (I
r,Ur→s), (3)

where WF represents the forward warping operator. We use
softmax splatting in our implementation.
Problem setup. As depicted in Fig. 2, time t and scanline
s correspond to each other. For compactness, in the fol-
lowing we will discard the symbol s and use the subscript
t to denote the GS image Igt corresponding to time t. Fol-
lowing [12,24,62], we further assume that the readout time
ratio [61], i.e. the ratio between the total scanline readout
time (i.e. hτd) and the inter-frame delay time, is equal to
one. That is to say, the idle time between two adjacent RS
frames is ignored in a short period of imaging time (e.g.
< 50 ms). This is proved to be effective to account for the
scanline-varying camera poses, avoiding non-trivial read-
out calibration [30]. Moreover, this also ensures temporally
tractable frame interpolation for RS images. See the sup-
plementary material for further instructions. Consequently,
the central scanlines of the two consecutive RS images are
recorded at time instances 0 and 1, respectively.
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Given two RS frames Ir0 and Ir1 at adjacent times 0
and 1, we aim to synthesize an intermediate GS frame Îgt ,
t ∈ [0, 1]. This time interval is chosen because, as observed
in [10], many details of the recovered GS images corre-
sponding to time t ∈ [−0.5, 0) ∪ (1, 1.5] are more likely
to be missing due to too much deviation from the temporal
consistency.

3.1. Bilateral Motion Field Initialization
Network-based bilateral motion field (NBMF). To deliver
each RS pixel x exposed at time τ (i.e. τ0 ∈ [−0.5, 0.5] or
τ1 ∈ [0.5, 1.5], with subscripts indicating the image index)
to the GS canvas corresponding to the camera pose at time
t ∈ [0, 1], we need to estimate the motion field U0→t or
U1→t (cf . Eq. (3)) to constrain each pixel’s displacement.
Note that the subscripts 0 → t and 1 → t indicate the RS-
aware forward warping from RS images Ir0 and Ir1 to Îgt ,
respectively. According to [9], we extend to the time di-
mension to model the BMF U0→t and U1→t by a scaling
operation on the corresponding optical flow fields F0→1 and
F1→0 between two consecutive RS frames, i.e.

U0→t(x) = C0→t(x) · F0→1(x),

U1→t(x) = C1→t(x) · F1→0(x),
(4)

where

C0→t(x) =
(t− τ0)(h− πv)

h
,

C1→t(x) =
(τ1 − t)(h+ π′

v)

h
,

(5)

represent the bilateral correction maps. πv and π′
v encapsu-

late the underlying RS geometry [9] to reveal the inter-RS-
frame vertical optical flow, depending on the camera pa-
rameters, the camera motion, and the depth and position of
pixel x. Furthermore, the BMF corresponding to different
time steps t1 and t2 can be directly interconverted by

Ui→t2(x) =
t2 − τ

t1 − τ
·Ui→t1(x), i = 0, 1. (6)

Note that the motion field for RS removal has a significant
time dependence (a.k.a. scanline dependence [9]). To cap-
ture the correction map in Eq. (5), a geometric optimiza-
tion problem was posed in [61,62] based on the differential
formulation [11, 29]. Recently, as shown in Fig. 3 (a), an
encoder-decoder network was proposed in [9] to essentially
learn the underlying RS geometry, such that the BMF can
be computed by Eq. (4) coupled with the estimated bidirec-
tional optical flows, termed as NBMF. The arbitrary-time
GS images are then generated by image warping based on
explicit intra-frame propagation in Eq. (6). However, since
the occlusion view is not available during warping, the re-
sulting holes are visually unsatisfactory. Also, [9] is not
adaptive to dynamic objects due to the reliance on a con-
stant velocity motion assumption of the RS camera.

NBMF

Eqs. 5&6

Optical flows Correction maps

ABMF

Eq. 7

Optical flows Correction maps

(b) ABMF estimation

(a) NBMF estimation

Eq. 4

Eq. 4

Figure 3. Illustration of the initial BMF estimation, including (a)
NBMF and its approximation (b) ABMF.

Approximated bilateral motion field (ABMF). We ob-
serve that πv and π′

v in Eq. (5) characterize the latent inter-
GS-frame vertical optical flow, which are usually much
smaller than the number of image rows h (cf . supplemen-
tary materials for in-depth analysis). Hence, we propose an
approximated constraint h − πv ≈ h ≈ h + π′

v to rewrite
Eq. (5) as:

C0→t(x) = t− τ0,

C1→t(x) = τ1 − t,
(7)

where the time dependence is retained while the parallax ef-
fects (i.e. depth variation and camera motion) are neglected.
That is, it is independent of the image content and can be
pre-defined for a given image resolution. As depicted in
Fig. 3 (b), such approximation is able to reach the correction
map and then the ABMF via Eq. (4) in a simple and straight-
forward manner instead of relying on specialized deep neu-
ral networks. Note that the interconversion between varying
ABMF satisfies Eq. (6) as well. The experimental results in
Sec. 6.1 show that our ABMF, coupled with the contextual
aggregation and motion enhancement, can serve as a strong
and tractable baseline for GS frame synthesis.

4. Context-aware Video Reconstruction
We advocate recovering the intermediate global shutter

image Îgt , t ∈ [0, 1] from two input consecutive rolling shut-
ter images Ir0 and Ir1. In this section, we will explain how to
design a deep network to reason about time-aware motion
profiles and occlusions, such that the photorealistic time-
arbitrary GS image can be recovered faithfully.

4.1. Architecture Overview
As shown in Fig. 4, the proposed network consists of two

modules, i.e. an NBMF-based or ABMF-based motion in-
terpretation module, and a context (i.e. occlusions and par-
tial dynamics) aware GS frame synthesis module. Firstly,
we estimate the bidirectional optical flow fields F0→1 and
F1→0 between Ir0 and Ir1, followed by the BMF estimation
U0→t and U1→t via Eq. (4), which is based on NBMF (i.e.
Eq. (5)) or ABMF (i.e. Eq. (7)), as illustrated in Fig. 3.
Then, the input RS frames are forward warped using the
initial bilateral motions, resulting in two initial intermedi-
ate GS frame candidates at time t. Finally, the GS frame
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Figure 4. Overall architecture. It has two main processes. First, two initial GS frame candidates are obtained by the motion interpretation
module. The details of BMF estimator (i.e. NBMF or ABMF) are elaborated in Fig. 3. Then, a GS frame synthesis module is proposed to
reason about complex occlusions, motion profiles, and temporal abstractions to generate the final high-fidelity GS image at time t ∈ [0, 1].

synthesis module takes the input RS frames, bidirectional
optical flows, bilateral motion fields, and the initial interme-
diate GS frame candidates to synthesize the final GS recon-
struction by aggregating the context information and com-
pensating for the motion boundaries adaptively. Note that
we empirically find that our ABMF-based CVR approach
(called CVR*) performs well despite its simplicity, while
our NBMF-based CVR approach (called CVR) can further
improve the quality of the final GS images.

Motion interpretation module M is composed of two
submodules: an optical flow estimator and a bilateral mo-
tion field estimator. We first utilize the widely used PWC-
Net [50] as the optical flow estimator to predict the bidirec-
tional optical flow. To obtain an effective initial BMF, we
follow [9] and use a dedicated encoder-decoder U-Net ar-
chitecture [37,46], as shown in Fig. 3 (a), to estimate NBMF
for forward warping, which is termed as MN . Particularly,
MN needs to be pre-trained by using the ground-truth (GT)
central-scanline GS images for supervision. Alternatively,
we propose to exploit its approximate version as shown in
Fig. 3 (b), i.e. an ABMF-based motion interpretation mod-
ule MA, to yield a simpler and faster prediction of the ini-
tial BMF. Finally, two initial intermediate GS frame candi-
dates Ig0→t and Ig1→t can be generated by Eq. (3) based on
the initial BMF estimations U0→t and U1→t, respectively.

GS frame synthesis module G can be boiled down to
two main layers: a motion enhancement layer (MEL) and a
contextual aggregation layer (CAL). Note that some black
holes and ambiguous misalignments may exist in the initial
intermediate GS frame candidates due to heavy occlusions
and partial moving objects, degrading the visual experience.
Therefore, we aim at alleviating artifacts at the boundaries
of dynamic objects and filling the occluded holes. Towards
this goal, Ir0, Ir1, F0→1, F1→0, U0→t, U1→t, I

g
0→t, and

Ig1→t are concatenated and fed into G to estimate the BMF
residuals ΔU0→t and ΔU1→t and the bilateral occlusion

masks O0→t and O1→t. This time-aware occlusion mask is
essential to guide GS frame synthesis to handle occlusions.
We employ an encoder-decoder U-Net network [37, 46] as
the backbone of G, which has the same structure but dif-
ferent channels as the network in MN . The network is
fully convolutional with skip connections and leaky ReLu
activation functions. Besides, we leverage a sigmoid acti-
vation function on the output channels corresponding to the
bilateral occlusion mask to limit its value between 0 and
1. Because G accepts cascades at different time instances,
it can implicitly model the temporal abstraction to recover
GS frames corresponding to arbitrary time step t ∈ [0, 1].

Specifically, the final enhanced BMF can be obtained as:

Û0→t = U0→t +ΔU0→t,

Û1→t = U1→t +ΔU1→t,
(8)

which can improve the quality of BMF by combining it
with the proposed contextual consistency constraint, espe-
cially in motion boundaries and unsmooth regions. Subse-
quently, we can produce two refined intermediate GS frame
candidates Îg0→t and Îg1→t by RS-aware forward warping in
Eq. (3). Further, we assume that the content of the target
GS image corresponding to t ∈ [0, 1] can be recovered by
at least one of the input RS images, which is promising as
discussed in [10]. We therefore impose the constraint that
O1→t = 1 − O0→t. Intuitively, O0→t(x) = 0 implies
O1→t(x) = 1, i.e. target pixels can be faithfully rendered
by fully trusting Ir1, and vice versa. Similar to [18, 37, 56],
we also take advantage of the temporal distances 1− t and t
for the input RS frames Ir0 and Ir1, such that the temporally-
closer pixels can be assigned a higher confidence. At last,
the final intermediate GS frame Îgt can be synthesized by

Îgt =
(1− t)O0→tÎ

g
0→t + tO1→tÎ

g
1→t

(1− t)O0→t + tO1→t
. (9)
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Input RS (Overlayed) DiffSfM [61] DiffHomo [62] BMBC [38] DAIN [2] Cascaded method

DeepUnrollNet [24] SUNet [10] RSSR [9] CVR* (Ours) CVR (Ours) Ground-truth

Figure 5. Qualitative results against baselines. Our method can successfully remove RS artifacts, yielding higher fidelity GS images.

Table 1. Quantitative comparisons on recovering GS images at time step t = 0.5. The numbers in red and blue represent the best and
second-best performance. Our method is far superior to baseline methods and the proposed ABMF model is effective as an initialization.

Method Runtime PSNR↑ (dB) SSIM↑ LPIPS↓
(seconds) CRM CR FR CR FR CR FR

DiffSfM [61] 467 24.20 21.28 20.14 0.775 0.701 0.1322 0.1789
DiffHomo [62] 424 19.60 18.94 18.68 0.606 0.609 0.1798 0.2229
DeepUnrollNet [24] 0.34 26.90 26.46 26.52 0.807 0.792 0.0703 0.1222
SUNet [10] 0.21 29.28 29.18 28.34 0.850 0.837 0.0658 0.1205
RSSR* 0.09 28.20 23.86 21.02 0.839 0.768 0.0764 0.1866
RSSR [9] 0.12 30.17 24.78 21.23 0.867 0.776 0.0695 0.1659
CVR* (Ours) 0.12 31.82 31.60 28.62 0.927 0.845 0.0372 0.1117
CVR (Ours) 0.14 32.02 31.74 28.72 0.929 0.847 0.0368 0.1107

*: applying our proposed approximated bilateral motion field (ABMF) model.

4.2. Loss Function
Similar to [9, 24, 60], we use the reconstruction loss Lr,

the perceptual loss Lp [19], and the total variation loss Ltv

to improve the quality of final GS and BMF predictions.
Moreover, inspired by [10], we propose a contextual con-
sistency constraint loss Lc to enforce the alignment of re-
fined intermediate GS frame candidates with ground-truth,
which is crucial to facilitate occlusion inference and motion
compensation. In short, our loss function L is defined as:

L = λrLr + Lp + λcLc + λtvLtv, (10)

where λr, λc and λtv are hyper-parameters. More details
can be found in the supplementary material.

5. Experimental Setup
Datasets. We use the standard RS correction benchmark
datasets [24] including Carla-RS and Fastec-RS, and divide
the training and test sets as in [24]. The Carla-RS dataset is
synthesized based on the Carla simulator [8], involving gen-
eral 6-DOF camera motions. The Fastec-RS dataset records
real-world RS images synthesized by a high-FPS GS cam-
era mounted on a ground vehicle. Since they provide the
first- and central-scanline GT supervisory signals, i.e. t = 0,
0.5, and 1, we utilize this triplet as GT to train our network.
Note that we add a small perturbation to make Eq. (9) work
properly, for example, transforming them to t = 0.01, 0.5,
and 0.99, respectively. At the test phase, our method is ca-
pable of recovering GS video frames at any time t ∈ [0, 1].

Training details. Our method is trained end-to-end using
the Adam optimizer [21] with β1 = 0.9 and β2 = 0.999.
We empirically set λr = 10, λc = 5, and λtv = 0.1. The
experiments are performed on an NVIDIA GeForce RTX
2080Ti GPU with a batch size of 4. We propose to train our
network in two stages. Firstly, we solely train M. To train
the ABMF-based MA, we fine-tune PWC-Net [50] for 100
epochs from its pre-trained model on the RS benchmark in
a self-supervised way [9,20,25,54], and then ABMF can be
computed directly and explicitly. Note that the training de-
tails of the NBMF-based MN can be found in [9] with the
supervision of central-scanline GT GS images. Secondly,
we jointly train the entire model (i.e. M and G) by L for
another 50 epochs. At this time, the learning rate of G is set
to 10−4 for training from scratch, and that of M is set to
10−5 for fine-tuning. We keep the vertical resolution con-
stant and adopt a uniform random crop with a horizontal
resolution of 256 pixels to augment the training data, simi-
lar to [9, 10] for better contextual exploration.
Evaluation strategies. As the Carla-RS dataset has the
GT occlusion mask, we perform quantitative evaluations
as follows: Carla-RS dataset with occlusion mask (CRM),
Carla-RS dataset without occlusion mask (CR), and Fastec-
RS dataset (FR). Standard metrics PSNR and SSIM, and
learned perceptual metric LPIPS [58] are applied. Higher
PSNR/SSIM or lower LPIPS score indicates better quality.
Note that unless otherwise stated, we refer to the GS images
at time t = 0.5 for consistent comparisons.
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Figure 6. Example results of recovering six GS video images from the two input RS images (left column) by using RSSR [9], CVR*, and
CVR (three rows from top to bottom), respectively. Apart from many unfriendly black holes at the GS image edges, RSSR generates local
errors and motion artifacts as shown in red circles. Our method can produce temporally consistent GS sequences with richer details.

Baselines. We perform comparisons with the following
baselines. (i) DiffSfM [61] and DiffHomo [62] are tradi-
tional two-image based RS correction methods that require
sophisticated optimization using RS models. (ii) SUNet
[10] and DeepUnrollNet [24] recover only one GS frame
from two consecutive RS frames by designing specialized
CNNs. While RSCD [60] achieves this goal from three
adjacent RS images. (iii) RSSR [9] generates a GS video
from two consecutive RS images using deep learning, but
suffers from black holes and motion artifacts. Moreover,
we integrate the proposed ABMF model into RSSR to yield
RSSR*. (iv) DAIN [2] and BMBC [38] are SOTA VFI
methods that are tailored for GS cameras. (v) Cascaded
method generates two GS images sequentially from three
consecutive RS inputs using DeepUnrollNet, and then in-
terpolates in-between GS ones using DAIN. (vi) CVR and
CVR* are our proposed methods based on NBMF and
ABMF, respectively. Note that our RSSR*, RSSR, our
CVR*, and our CVR form a clear hierarchy of RS-based
video reconstruction methods.

6. Results and Analysis
In this section, we compare with the baseline approaches

and provide analysis and insight into our method.

6.1. Comparison with SOTA Methods
We report the quantitative and qualitative results in Ta-

ble 1 and Fig. 5, respectively. Our proposed method
achieves overwhelming dominance in RS effect removal,
which is mainly attributed to context aggregation and mo-
tion pattern inference. Furthermore, although our proposed
ABMF model is inferior to RSSR [9] when used to remove
the RS effect (i.e. RSSR*), it can serve as a strong baseline
for GS video frame reconstruction when combined with GS
frame refinement. We believe that our hierarchical pipeline
can provide a fresh perspective for the video reconstruction
task with RS cameras. More results and analysis are shown

in the supplementary material.
Note that our method is able to produce a continuous GS

sequence, which is far beyond [10, 24, 60], although [10]
can decode the plausible details of the GS image at a spe-
cific time. Traditional methods [61, 62] cannot estimate the
underlying RS geometry robustly and accurately, resulting
in ghosting artifacts. They are also computationally inef-
ficient due to the complicated handling. Due to inherent
flaws in the network architectures, the VFI methods [2, 38]
fail to remove the RS effect. An intuitive cascade of RS cor-
rection and VFI methods tends to accumulate errors and is
prone to blurring artifacts and local inaccuracies. Such cas-
cades also have large models and thus be relatively time-
consuming. In contrast, our end-to-end pipeline performs
favorably against the SOTA methods in terms of both RS
correction and inference efficiency. Note also that obnox-
ious black holes and object-specific motion artifacts appear
in [9], degrading the visual experience, as outlined in Sec. 1.
In general, our CVR improves RSSR and therefore recovers
higher realism results, and our CVR* also develops a new
concise and efficient framework for related tasks.

6.2. GS Video Reconstruction Results
We apply our method to generate multiple in-between

GS frames at arbitrary time t ∈ [0, 1]. The visual results for
5× temporal upsampling are shown in Fig. 6. More results
are provided in our supplementary materials. Our method
can not only successfully remove the RS effect, but also can
robustly reconstruct smooth and continuous GS videos.

6.3. Ablation Studies
Ablation on motion interpretation module M. We first
replace NBMF and ABMF with linear BMF (i.e. LBMF),
which is a widely used BMF initialization scheme in popu-
lar VFI methods, e.g. [18, 34, 35, 38, 49]. Then, we replace
PWC-Net with the SOTA optical flow estimation pipeline
RAFT [51]. Finally, we freeze M and solely train G in the
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Figure 7. Visual results of ablation study. Our context-aware method is also adaptable to motion artifacts specific to moving objects.

Table 2. Ablation results for CVR architecture on M, G and L.

Settings PSNR↑ (dB) SSIM↑
CRM CR FR CR FR

LBMF 26.10 25.97 25.78 0.806 0.771
RAFT-based 30.50 29.89 27.99 0.917 0.840
Freeze M 31.94 31.65 28.11 0.928 0.837
T ·ΔU 32.00 31.63 28.56 0.929 0.845
w/o ΔU 31.90 31.65 28.32 0.928 0.841
w/o O 28.22 26.31 24.04 0.902 0.813
w/o Lr 31.80 31.53 28.31 0.927 0.840
w/o Lp 31.60 31.34 28.49 0.929 0.842
w/o Lc 31.88 31.64 28.44 0.928 0.842
w/o Ltv 31.93 31.71 28.45 0.928 0.844
full model 32.02 31.74 28.72 0.929 0.847

training phase. As can be seen from Table 2 and Fig. 7,
LBMF is extremely ineffective for the RS-based video con-
struction task, which reveals the superiority of our proposed
NBMF as well as ABMF. This could facilitate further re-
search in related fields, especially the simpler ABMF. Since
the RAFT-based full baseline is not easily optimized jointly
end-to-end, it is prone to unsmoothness at local motion
boundaries. Additionally, training the entire network to-
gether with M can improve model performance.
Ablation on GS frame synthesis module G. We analyze
the role of each component of G in Table 2, including 1)
multiplying ΔU by a normalized scanline offset T to ex-
plicitly model its scanline dependence like [9,24,59], and 2)
removing MEL (i.e. w/o ΔU) and CAL (i.e. w/o O), sep-
arately. Combined with Fig. 7, one can observe that they
both lead to performance degradation, especially removing
CAL, which causes aliasing effects during context aggre-
gation, e.g. misaligned wheels and black edges. Moreover,
removing MEL will reduce the adaptability of our method
to object-specific motion artifacts, especially for the more
challenging Fastec-RS dataset. In summary, our method can
adaptively infer occlusions and enhance motion boundaries.

Ablation on loss function L. We remove the loss terms one
by one to analyze their respective roles. From Table 2, our
loss function L is effective because it performs best when
all loss terms are used.

6.4. Limitation and Discussion
Our method relies on optical flow estimation, so there

may be aliasing artifacts in areas such as low/weak textures.
Besides, although we have assumed that the pixels of the
target GS image at time t ∈ [0, 1] are visible in one of the
RS images, some of them at the edges of the GS image may
not be available, e.g. the lower right corner of GS images at
t = 0 in Figs. 1 and 6, due to severe occlusions from fast
camera motion or object motion. Future use of more frames
may be able to fill in these possible invisible regions.

7. Conclusion
In this paper, we have presented a context-aware archi-

tecture CVR for end-to-end video reconstruction of RS cam-
eras, which incorporates temporal smoothness to recover
high-fidelity GS video frames with fewer artifacts and better
details. Moreover, we have developed a simple yet efficient
pipeline CVR* based on the proposed ABMF model which
works robustly with RS cameras. Our proposed framework
exploits the spatio-temporal coherence embedded in the la-
tent GS video via motion interpretation and occlusion rea-
soning, significantly outperforming the SOTA methods. We
hope this study can shed light for future research on video
frame reconstruction of RS cameras.
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[29] Yi Ma, Jana Košecká, and Shankar Sastry. Linear differential
algorithm for motion recovery: a geometric approach. Inter-
national Journal of Computer Vision, 36(1):71–89, 2000. 4

[30] Marci Meingast, Christopher Geyer, and Shankar Sastry. Ge-
ometric models of rolling-shutter cameras. arXiv preprint
arXiv:cs/0503076, 2005. 3

[31] Simone Meyer, Abdelaziz Djelouah, Brian McWilliams,
Alexander Sorkine-Hornung, Markus Gross, and Christo-
pher Schroers. Phasenet for video frame interpolation. In
Proceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 498–507, 2018. 2

[32] Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse,
and Alexander Sorkine-Hornung. Phase-based frame inter-
polation for video. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1410–
1418, 2015. 2

[33] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid.
Ccvs: context-aware controllable video synthesis. In Pro-
ceedings of Advances in Neural Information Processing Sys-
tems, volume 34, 2021. 2

[34] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1701–1710, 2018. 2, 7

[35] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In Proceedings of IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
5437–5446, 2020. 2, 3, 7

[36] Simon Niklaus, Long Mai, and Feng Liu. Video frame
interpolation via adaptive convolution. In Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 670–679, 2017. 2

[37] Avinash Paliwal and Nima Khademi Kalantari. Deep slow
motion video reconstruction with hybrid imaging system.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 42(7):1557–1569, 2020. 5

[38] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.
Bmbc: bilateral motion estimation with bilateral cost volume
for video interpolation. In Proceedings of European Confer-
ence on Computer Vision, pages 109–125, 2020. 1, 2, 6, 7

[39] Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric
bilateral motion estimation for video frame interpolation. In
Proceedings of IEEE International Conference on Computer
Vision, pages 14539–14548, 2021. 1, 2

[40] Pulak Purkait and Christopher Zach. Minimal solvers for
monocular rolling shutter compensation under ackermann
motion. In Proceedings of IEEE Winter Conference on Ap-
plications of Computer Vision, pages 903–911, 2018. 3

[41] Pulak Purkait, Christopher Zach, and Ales Leonardis.
Rolling shutter correction in Manhattan world. In Proceed-
ings of IEEE International Conference on Computer Vision,
pages 882–890, 2017. 3

[42] Fitsum A Reda, Deqing Sun, Aysegul Dundar, Mohammad
Shoeybi, Guilin Liu, Kevin J Shih, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. Unsupervised video interpolation us-
ing cycle consistency. In Proceedings of IEEE International
Conference on Computer Vision, pages 892–900, 2019. 2

[43] Vijay Rengarajan, Yogesh Balaji, and AN Rajagopalan. Un-
rolling the shutter: cnn to correct motion distortions. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2291–2299, 2017. 1, 3

[44] Vijay Rengarajan, Ambasamudram N Rajagopalan, and Ran-
garajan Aravind. From bows to arrows: rolling shutter recti-
fication of urban scenes. In Proceedings of IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2773–2781, 2016. 2, 3

[45] Erik Ringaby and Per-Erik Forssén. Efficient video rectifica-
tion and stabilisation for cell-phones. International Journal
of Computer Vision, 96(3):335–352, 2012. 3

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: convolutional networks for biomedical image segmen-
tation. In Proceedings of the International Conference on
Medical Image Computing and Computer-assisted Interven-
tion, pages 234–241, 2015. 5

[47] Olivier Saurer, Kevin Koser, Jean-Yves Bouguet, and Marc
Pollefeys. Rolling shutter stereo. In Proceedings of IEEE
International Conference on Computer Vision, pages 465–
472, 2013. 3

[48] David Schubert, Nikolaus Demmel, Lukas von Stumberg,
Vladyslav Usenko, and Daniel Cremers. Rolling-shutter
modelling for direct visual-inertial odometry. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2462–2469, 2019. 1

[49] Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris
Metaxas, Chen Change Loy, and Ziwei Liu. Deep animation
video interpolation in the wild. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6587–6595, 2021. 2, 7

[50] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: cnns for optical flow using pyramid, warping,
and cost volume. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8934–
8943, 2018. 2, 5, 6

[51] Zachary Teed and Jia Deng. Raft: recurrent all-pairs field
transforms for optical flow. In Proceedings of European Con-
ference on Computer Vision, pages 402–419, 2020. 2, 7

[52] Subeesh Vasu, Mahesh MR Mohan, and AN Rajagopalan.
Occlusion-aware rolling shutter rectification of 3d scenes. In
Proceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 636–645, 2018. 1

[53] Ke Wang, Bin Fan, and Yuchao Dai. Relative pose estimation
for stereo rolling shutter cameras. In Proceedings of IEEE
International Conference on Image Processing, pages 463–
467, 2020. 3

[54] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng
Wang, and Wei Xu. Occlusion aware unsupervised learning

17581



of optical flow. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4884–
4893, 2018. 6

[55] Huicong Wu, Liang Xiao, and Zhihui Wei. Simultaneous
video stabilization and rolling shutter removal. IEEE Trans-
actions on Image Processing, 30:4637–4652, 2021. 1

[56] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation. In Proceedings
of Advances in Neural Information Processing Systems, vol-
ume 32, 2019. 1, 2, 5

[57] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-
oriented flow. International Journal of Computer Vision,
127(8):1106–1125, 2019. 2

[58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 586–595, 2018. 6

[59] Zhihang Zhong, Mingdeng Cao, Xiao Sun, Zhirong Wu,
Zhongyi Zhou, Yinqiang Zheng, Stephen Lin, and Imari
Sato. Bringing rolling shutter images alive with dual reversed
distortion. arXiv preprint arXiv:2203.06451, 2022. 8

[60] Zhihang Zhong, Yinqiang Zheng, and Imari Sato. Towards
rolling shutter correction and deblurring in dynamic scenes.
In Proceedings of IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9219–9228, 2021. 2, 3,
6, 7

[61] Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee.
Rolling-shutter-aware differential sfm and image rectifica-
tion. In Proceedings of IEEE International Conference on
Computer Vision, pages 948–956, 2017. 1, 2, 3, 4, 6, 7

[62] Bingbing Zhuang and Quoc-Huy Tran. Image stitching and
rectification for hand-held cameras. In Proceedings of Euro-
pean Conference on Computer Vision, pages 243–260, 2020.
1, 2, 3, 4, 6, 7

[63] Bingbing Zhuang, Quoc-Huy Tran, Pan Ji, Loong-Fah
Cheong, and Manmohan Chandraker. Learning structure-
and-motion-aware rolling shutter correction. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4551–4560, 2019. 1, 2, 3

17582


