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Abstract

Speech-driven 3D facial animation is challenging due
to the complex geometry of human faces and the limited
availability of 3D audio-visual data. Prior works typi-
cally focus on learning phoneme-level features of short au-
dio windows with limited context, occasionally resulting
in inaccurate lip movements. To tackle this limitation, we
propose a Transformer-based autoregressive model, Face-
Former, which encodes the long-term audio context and
autoregressively predicts a sequence of animated 3D face
meshes. To cope with the data scarcity issue, we in-
tegrate the self-supervised pre-trained speech representa-
tions. Also, we devise two biased attention mechanisms
well suited to this specific task, including the biased cross-
modal multi-head (MH) attention and the biased causal MH
self-attention with a periodic positional encoding strategy.
The former effectively aligns the audio-motion modalities,
whereas the latter offers abilities to generalize to longer
audio sequences. Extensive experiments and a perceptual
user study show that our approach outperforms the existing
state-of-the-arts. The code and the video are available at:
https://evelynfan.github.io/audio2face/.

1. Introduction
Speech-driven 3D facial animation has become an in-

creasingly attractive research area in both academia and in-
dustry. It is potentially beneficial to a broad range of ap-
plications such as virtual reality, film production, games
and education. Realistic speech-driven 3D facial animation
aims to automatically animate vivid facial expressions of
the 3D avatar from an arbitrary speech signal.

We focus on animating the 3D geometry rather than
the 2D pixel values, e.g. photorealistic talking-head anima-
tion [12, 15, 42, 52, 63, 67, 69]. The majority of existing
works aim to produce 2D videos of talking heads, given
the availability of massive 2D video datasets. However, the
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Figure 1. Concept diagram of FaceFormer. Given the raw au-
dio input and a neutral 3D face mesh, our proposed end-to-end
Transformer-based architecture, dubbed FaceFormer, can autore-
gressively synthesize a sequence of realistic 3D facial motions
with accurate lip movements.

generated 2D videos are not directly applicable to applica-
tions like 3D games and VR, which need to animate 3D
models in a 3D environment. Several methods [27, 47, 60]
harness 2D monocular videos to obtain 3D facial parame-
ters, which might lead to unreliable results. This is because
the quality of the synthetic 3D data is bounded by the accu-
racy of 3D reconstruction techniques, which cannot capture
the subtle changes in 3D. In speech-driven 3D facial anima-
tion, some 3D mesh-based works [8, 17, 39] formulate the
input as short audio windows, which might result in ambi-
guities in variations of facial expressions. As pointed out
by Karras et al. [31], the emotional state can be deduced
from a longer-term audio context. While MeshTalk [51] has
considered a longer audio context by modeling the audio
sequence, training the model with Mel spectral audio fea-
tures fails to synthesize accurate lip motions in data-scarce
settings. Collecting lots of pairs of speech and 3D mo-
tion capture data is also considerably expensive and time-
consuming.

To address the issues about long-term context and lack of
3D audio-visual data, we propose a transformer-based au-
toregressive model (Fig. 1) which (1) captures longer-term
audio context to enable highly realistic animation of the en-
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tire face, i.e. both upper and lower face expressions, (2) ef-
fectively utilizes the self-supervised pre-trained speech rep-
resentations to handle the data scarcity issue, and (3) con-
siders the history of face motions for producing temporally
stable facial animation.

Transformer [58] has achieved remarkable performance
in both natural language processing [20, 58] and com-
puter vision [13, 21, 44] tasks. The sequential models
like LSTM have a bottleneck that hinders the ability to
learn longer-term context effectively [45]. Compared to
RNN-based models, transformer can better capture long-
range context dependencies based solely on attention mech-
anisms [58]. Recently, transformer has also made the en-
couraging progress in body motion synthesis [1, 4, 46] and
dance generation [36, 37, 57]. The success of transformer
is mainly attributed to its design incorporating the self-
attention mechanism, which is effective in modeling both
the short- and long-range relations by explicitly attending
to all parts of the representation. Speech-driven 3D facial
animation has not been explored in this direction.

Direct application of a vanilla transformer architecture
to audio sequences does not perform well on the task of
speech-driven 3D facial animation, and we thus need to ad-
dress these issues. First, transformer is data-hungry in na-
ture, requiring sufficiently large datasets for training [32].
Given the limited availability of 3D audio-visual data, we
explore the use of the self-supervised pre-trained speech
model wav2vec 2.0 [2]. Wav2vec 2.0 has learned rich
phoneme information, since it has been trained on a large-
scale corpus [43] of unlabeled speech. While the limited
3D audio-visual data might not cover enough phonemes,
we expect the pre-trained speech representations can bene-
fit the speech-driven 3D facial animation task in data-scarce
settings. Second, the default encoder-decoder attention of
transformer can not handle modality alignment, and thus we
add an alignment bias for audio-motion alignment. Third,
we argue that modeling the correlation between speech and
face motions needs to consider long-term audio context de-
pendencies [31]. Accordingly, we do not restrict the atten-
tion scope of the encoder self-attention, thus maintaining its
ability to capture long-range audio context dependencies.
Fourth, transformer with the sinusoidal position encoding
has weak abilities to generalize to sequence lengths longer
than the ones seen during training [19, 50]. Inspired by At-
tention with Linear Biases (ALiBi) [50], we add a temporal
bias to the query-key attention score and design a periodic
positional encoding strategy to improve the model’s gener-
alization to longer audio sequences.

The main contributions of our work are as follows:

• An autoregressive transformer-based architecture
for speech-driven 3D facial animation. FaceFormer
encodes the long-term audio context and the history of
face motions to autoregressively predict a sequence of

animated 3D face meshes. It achieves highly realis-
tic and temporally stable animation of the whole face
including both the upper face and the lower face.

• The biased attention modules and a periodic po-
sitional encoding strategy. We carefully design the
biased cross-modal MH attention to align the differ-
ent modalities, and the biased causal MH self-attention
with a periodic positional encoding strategy to improve
the generalization to longer audio sequences.

• Effective utilization of the self-supervised pre-
trained speech model. Incorporating the self-
supervised pre-trained speech model in our end-to-
end architecture can not only handle the data limita-
tion problem, but also notably improve the accuracy of
mouth movements for the difficult cases, e.g., the lips
are fully closed on /b/,/m/,/p/ phonemes.

• Extensive experiments and the user study to assess
the quality of synthesized face motions. The results
demonstrate the superiority of FaceFormer over exist-
ing state-of-the-art methods in terms of realistic facial
animation and lip sync on two 3D datasets [17, 24].

2. Related Work
2.1. Speech-Driven 3D Facial Animation

Facial animation [5, 25, 33–35, 55, 62, 72] has attracted
considerable attention over the years. While aware of ex-
tensive 2D-based approaches [10, 11, 16, 18, 23, 29, 49, 59,
66, 70], we focus on animating a 3D model in this work.
Typically, the procedural methods [22, 41, 54, 65] establish
a set of explicit rules for animating the talking mouth. For
example, the dominance functions [41] are used to charac-
terize the speech control parameters. The dynamic viseme
model proposed by Taylor et al. [54] exploits the one-to-
many mapping of phonemes to lip motions. Xu et al. [65]
construct a canonical set for modeling coarticulation ef-
fects. The state-of-the-art procedural approach JALI [22]
utilizes two anatomical actions to animate a 3D facial rig.

One appealing strength of the above procedural methods
is the explicit control of the system to ensure the accuracy
of the mouth movements. However, they require a lot of
manual effort in parameter tuning. Alternatively, a wide va-
riety of data-driven approaches [6, 17, 28, 31, 40, 48, 51, 53]
has been proposed to produce 3D facial animation. Cao
et al. [6] synthesize 3D facial animation based on the pro-
posed Anime Graph structure and a search-based technique.
The sliding window approach [53] requires the transcribed
phoneme sequences as input and can re-target the output
to other animation rigs. An end-to-end convolutional net-
work elaborated by Karras et al. [31] leverages the linear
predictive coding method to encode audio and designs a la-
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tent code to disambiguate the variations in facial expres-
sion. Zhou et al. [71] employ a three-stage network that
combines phoneme groups, landmarks and audio features to
predict viseme animation curves. VOCA [17] is a speaker-
independent 3D facial animation method that captures a va-
riety of speaking styles, yet the generated face motions are
mostly present in the lower face. Recently, MeshTalk [51]
learns a categorical latent space that successfully disentan-
gles audio-correlated and audio-uncorrelated face motions.

The most related works are methods [17, 31, 51] where
the high-resolution 3D data are used for training and the
output is represented as the high-dimensional vector in 3D
vertex space. The former two models [17, 31] are trained
using short audio windows, thus ignoring the long-term au-
dio context. Despite the highly realistic facial animation
achieved the latter method [51], it requires large amounts of
high-fidelity 3D facial data to ensure the animation quality.

2.2. Transformers in Vision and Graphics

Transformer [58] has emerged as a strong alternative to
both RNN and CNN. In contrast to RNNs that process se-
quence tokens recursively, transformers can attend to all
tokens in the input sequence parallelly, thereby modeling
the long-range contextual information effectively. Vision
Transformer (ViT) [21] is the first work that explores the
direct application of transformers to the task of image clas-
sification. Following ViT, some follow-up works [9, 14, 56]
have been introduced to boost performance for image recog-
nition problems. Besides, transformer-based models and
the variants have also been proposed in object detection [7],
semantic segmentation [64], image generation [30], etc. In
computer graphics, transformers have been exploited for
3D point cloud representations and 3D mesh, such as Point
Transformer [68], Point Cloud Transformer [26] and Mesh
Transformer [38]. We refer readers to the comprehensive
survey [32] for further information.

Some of the most recent works on 3D body motion syn-
thesis [1, 4, 46] and 3D dance generation [36, 37, 57] have
explored the power of transformer in modeling sequential
data and produced impressive results. Different from dance
generation where the output motion is highly unconstrained,
the task of speech-driven 3D facial animation inherently re-
quires the alignment between audio and face motions to
ensure the accuracy of lip motions. Meanwhile, the long-
term audio context is expected to be considered, which is
important for animating the whole face. Consequently, we
present FaceFormer that incorporates the desirable proper-
ties for the speech-driven 3D facial animation problem.

3. Our Approach: FaceFormer
We formulate speech-driven 3D facial animation as a

sequence-to-sequence (seq2seq) learning problem and pro-
pose a novel seq2seq architecture (Fig. 2) to autoregres-

sively predict facial movements conditioned on both au-
dio context and past facial movement sequence. Suppose
that there is a sequence of ground-truth 3D face move-
ments YT = (y1, ...,yT), where T is the number of visual
frames, and the corresponding raw audio X . The goal here
is to produce a model that can synthesize facial movements
ŶT that is similar to YT given the raw audio X . In the
encoder-decoder framework (Fig. 2), the encoder first trans-
forms X into speech representations AT′ = (a1, ...,aT′),
where T′ is the frame length of speech representations.
The style embedding layer contains a set of learnable em-
beddings that represents speaker identities S = (s1, ..., sN).
Then, the decoder autoregressively predicts facial move-
ments ŶT = (ŷ1, ..., ŷT) conditioned on AT′ , the style
embedding sn of speaker n, and the past facial movements.
Formally,

ŷt = FaceFormerθ(ŷ<t, sn,X ), (1)

where θ denotes the model parameters, t is the current time-
step in the sequence and ŷt ∈ ŶT. For the remainder of
this section, we describe each component of the FaceFormer
architecture in detail.

3.1. FaceFormer Encoder

3.1.1 Self-Supervised Pre-Trained Speech Model

The design of our FaceFormer encoder follows the state-of-
the-art self-supervised pre-trained speech model, wav2vec
2.0 [2]. Specifically, the encoder is composed of an au-
dio feature extractor and a multi-layer transformer en-
coder [58]. The audio feature extractor, which consists
of several temporal convolutions layers (TCN), transforms
the raw waveform input into feature vectors with frequency
fa. The transformer encoder is a stack of multi-head self-
attention and feed-forward layers, converting the audio fea-
ture vectors into contextualized speech representations. The
outputs of the temporal convolutions are discretized to a fi-
nite set of speech units via a quantization module. Similar
to masked language modeling [20], wav2vec 2.0 uses the
context surrounding a masked time step to identify the true
quantized speech unit by solving a contrastive task.

We initialize our encoder (Fig. 2) with the pre-trained
wav2vec 2.0 weights, and add a randomly initialized lin-
ear projection layer on the top. Since the facial motion
data might be captured with a frequency fm that is differ-
ent to fa (e.g., fa = 49Hz while for the BIWI datset [24]
fm = 25fps), we add a linear interpolation layer after the
temporal convolutions for resampling the audio features,
which results in the output length kT, where k = ⌈ fa

fm
⌉.

Therefore, the outputs of the linear projection layer can be
represented as AkT = (a1, ...,akT). In this way, the audio
and motion modalities can be aligned by the biased cross-
modal multi-head attention (Sec. 3.2.3).
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Figure 2. Overview of FaceFormer. An encoder-decoder model with Transformer architecture takes raw audio as input and autore-
gressively generates a sequence of animated 3D face meshes. Layer normalizations and residual connections are omitted for simplicity.
The overall design of the FaceFormer encoder follows wav2vec 2.0 [2]. In addition, a linear interpolation layer is added after TCN for
resampling the audio features. We initialize the encoder with the corresponding pre-trained wav2vec 2.0 weights. The FaceFormer decoder
consists of two main modules: a biased causal MH self-attention with a periodical positional encoding for generalizing to longer input
sequences, and a biased cross-modal multi-head (MH) attention for aligning audio-motion modalities. During training, the parameters of
TCN are fixed, whereas the other parts of the model are learnable.

3.2. FaceFormer Decoder

3.2.1 Periodic Positional Encoding

In practice, transformer has very limited generalization abil-
ities for longer sequences due to the sinusoidal positional
encoding method [19, 50]. Attention with Linear Biases
(ALiBi) [50] method is proposed to improve generalization
abilities by adding a constant bias to the query-key attention
score. In our experiments, we notice that directly replacing
the sinusoidal positional encoding with ALiBi would lead
to a static facial expression during inference. This is be-
cause ALiBi does not add any position information to the
input representation, which might influence the robustness
of the temporal order information, especially for our case
where the training sequences have subtle motion variations
among adjacent frames. To alleviate this issue, we devise a
periodic positional encoding (PPE) for injecting the tempo-
ral order information, while being compatible with ALiBi.
Specifically, we modify the original sinusoidal positional
encoding method [58] to make it periodic with respect to a
hyper-parameter p that indicates the period:

PPE(t,2i) = sin
(
(t mod p)/100002i/d

)
PPE(t,2i+1) = cos

(
(t mod p)/100002i/d

) (2)

where t denotes the token position or the current time-step
in the sequence, d is the model dimension, and i is the
dimension index. Rather than assigning a unique position
identifier for each token [58], the proposed PPE strategy
recurrently injects the position information within each pe-
riod p (as shown in Section 3.2.2). Before PPE, we first
project the face motion ŷt into a d-dimensional space via
a motion encoder. To model the speaking style, we embed
the one-hot speaker identity to a d-dimensional vector sn
via a style embedding layer and add it to the facial motion
representation:

ft =

{
(Wf · ŷt−1 + bf ) + sn, 1 < t ≤ T,
sn, t = 1,

(3)

where Wf is the weight, bf is the bias and ŷt−1 is the
prediction from the last time step. Then PPE is applied to
ft to provide the temporal order information periodically:

f̂t = ft + PPE(t). (4)

3.2.2 Biased Causal Multi-Head Self-Attention

We design a biased causal multi-head (MH) self-attention
mechanism based on ALiBi [50], which is reported to be
beneficial for generalizing to longer sequences in language
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modeling. Given the temporally encoded facial motion rep-
resentation sequence F̂t = (f̂1, ..., f̂t), biased causal MH
self-attention first linearly projects F̂t into queries QF̂ and
keys KF̂ of dimension dk, and values VF̂ of dimension
dv. To learn the dependencies between each frame in the
context of the past facial motion sequence, a weighted con-
textual representation is calculated by performing the scaled
dot-product attention [58]:

Att(QF̂,KF̂,VF̂,BF̂)=softmax

QF̂(KF̂)
T

√
dk

+BF̂

VF̂,

(5)
where BF̂ is the temporal bias we add to ensure causality
and to improve the ability to generalize to longer sequences.

More specifically, BF̂ is a matrix that has negative infin-
ity in the upper triangle to avoid looking at future frames
to make current predictions. For the generalization abil-
ity, we add static and non-learned biases to the lower tri-
angle of BF̂. Different from ALiBi [50], we introduce
the period p and inject the temporal bias to each period
([1 : p], [p + 1 : 2p], . . . ). Let us define i and j as the
indices of BF̂ (1 ≤ i ≤ t, 1 ≤ j ≤ t). Then the temporal
bias BF̂ is formulated as:

BF̂ (i, j) =

{
⌊(i− j)/p⌋, j ≤ i,
−∞, otherwise. (6)

In this way, we bias the casual attention by assigning higher
attention weights to the closer period. Intuitively, the clos-
est facial frames period (ŷt−p, ..., ŷt−1) are most likely to
affect the current prediction of ŷt. Thus, our proposed tem-
poral bias can be considered as a generalized form of ALiBi
and ALiBi becomes a special case when p = 1.

The MH attention mechanism, which consists of H par-
allel scaled dot-product attentions, is applied to jointly ex-
tract the complementary information from multiple repre-
sentation subspaces. The outputs of H heads are concate-
nated together and projected forward by a parameter matrix
WF̂:

MH(QF̂,KF̂,VF̂,BF̂) = Concat (head1, . . . ,headH)WF̂,

where head h = Att
(
QF̂

h ,K
F̂
h ,V

F̂
h ,B

F̂
h

)
.

(7)
Similar to ALiBi [50], we add a head-specific scalar m

for the MH setting. For each headh, the temporal bias is
defined as BF̂

h = BF̂ · m. The scalar m is a head-specific
slope and is not learned during training. For H heads, m
will start at 2−2(− log2 H+3)

and multiply each element by the
same value to compute the next element. Concretely, if the
model has 4 heads, the corresponding slopes will be 2−2,
2−4, 2−6 and 2−8.

3.2.3 Biased Cross-Modal Multi-Head Attention

The biased cross-modal multi-head attention aims to com-
bine the outputs of Faceformer encoder (speech features)
and biased causal MH self-attention (motion features) to
align the audio and motion modalities (see Fig. 2). For this
purpose, we add an alignment bias to the query-key atten-
tion score, which is simple and effective. The alignment
bias BA (1 ≤ i ≤ t, 1 ≤ j ≤ kT) is represented as:

BA(i, j) =

{
0, ki ≤ j < k(i+ 1)
−∞, otherwise , (8)

Each token in AkT has captured the long-term audio
context due to the self-attention mechanism. On the other
hand, assuming the outputs of biased causal MH self-
attention is F̃t = (f̃1, ..., f̃t), each token in F̃t has encoded
the history context of face motions. Both AkT and F̃t are
fed into biased cross-modal MH attention. Likewise, AkT

is transformed into two separate matrices: keys KA and val-
ues VA, whereas F̃t is transformed into queries QF̃. The
output is calculated as a weighted sum of VA,

Att(QF̃,KA,VA,BA) = softmax

(
QF̃(KA)

T

√
dk

+BA

)
VA.

(9)
To explore different subspaces, we also extend Eq. (9) to

H heads as in Eq. (7). Finally, the predicted face motion
ŷt is obtained by projecting the d-dimensional hidden state
back to the V-dimensional 3D vertex space via a motion
decoder.

3.3. Training and Testing

During the training phase, we adopt an autoregressive
scheme instead of a teacher-forcing scheme. In our ex-
periments, we observe that training FaceFormer with a less
guided scheme works better than a fully guided one. Once
the complete 3D facial motion sequence is produced, the
model is trained by minimizing the Mean Squared Error
(MSE) between the decoder outputs Ŷt = (ŷ1, ..., ŷT) and
the ground truth Yt = (y1, ...,yT):

LMSE =

T∑
t=1

V∑
v=1

∥ŷt,v − yt,v∥2 , (10)

where V represents the number of vertices of the 3D face
mesh.

At inference time, FaceFormer autoregressively predicts
a sequence of animated 3D face meshes. More specifically,
at each time-step, it predicts the face motion ŷt conditioned
on the raw audio X , the history of face motions ŷ<t and the
style representations sn as in Eq. (1). sn is determined by
the speaker identity, and thus altering the one-hot identity
vector can manipulate the output in different styles.
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4. Experiments and Results
4.1. Experimental Settings

We use two publicly available 3D datasets, BIWI [24]
and VOCASET [17] for training and testing. Both datasets
provide the audio-3D scan pairs of English spoken utter-
ances. BIWI contains 40 unique sentences shared across all
speakers. VOCASET contains 255 unique sentences, some
of which are shared across speakers. Comparatively, BIWI
represents a more challenging dataset for lip sync as it cov-
ers fewer phonemes.

BIWI Dataset. BIWI is a corpus of affective speech and
corresponding dense dynamic 3D face geometries. 14 hu-
man subjects are asked to read 40 English sentences, each of
which is recorded twice: in a neutral or emotional context.
The 3D face geometries are captured at 25fps, each with
23370 vertices. Each sequence is 4.67 seconds long on aver-
age. For our experiments, we use the subset where the sen-
tences are recorded in the emotional context. Specifically,
we split the data into a training set (BIWI-Train) of 192
sentences spoken by six subjects (each subject speaks 32
sentences), a validation set (BIWI-Val) of 24 sentences spo-
ken by six subjects (each subject speaks 4 sentences), and
two testing sets (BIWI-Test-A and BIWI-Test-B). BIWI-
Test-A includes 24 sentences spoken by six seen subjects
(each speaks 4 sentences), and BIWI-Test-B includes 32
sentences spoken by eight unseen subjects (each speaks 4
sentences).

VOCASET Dataset. VOCASET is composed of 480
facial motion sequences from 12 subjects. Each sequence is
captured at 60fps and is between 3 and 4 seconds long. Each
3D face mesh has 5023 vertices. For a fair comparison,
we use the same training, validation and testing splits as
VOCA [17], which we refer to VOCA-Train, VOCA-Val
and VOCA-Test, respectively.

Baseline Methods. We compare FaceFormer with two
state-of-the-art methods, VOCA [17] and MeshTalk [51],
on both BIWI and VOCASET. Among the three methods,
FaceFormer and VOCA require conditioning on a training
speaker identity during inference. For unseen subjects, we
obtain the predictions of FaceFormer and VOCA by condi-
tioning on all training identities. The implementation de-
tails of FaceFormer and the baseline methods are provided
in the supplementary material (Sec. 1 and Sec. 2).

4.2. Evaluation Results

Lip-sync Evaluation. We follow the lip-sync metric em-
ployed in MeshTalk [51] for evaluating the quality of lip
movements. The maximal L2 error of all lip vertices is de-
fined as the lip error for each frame. The error is calculated
by comparing the predictions and the processed 3D face
geometry data. We report the computed average over all
testing sequences of BIWI-test-A for VOCA, MeshTalk and

Table 1. Comparison of lip-sync errors. We compare FaceFormer
with two state-of-the-art methods [17, 51] on BIWI-Test-A. The
maximal lip vertex error [51] is used for lip-sync evaluation.

Methods Lip Vertex Error (×10−4 mm)

VOCA 7.6427
MeshTalk 6.7436
FaceFormer (Ours) 5.3742

Table 2. User study results on BIWI-Test-B. We use A/B testing
and report the percentage of answers where A is preferred over B.

Ours vs. Competitor Realism Lip Sync

Ours vs. VOCA 83.85± 3.76 82.64± 3.77
Ours vs. MeshTalk 83.33± 4.07 80.56± 5.22
Ours vs. GT 35.24± 2.87 36.98± 1.38

Table 3. User study results on VOCA-Test.

Ours vs. Competitor Realism Lip Sync

Ours vs. VOCA 77.92± 7.94 77.08± 7.32
Ours vs. MeshTalk 82.92± 2.60 82.08± 3.15
Ours vs. GT 29.17± 10.41 30.42± 8.04

FaceFormer in Tab. 1. The lower average lip error achieved
by FaceFormer suggests it can produce more accurate lip
movements compared to the other two methods.

Qualitative Evaluation. Given the many-to-many map-
pings between upper face motions and the speech utterance,
it is suggested that qualitative evaluations and user studies
are more proper for evaluating the quality of speech-driven
facial animation than using quantitative metrics [17, 31].
We refer the readers to our supplementary video for the
assessment of the motion quality. The video compares
the results of our approach, those by the previous meth-
ods [17, 31, 51, 53] and the ground truth. Specifically, we
test our model using (1) audio sequences from BIWI and
VOCASET test sets, (2) audio clips extracted from sup-
plementary videos of previous methods and (3) audio clips
extracted from TED videos on YouTube. For the last two
cases, the results are predicted from the model trained on
BIWI. The video shows that FaceFormer produces realis-
tic and natural-looking facial animation with accurate lip
synchronization. Compared to VOCA and MeshTalk, it is
notable that, FaceFormer produces more realistic facial mo-
tions and better lip sync with proper mouth closures in many
situations, e.g., the lips are fully closed when pronouncing
/b/,/m/,/p/. We also show that our system can produce ani-
mation of talking in different styles and different languages.

4.3. Perceptual Evaluation

User Study on BIWI. We conduct user studies on Ama-
zon Mechanical Turk (AMT) to evaluate the animation
quality of FaceFormer, compared with the ground truth,
VOCA and MeshTalk. For BIWI, we obtain the results of
three methods using all test audio sequences of BIWI-Test-
B (32 sentences). The results of FaceFormer and VOCA are
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produced by conditioning on all training speaker identities,
which results in 192 videos (32 sentences × 6 identities) for
each method. Therefore, 576 A vs. B pairs (192 videos ×
3 comparisons) are created for BIWI-Test-B. For each HIT
(human intelligence task), the AMT interface shows four
video pairs including the qualification test in randomized
order, and the Turker is instructed to judge the videos in
terms of realistic facial animation and lip sync. Each video
pair is evaluated by three Turkers. In particular, Turkers
must pass the qualification test otherwise they are not al-
lowed to submit HITs. Finally, we collect 576 HITs for the
user study on BIWI. More details about the user study are
described in our supplementary material (Sec. 3). Tab. 2
shows the percentage of A/B testing in terms of realism and
lip sync. Turkers favor FaceFormer over VOCA in terms
of realistic facial animation and lip sync. We believe this
is mainly due to two reasons: (1) face motions synthesized
by VOCA are mostly present in the lower face; (2) VOCA
sometimes fails to fully close the mouth at the phonemes
/b/,/m/,/p/. FaceFormer also outperforms MeshTalk and we
attribute this to the results produced by FaceFormer having
more expressive facial motions and more accurate mouth
movements. Not surprisingly, Turkers perceive the ground
truth more realistic than FaceFormer.

User Study on VOCASET. In the second user study,
we compare the results of three methods on VOCA-Test.
We randomly select 10 sentences from VOCA-Test and ob-
tain the results of FaceFormer and VOCA conditioned on
all training speaker identities, which results in 80 videos
(10 sentences × 8 identities) for each method. In total,
240 A vs. B pairs (80 videos × 3 comparisons) are cre-
ated for VOCA-Test. Similarly, for each pair, Turkers make
the choice between two videos in terms of realism and lip
sync. Since VOCASET has very few upper face motions,
movements are present mostly in the lower face for all
three methods. In this case, well-synchronized lip motions
are important for generating perceptually realistic results.
Tab. 3 shows that FaceFormer achieves higher percentages
over VOCA and MeshTalk. We believe this is because our
results have better synchronized mouth shapes and closures.
Similarly, there is still a certain gap between our results and
the ground truth.

4.4. Visualization Analysis

To provide insights into the underlying attention mech-
anism, we visualize the attention weights for the MH self-
attention of the encoder, as well as the biased causal MH
self-attention of the decoder. We consider 100 frames of a
test sequence from BIWI and examine the attention weights
that are used to predict the last frame. Fig. 3 visualizes the
average attention weights across all heads. We observe that
the encoder self-attention (Fig. 3 (a)) not only focuses on
the nearby audio frames (as reflected by the diagonal line)

(a) (b)

Figure 3. Attention Weights Visualization. Attention weights of
the (a) MH self-attention of the encoder and (b) biased causal MH
self-attention of the decoder.

but also attends to some farther future and past frames. This
indicates that the self-attention mechanism of transformer is
able to capture both the short- and long-range audio context
dependencies. The attended audio frames may contain more
informative context features that influence the current face
motion. For the decoder self-attention (Fig. 3 (b)), the vi-
sualization corresponds to the casual attention incorporated
with the temporal bias (Eq. (6)). There is a clear pattern
that the face motion frames in a closer period are assigned
with higher weights, as those frames are more likely to in-
fluence the current face motion. For example, there is a high
probability that people will keep smiling if they have been
smiling over the past frames.

4.5. Ablation Study

The visual results of ablation are included in the supple-
mentary video. Please watch the video for comparison.

4.5.1 Ablation on FaceFormer Encoder

Effect of the encoder self-attention module. To
investigate the effect of the MH self-attention module
in FaceFormer encoder, we directly remove it from the
whole architecture, with the pre-trained TCN retained
to extract the speech representations. We refer to this
variant as “TCN+FaceFormer Decoder” and conduct the
comparison experiments on BIWI. The results show that
“TCN+FaceFormer Decoder” often fails to close the mouth,
resulting in out-of-sync lip motions. Besides, the produced
results have a temporal jitter effect around the mouth region,
as shown in the supplementary video.

Effect of the wav2vec weights initialization. We also
perform an ablation study of the wav2vec weights initial-
ization by comparing FaceFormer trained with and with-
out wav2vec weights initialization (denoted as “FaceFormer
w/o wav2vec”). Without wav2vec weights initialization,
we observe a downgrade of the quality of face movements.
“FaceFormer w/o wav2vec” can not produce synchronized
mouth motions and a temporal jitter effect can be observed.
This suggests that simply training FaceFormer with ran-
domly initialized weights might converge to a poor solution.
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Figure 4. Illustration of different positional encoding strategies.

Hence, the wav2vec weights initialization is necessary for
the FaceFormer encoder.

4.5.2 Ablation on FaceFormer Decoder

Choices of the decoder architecture. We explore
whether the transformer-based architecture has advantages
over a FC layer or LSTM by training and testing two al-
ternative variants: “FaceFormer Encoder+FC” and “Face-
Former Encoder+LSTM”. As shown in the video, Face-
Former yields more stable mouth motions and more accu-
rate lip sync. Compared to the FC decoder, the autoregres-
sive machanism of FaceFormer decoder can stabilize the
lip motions by modeling the history motions. On the other
hand, the self-attention machanism of FaceFormer decoder
might model the context cues in history motions better than
LSTM, thus having more temporally coherent lip motions.

Effect of the alignment bias. We examine the effect of
the alignment bias (Eq. (8)) by removing it from the biased
cross-modal MH attention module. The model without the
alignment bias (denoted as “FaceFormer w/o AB”) tends to
generate muted facial expressions across all frames. Hence,
the alignment bias is indispensable for the cross-modal at-
tention in aligning the audio-motion modalities correctly.

Effect of the proposed positional encoding strategy.
The proposed positional encoding strategy is adding a tem-
poral bias to the attention score and making the original si-
nusoidal position embedding [58] (“Original PE”) periodic.
We refer to this strategy as “TB+PPE” and compare it with
“Original PE” and “ALiBi” [50]. The differences of three
positional encoding strategies are visualized in Fig. 4. A
detailed illustration of “PPE” can be found in our supple-
mentary material (Sec. 4). The results show “Original PE”
produces well-synchronized mouth motions with proper lip
closures, yet has a temporal jitter effect around the lips dur-
ing silent frames, especially as the test audio sequence ex-
ceeds the average length of training audio sequences. While
“ALiBi” does not influence the results on BIWI, it quickly
freezes to a static facial expression when training and test-
ing on VOCASET. This happens because the ALiBi does
not add any position information to the input representation,

which might influence the robustness of the temporal order
information. This influence is more obvious when motion
data have subtle variations among adjacent frames. Since
“TB+PPE” is a key component for improving the ability to
generalize to longer sequences, we additionally study its in-
fluence by conducting the perceptual evaluation on AMT.
Specifically, we download the TED videos shared under
the “CC BY-NC-ND 4.0 International License”, and ex-
tract 15 representative audio clips for the user study. The
audio sequences are around 20 seconds long, more than
four times the average length of training audio sequences.
For the comparison to “Original PE”, we randomly sam-
ple a training identity and use it as the condition for both
methods. Similar to the user study in Sec. 4.3, each video
pair is evaluated by three judges. Overall, Turkers perceive
the facial animation results of FaceFormer more realistic
(57.78%± 16.78%) and the generated lip motions of Face-
Former more in sync with audio (62.22% ± 10.18%) than
“Original PE”. The result indicates FaceFormer generalizes
better to longer audio clips. The likely explanation is that
“Original PE” tends to generate unstable lip motions during
silent frames when testing on longer audio sequences.

5. Discussion and Conclusion
In this work, we propose an autoregressive transformer-

based architecture for speech-driven 3D facial animation.
The encoder effectively leverages the self-supervised pre-
trained speech representations, and the inside self-attention
captures long-range audio context dependencies. The de-
coder attention modules with periodic positional encoding
are tailored for cross-modal alignment and generalization
to longer sequences. Overall, FaceFormer demonstrates
higher quality for lip synchronization and realistic facial
animation compared to the state-of-the-arts. However, our
model requires access to the full audio sequence, making
it not suitable for online streaming applications. Another
bottleneck is the quadratic memory and time complexity
of self-attention. One future work is to address this prob-
lem using advanced techniques [3, 61] that improve the ef-
ficiency of self-attention.
Ethics Considerations: We should use technology respon-
sibly and be careful about the synthesized content. Since
our technique requires 3D scan data collected from actors,
it is important to obtain consent from the actors during data
acquisition. Our method can animate a realistic 3D talking
face from an arbitrary audio signal. However, there is a risk
that such techniques could potentially be misused to cause
embarrassment. Thus, we hope to raise the public’s aware-
ness about the risks of the potential misuse and encourage
research efforts on the responsible use of technology.
Acknowledgement. This research is partly supported by
New Energy and Industrial Technology Development Orga-
nization (NEDO) (ref:JPNP21004).
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