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Abstract

Cereal grains are a vital part of human diets and are
important commodities for people’s livelihood and interna-
tional trade. Grain Appearance Inspection (GAI) serves as
one of the crucial steps for the determination of grain qual-
ity and grain stratification for proper circulation, storage
and food processing, etc. GAI is routinely performed manu-
ally by qualified inspectors with the aid of some hand tools.
Automated GAI has the benefit of greatly assisting inspec-
tors with their jobs but has been limited due to the lack of
datasets and clear definitions of the tasks.

In this paper we formulate GAI as three ubiquitous com-
puter vision tasks: fine-grained recognition, domain adap-
tation and out-of-distribution recognition. We present a
large-scale and publicly available cereal grains dataset
called GrainSpace. Specifically, we construct three types
of device prototypes for data acquisition, and a total of
5.25 million images determined by professional inspectors.
The grain samples including wheat, maize and rice are
collected from five countries and more than 30 regions.
We also develop a comprehensive benchmark based on
semi-supervised learning and self-supervised learning tech-
niques. To the best of our knowledge, GrainSpace is the
first publicly released dataset for cereal grain inspection,
https://github.com/hellodfan/GrainSpace.

1. Introduction
Cereal grains are the foundation of human civilization

and are inextricably linked to our daily life. According to
the data from the Food and Agriculture Organization of the
United Nations in 2020 [1], the three types of cereal grains:
wheat, maize and rice (see Figure 1), represent nearly 90%
of the worldwide produce of cereal grains.

Grain determination is a crucial part in quality inspection

∗Equal contribution.
†Work done when interning at Gaozhe technology.

Figure 1. Examples of wheat, maize and rice grain kernels.

and grade stratification, which provides guides and mea-
sures for grain circulation, storage, process and interna-
tional trade. The majority of work for grain determination
consists of chemical analysis and Grain Appearance Inspec-
tion (GAI). Chemical analysis is usually conducted by using
various apparatus, but GAI still requires manual inspection
with the aid of some hand tools ranging from sieves, di-
viders, to balances. In GAI, a batch of test samples are su-
perficially inspected by professional inspectors in a kernel-
by-kernel way. GAI can determine multiple metrics, such
as impurities, damaged grains and cultivated varieties [21].
Taking GAI of wheat grains as an example, 60 grams (about
1600 grain kernels) are inspected and then divided into pre-
defined groups manually, which requires 25 to 30 minutes
for an inspector with 3 to 5 years’ experience. It is thus
highly desirable to develop an automated GAI.

Over the past few years, deep learning techniques have
achieved remarkable success in many computer vision ap-
plications, such as recognition (ImageNet [37]), detec-
tion (MS-COCO [26]), segmentation (Cityscapes [9]) and
video understanding (YouTube-8M [2]). There are how-
ever two main challenges to apply deep learning models
to GAI. First, in-depth domain knowledge of GAI is re-
quired in order to formulate the grain determination prob-
lem into proper computer vision tasks. Second, develop-
ing deep learning-based methods for GAI requires high-
quality datasets covering a comprehensive representation of
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the large variety of cereal grains.
In our work, we perform in-depth analysis of the char-

acteristics of cereal grain and consider the real-world re-
quirements of GAI. We formulate GAI into three fundamen-
tal computer vision tasks: fine-grained recognition, domain
adaptation and out-of-distribution recognition. We built
three kinds of device prototypes that can capture images of
cereal grains efficiently. Then, we construct a large-scale
dataset containing 5.25 million images concerning three
types of cereal grains (wheat, maize and rice) collected from
five countries and more than 30 regions. The raw grain
samples were processed manually by nine inspectors over
more than 4 years. Furthermore, we develop a benchmark
on our proposed dataset by employing advanced techniques
like semi-supervised learning and self-supervised learning
to address the challenges in fine-grained recognition, do-
main adaptation and out-of-distribution recognition. Our
experimental results show that the developed approaches
can obtain substantial improvements and make automated
GAI feasible. Our contributions are summarized as follows:

• A large-scale and publicly available cereal grain
dataset called GrainSpace, containing 5.25 million im-
ages of wheat, maize and rice grains, is constructed.

• Based on our in-depth analysis of GAI, we formu-
late GAI-related work into three computer vision tasks,
including fine-grained recognition, domain adaptation
and out-of-distribution recognition.

• An initial benchmark is developed to address the above
tasks and we demonstrate promising performance on
the GrainSpace.

2. Related Work
GAI provides a foremost assessment on the quality of

grains, assisting grading, cleaning and separation of grains.
As the appearance and physical characteristics of grains are
highly variable, GAI is error-prone even for trained inspec-
tors. There are high demands in automated GAI that have
the benefit of greatly assisting inspectors. However, there
are two main challenges in building automated GAI: what
GAI-related tasks we should focus on and how to construct
a high-quality cereal grain dataset.

GAI-related work: In general, GAI is used for pro-
viding accurate classification and identification of various
grains [45]. Limited by sensor technologies and computa-
tional resources, early studies [44, 3] employed machine vi-
sion to classify five types of wheat (barley, oats, rye, wheat
and durum wheat) or impurities (stones, soil and weeds)
based on statistical information, such as color, morpholog-
ical or textural variations. Some researchers utilized neural
networks to identify the varieties of rice and wheat. For ex-
ample, Zapotoczny [48] and Golpour et al. [14] analyzed
textures of grains to classify 11 varieties of spring/winter

wheat and 5 brown/white rice cultivars. Guzman et al. [15]
and Shantaiya et al. [39] developed algorithms to identify
five groups of rice in Philippines and six varieties of rice
seeds in Chhattisgarh, respectively. In this paper we com-
prehensively analyze GAI-related tasks, such as identifying
the damaged and unsound grains that include grains dam-
aged by pressure, pests and fungus, and then we formulate
GAI into three computer vision tasks: fine-grained recogni-
tion, domain adaptation and out-of-distribution recognition.

Cereal grain dataset: Advances of deep learning have
revolutionized multiple real-world fields such as medical
analysis [42], autonomous driving [40] and agriculture [24].
The success of deep learning is mainly attributed to abun-
dant computational resources, well-designed network archi-
tectures and large-scale datasets. In particular, high-quality
datasets, such as ImageNet [37], Pascal VOC [11], MS-
COCO [26], Cityscapes [9] and Kinetics [25], are essential
for many computer vision tasks, e.g., image classification
[18], object detection [35], semantic segmentation [29] and
video understanding [12]. For the last several years, many
researchers have also investigated more industry-related vi-
sual tasks, such as anomaly detection [5], sewer detection
[16], food recognition [31] and nutrition estimation [43].
However, to the best of our knowledge, there are few pub-
licly available cereal grain datasets. Most of the previous
studies [46, 34, 33] focus on building devices for image ac-
quisition with specific sensors, such as hyperspectral imag-
ing. In this work we built three kinds of device prototypes:
P600, G600 and M600. P600 and G600 consist of indus-
trial cameras, grain holding platforms and lighting sources
for illumination. M600 is based on a smartphone that is
low-cost and ideal for widespread deployment. We create
a total of 5.25 million images that the raw grain samples
are from multiple countries and regions and are manually
pre-processed by nine trained inspectors carefully.

3. GrainSpace
In this section, we present GAI as three challenges re-

lated to computer vision tasks (see Figure 2), and describe
device prototypes along with procedures for data processing
(see Figure 4) and data distribution. Note that more detailed
descriptions are included in the supplementary material.

3.1. Challenges

Over recent decades, GAI as a conventional but crucial
part of grain determination is routinely performed manually.
Each grain kernel in a batch of grain samples is inspected
carefully. The main inspection work focuses on determining
whether the grain kernel is Damaged and Unsound (DU),
and identifying the sub-type of grain kernels.

In accordance with ISO5527-Cereals [21], wheat grains
can be categorized as NORMAL and six types of DU grains:
FUSARIUM & SHRIVELLED (F&S) grain, SPROUTED
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Figure 2. Illustrations of three GAI-related challenges: fine-grained recognition, domain adaptation and out-of-distribution recognition.

Table 1. Examples of normal and DU wheat grains.
NORMAL

FUSARIUM &
SHRIVELLED Grain (F&S)

SPROUTED Grain
(SD)

MOULDY Grain
(MY)

BROKEN Grain
(BN)

Grain ATTACKED by
PESTS (AP)

BLACK POINT grain
(BP)

Table 2. Examples of normal and DU maize grains.
NORMAL

FUSARIUM Grain
(FM)

SPROUTED Grain
(SD)

MOULDY Grain
(MY)

BROKEN Grain
(BN)

Grain ATTACKED by
PESTS (AP)

HEATED Grain
(HD)

(SD) grain, MOULDY (MY) grain, BROKEN (BN) grain,
grain ATTACKED by PESTS (AP) and BLACK POINT
(BP) grain (see Table 1). Maize grains are also grouped
into NORMAL and six DU-grain types: FUSARIUM (FM)
grain, SD grain, MY grain, BN grain, AP grain and
HEATED (HD) grain (see Table 2). Among these grains,
F&S, FM, MY and BP grains indicate the proportion of
grains that are contaminated by fusarium or fungus, etc;
SD, AP and HD grains correspond to the nutrient content
of grains. In terms of rice grains, Table 3 illustrates 8 sub-
types, in which Malis, SQ and 545 belong to “Thai Hom
Mali Rice” are 2 to 4 times more expensive than the other
kinds of rice grains. Different sub-types of rice grains look
very similar but these rice grains may have large gaps in
nutrient content, taste and the most important part: price.
Therefore, it is an important GAI task to identify the sub-
types of rice grains, especially for some rare sub-types.

While sub-type identification is naturally a classification
problem, based on our experimental studies, we discovered
that there are more challenges associated with this task. In

Table 3. Examples of eight sub-types of rice grains.
Malis SQ 545 HF

WC HN JZ SY

particular, we need to solve the fine-grained recognition,
domain adaptation and out-of-distribution recognition prob-
lems (see Figure 2).

Fine-grained recognition: Grains of the same species
usually share similar appearance characteristics in terms of
shape, color and texture. However, there are some tiny yet
crucial differences between normal and DU grain kernels,
and between different sub-types. For example, the tiny
pest hole in a wheat grain is only of 1 × 1mm2 (see Ta-
ble 1). In order to effectively differentiate the subtle differ-
ences, this thus becomes a Fine-Grained Visual Categoriza-
tion (FGVC) problem. FGVC has typically been applied to
distinguish bird species [4] and car models [47], etc. Sim-
ilarly, we formulate DU-grain and sub-types identification
as FGVC tasks.

Domain adaptation: Usually, due to geographical and
climate reasons, different countries or regions have distinct
differences in the varieties of grain. These differences not
only exhibit in the shape and size of grain kernels, but also
show in the texture and color distribution. Table 1 illus-
trates two examples of normal wheat grains with different
colors. Despite these differences, qualified inspectors can
still obtain correct results because the prominent charac-
teristics of grains are clearly discriminated. This require-
ment is coherent with Domain Adaptation (DA). The ob-
jective of DA is to enhance the performance on the target
domain based on the model that is trained with the existing
source domain. Taking DU-grain identification as an exam-
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ple, in most cases, only grain samples from some regions
(source domain) can be obtained, and the model trained on
the source may be tested on some grain samples from un-
known regions (target domain). In addition, since we build
and employ different device prototypes to acquire data, the
data across different prototypes can also be seen as different
domains.

Out-of-distribution recognition: One of the crucial but
difficult GAI tasks is to identify the proportion of some
specified sub-types of grains. Most of the time, food fac-
tories or storage facilities require only specific sub-types
grains (e.g., “Thai Hom Mali Rice”: Malis, SQ and 545),
but the test samples may have other sub-types of grains.
We consider that such requirement is related to out-of-
distribution (OOD) recognition. OOD, containing anomaly
detection, aims at identifying whether the input belongs to
the in-distribution (of interest) or not (out-of-distribution).
The expected sub-types of grains can be regarded as in-
distribution, and all other kinds of grains will be seen as
out-of-distribution. Similarly, DU-grain evaluation also can
be considered as OOD recognition. Note that, in compar-
ison with common OOD tasks, OOD recognition related
to GAI is mixed with fine-grained recognition and is more
challenging because the differences between in-distribution
and out-of-distribution data are minor.

3.2. Data Acquisition

To construct the cereal grains dataset, devices for data
collection are prerequisites. We intend to design devices to
capture accurate and realistic photographs of grain kernels.
However, there are two challenges in capturing high-quality
images of grain kernels: 1) To capture overall appear-
ance information of grain kernels, dual or multiple cameras
should be set at appropriate angles around grain kernels. 2)
Compared to natural objects (dog or building, etc.), grain
kernels with tiny sizes (usually smaller than 8×8×4mm3)
impose huge difficulties on the environment including sta-
bility and lighting condition, etc.

Prototypes: We build three kinds of device prototypes:
Professional-600 (P600), General-600 (G600) and Mobile-
600 (M600) (see Figure 3.a). Specifically, P600 mainly
consists of dual industrial cameras with light sources and a
conveyor belt for automatically feeding grain kernels, G600
consists of an industrial camera with light sources and a
conveyor belt, and M600 consists of a mobile phone and
a holder for fixing the phone. We design a robotic au-
tomation mechanism to manipulate P600 and G600 to im-
plement data sampling automatically with higher sampling
efficiency but also higher complexity, while M600 requires
placing grain kernels manually. Among these devices, P600
with dual cameras is able to capture a larger Effective Re-
ceptive Field (ERF) but the manufacturing cost is very high,
whereas G600 and M600 with one camera could only cap-

Figure 3. a) The prototypes and captured photographs of P600,
G600 and M600; b) The radar diagram of performance compar-
isons among these prototypes.

ture a single view photograph of grain kernels under a mod-
erate ERF. We compare these device prototypes in terms of
cost, ERF, reproducibility, automaticity and complexity in
Figure 3.b.

Data Processing: Our goal is to construct a high-quality
cereal grains dataset. However, if we attempt to collect
grain images in a kernel-by-kernel way, it is extremely time-
consuming and infeasible to be applied in the real world.
Therefore, to obtain data efficiently, we establish a data
processing procedure based on our prototypes (see Figure
4). Specifically, following the ISO24333-Cereal Sampling
[20], various impurities (extraneous and inorganic matter,
etc.) and foreign cereals are carefully picked out from raw
grain samples (obtained from granaries or freighters) by
inspectors with tweezers and sieves. Then, grain samples
without impurities are manually divided into several groups
in accordance with predefined categories. For each specific
category L, samples are sent to devices in batches to ob-
tain N raw images {I1raw, . . . , INraw}, in which each Iraw
contains many grain kernels that share the same label of
category L. Single-kernel images Ig are then cropped from
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Figure 4. Overview of data acquisition. Grain kernels are determined and divided into predefined categories. Grain kernels from a group
share the same category L and are delivered into devices to obtain raw images Iraw. Iraw with many kernels is processed to generate many
kernel-wise images Ig via detection and alignment stages. Finally, inspectors filter out low-quality images.

Iraw via detection and alignment stages where a rotation-
invariant object detector based on YOLOv5 [23] is intro-
duced to localize all grain kernels with various orientations.
All Ig are paired with the original category L as the ground
truth. It is worth noting that some Ig captured by G600 or
M600 may not display prominent features due to the single-
camera view, but we still keep these images with original
label L because we expect to explore the limitation of ad-
vanced computer vision methods.

3.3. Data Distribution

All grain samples were collected from 5 countries and
more than 30 regions during the period of 2017-2021 (de-
tails in supplementary material). Table 4 shows detailed in-
formation in terms of category, region, weight and the num-
ber of grain kernels for each species of grain. Among these
samples, wheat grain samples (near 150 kilograms, 4.1 mil-
lion grain kernels) are obtained from 50 tons of wheat, in
which 1.6 million grain kernels are divided into 7 categories
manually and 2.5 million grain kernels without labels are
used for exploring unsupervised methods. Similarly, maize
grain samples (near 95 kilograms, 0.3 million grain kernels)
are obtained from 50 tons of maize, in which 0.16 million
grain kernels are grouped into 7 classes and 0.14 million
grain kernels without labels are also employed for unsuper-
vised methods. Rice grain samples (near 22 kilograms, 0.82
million grain kernels) are obtained from 0.8 tons of rice (8
sub-types of rice, each of which is 100 kilograms).

Table 4. Information of raw wheat, maize and rice grains.
Species Category Region Num. Grain Kernels Weight

Wheat 7 22 4,129k 150 kg
Maize 7 8 299k 95 kg
Rice 8 8 820k 22 kg

Overall, GrainSpace contains a total of 5.25 million im-
ages, and the distribution is shown in Figure 5. To avoid
potential ethical issues or privacy restrictions, we erased
real source information and adopted RN as substitutions for
data anonymization. Wheat and maize images are divided
into labeled and unlabeled groups corresponding to raw in-
spected and un-inspected grain kernels, respectively. Note

that all grain kernels (including unlabeled kernels) are pre-
processed (e.g., to remove impurities) by inspectors manu-
ally, and labeled kernels are further determined and classi-
fied into predefined categories.

Figure 5. The distribution of GrainSpace.

Wheat: All wheat grain kernels sampled from 22 re-
gions are divided into 3 groups according to region infor-
mation, and a total of 4,129k images including 1,638k and
2,491k of labeled and unlabeled images respectively. In
fact, since the real percentages of Damage and Unsound
(DU) wheat grains account for less than 2% in raw wheat
grains, gathering a large number of DU wheat grains is
tremendously labor-intensive and costly. To keep a balance
of data distribution, we tried our best and collected a total
of 111k, 180.5k and 26.5k images of DU wheat grains by
using P600, G600 and M600 respectively (see Table 5).

Table 5. Detailed statistics of wheat grain images.

Region Device NORMAL
Damaged and Unsound Wheat Grains

F&S SD MY AP BN BP Total

R1−14

P600 216k 3.4k 3.4k 3.4k 3.4k 3.4k 3.4k 20.4k
G600 756k 12k 12k 12k 12k 12k 12k 72k
M600 127k 1.7k 1.7k 1.7k 1.7k 1.7k 1.7k 10.2k

R15−18

P600 40k 0.8k 36k 1.8k 1.2k 5k 4.2k 49k
G600 40k 0.8k 36k 5.5k 3.5k 5k 4.2k 55k
M600 28k 0.6k 6k 1k 1k 2k 0.4k 11k

R19−22

P600 49k 0.6k 27k 0.6k 0.8k 5.2k 7.4k 41.6k
G600 47k 0.6k 36k 1.8k 2.5k 5.2k 7.4k 53.5k
M600 18k 0.6k 2k 0.3k 0.7k 1k 0.7k 5.3k
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Maize: All maize grain kernels are sampled from 8 re-
gions, and a total of 299k images containing 159k and 140k
of labeled and unlabeled images, respectively. Consider-
ing the scarcity of DU maize grain kernels similar to wheat
samples, we tried our best and collected a total of 38k, 49.4k
and 8.6k DU maize grain images by using P600, G600 and
M600 respectively (see Table 6).

Table 6. Detailed statistics of maize grain images.

Device NORMAL
Damaged and Unsound Maize Grains

FM SD MY AP BN HD Total

P600 20k 9k 3.4k 5k 9k 7k 4.6k 38k
G600 40k 10k 4k 10k 10k 10k 5.4k 49.4k
M600 4k 1k 0.4k 3k 1k 2k 1.2k 8.6k

Rice: In distinction to wheat and maize, the main chal-
lenge related to rice is to recognize the sub-type of test sam-
ples. We collected 8 sub-types of rice grain kernels from 8
regions respectively, and a total of 820k images consisting
of 327k, 394k and 99k images captured by P600, G600 and
M600 respectively (see Table 7).

Table 7. Detailed statistics of rice grain images.

Device
Categories of Rice Grains

Malis SQ 545 HF WC HN JZ SY

P600 62k 30k 80k 40k 17k 40k 18k 40k
G600 80k 40k 80k 80k 16k 40k 18k 40k
M600 12k 8k 13k 14k 13k 13k 13k 13k

4. Benchmark
In this section, we present a comprehensive evaluation

of advanced computer vision techniques as an initial bench-
mark for future work on GrainSpace. For these GAI-related
challenges, we employ several classical and state-of-the-art
methods and introduce semi-supervised and self-supervised
learning techniques. Note that more detailed results are in-
cluded in the supplementary material.

4.1. Experimental Setting

In all experiments, we randomly split each type of data
into 80%, 10% and 10% of training, validation and test sets.
We adopt PyTorch [32] as our experiment framework based
on a GPU platform with 8 × Nvidia RTX 2080Ti. In order
to keep fair comparison, all models are trained from scratch
without pretraining on other datasets (e.g., ImageNet [37]).
Since the data distribution is heavily imbalanced, both pre-
cision and recall cannot appropriately reflect the perfor-
mances of models. Therefore, we select the Macro F1-score
as experimental measurement. Taking fine-grained recogni-
tion of wheat with N class as an example, we calculate N
F1-score for each category, and the overall F1-score is ob-
tained by averaging these F1-scores ( 1

N

∑N
n (F1n)). This

section only reports the Macro F1-score and more detailed
information are included in supplementary material.

4.2. Fine-grained Recognition

Considering that wheat data captured by different pro-
totypes are divided into three region groups, we conducted
27 experiments based on ResNet50 (R50) [18], DCL [8] and
Swin Transformer (SwinT) [27] (see Table 8). Among these
methods, R50 is one of the most classical models, DCL is
an advanced fine-grained recognition method, and SwinT is
based on the popular transformer technique.

Table 8. Performance of R50, DCL and SwinT on wheat data: re-
gions vs. device prototypes.

Model
R1−14 R15−18 R19−22

P600 G600 M600 P600 G600 M600 P600 G600 M600

R50 [18] 93.9% 80.1% 87.6% 80.0% 76.5% 79.7% 70.1% 76.1% 76.1%
DCL [8] 92.5% 79.1% 87.9% 82.1% 77.2% 76.1% 73.9% 74.9% 72.4%

SwinT [27] 56.5% 39.2% 64.0% 49.8% 58.5% 43.9% 44.0% 51.3% 53.4%

We observe that R50 and DCL (R50 backbone) obtain
all-sided advantages in all regions and prototypes, whereas
SwinT has collapse performance on R1−14 (G600), R15−18

(P600 and M600), etc. The unsatisfactory results show
the potential challenges of GrainSpace that require higher
ability of models’ generalization and adaptation. Figure 6
shows some visualization examples based on CAM tech-
nique [49] with DCL [8] models. To simplify experiment
settings and save computational resources, follow-up exper-
iments are mainly based on R50 as the backbone.

Next, we conducted 15 experiments on wheat, maize and
rice data without considering region information (see Table
9), in which 6 experiments are conducted with a combi-
nation of G600 and M600 data, since these data are cap-
tured via a single camera. We observe that performance
of wheat experiments are moderate but maize and rice ob-
tain good results, which means wheat data from different
regions should be processed carefully. With a package of
G600 and M600 data, the performance from M600 data
are heavily degraded, which, we consider, is mainly due to
the imbalanced data distribution between G600 and M600.
In addition, we utilize unlabeled data by introducing semi-
supervised learning (MixMatch [6]) to wheat and maize ex-
periments. All wheat experiments gain significant improve-
ments but maize group has a little decrease. We consider
that the different results are due to the ratio between labeled
and unlabeled data (wheat 1:1.52, maize 1:0.88), and the
smaller volume of unlabeled maize data should be used in
more elaborate ways.

We further introduce self-supervised learning to explore
unlabeled data, and apply MoCo [17] that is a powerful
framework based on contrastive learning. We conducted 45
experiments on wheat, maize and rice data without consid-
ering region information (see Table 10). Following a com-
mon evaluation protocol [17, 7], we evaluated the perfor-
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Table 9. Performance of device prototypes on wheat, maize and
rice data. (+ and - denote results obtained from MixMatch [6]).

Species Training set Test set

P600 G600 M600 P600 G600 M600

Wheat

X 68.5%+10.7% - -
X - 63.5%+5.2% -

X - - 59.4%+10.7%
X X - 63.4%+4.5% 14.8%+14.7%

Maize

X 94.0%-2.6% - -
X - 86.6%-2.2% -

X - - 82.8%-6.4%
X X - 85.3%-1.6% 33.8%+24.3%

Rice

X 99.2% - -
X - 98.9% -

X - - 93.0%
X X - 98.7% 26.8%

mance by linear probe on the frozen features extracted from
pretrained models, in which a supervised linear classier is
trained with different proportions of unlabeled data. Al-
most all experiments show that a large proportion of unla-
beled data and few labeled data can obtain comparable per-
formance, which verifies that self-supervised learning has
high potential in these tasks.

Table 10. MoCo [17] performance of device prototypes on wheat,
maize and rice data.

Species Training set Test set Labeled data proportion

P600 G600 M600 1% 10% 100%

Wheat

X P600 57.4% 60.0% 56.7%
X G600 65.3% 63.4% 61.9%

X M600 31.6% 45.6% 45.5%
X X G600 58.2% 60.2% 59.6%
X X M600 37.3% 41.1% 38.7%

Maize

X P600 17.2% 52.7% 72.4%
X G600 12.3% 52.4% 61.9%

X M600 6.9% 10.5% 38.7%
X X G600 19.1% 54.3% 62.8%
X X M600 9.7% 44.1% 51.3%

Rice

X P600 10.3% 44.2% 49.0%
X G600 34.2% 54.5% 70.4%

X M600 10.6% 16.2% 32.1%
X X G600 37.9% 50.0% 76.8%
X X M600 11.4% 44.2% 50.2%

4.3. Domain Adaptation

In GrainSpace, different regions of wheat data have di-
verse appearance although DU grains share common fea-
tures, and thus different regions can be regarded as differ-
ent domains. We evaluate domain adaptation (DA) per-
formance by adopting three classical and advanced meth-
ods: CDAN [30], MCD [38] and MCC [22]. Among these
methods, CDAN incorporates two conditioning strategies
for guaranteeing model’s discriminability and transferabil-
ity, MCD attempts to align distributions of source and target
by maximizing the output discrepancy between two classi-
fiers, and MCC tries to minimize the class confusion be-
tween the correct and ambiguous classes for target exam-

Figure 6. Examples of CAM-based visualization (DCL [8]).

ples. Since the appearance of wheat data vary across regions
and device prototypes, we comprehensively conducted 72
experiments in terms of each combination of region and
prototype (see Table 11). Almost all experiments obtain
dramatic decreases, which may be attributed to these DA
methods that are designed for common objects (e.g., build-
ings) among different domains. However, in comparison
with natural images with salient objects, the differences of
wheat grains among different regions are minor but promi-
nent. We regard that a possible solution is to enforce model
to focus on local information based on existing DA tech-
niques.

Table 11. Performance of DA methods on wheat data: regions vs.
device prototypes (order by P600, G600, M600).

Method R1−14→R15−18 R15−18→R19−22 R19−22→R1−14

Source Only 42.9%, 18.9%, 22.7% 52.9%, 16.1%, 46.2% 26.1%, 33.4%, 21.3%

CDAN [30] -15.4%, -1.6%, -8.4% -9.2%, +7.1%, -3.6% +8.3%, -9.5%, +12.6%
MCD [38] -22.9%, -8.6%, -10.8% -15.2%, +8.3%, -18.3% +0.9%, -12.3%, -1.6%
MCC [22] -11.1%, +1.9%, -7.2% -12.8%, +3.4%, -17.3% -0.5%, -12.4%, -0.3%

Method R15−18→R1−14 R19−22→R15−18 R1−14→R19−22

Source Only 17.6%, 16.2%, 22.6% 45.6%, 26.6%, 48.2% 46.7%, 28.5%, 26.6%

CDAN [30] +14.0%, +1.1%, +4.2% -4.7%, -4.9%, -8.8% -13.5%, -12.5%, -10.2%
MCD [38] +9.6%, +4.7%, -4.5% -9.2%, +3.2%, -29.2% -25.7%, -13.7%, -13.8%
MCC [22] +10.4%, -0.8%, -2.0% -12.5%, -3.0%, -20.4% -13.8%, -8.9%, -10.4%

Moreover, we conducted another 72 DA experiments on
all wheat, maize and rice data by treating the device proto-
types as different domains without considering region in-
formation (see Table 12). We observe that the majority
of DA experiments obtained large improvements in com-
parison with source only experiments, which verifies that
data from different device prototypes have potential to be
used collectively to achieve high performance. It is obvious
that the results adapting between G600 and M600 decrease
heavily on the wheat data, and we are still analyzing the
underlying reasons.

4.4. Out-of-distribution Recognition

In some cases, only several specific sub-types of rice
grains are accepted and purchased by food factories or
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Table 12. DA method performance of device prototypes on all
grain data (order by wheat, maize, rice).

Method P600→G600 G600→M600 M600→P600

Source Only 11.6%, 21.5%, 8.7% 13.2%, 29.9%, 23.1% 6.6%, 13.2%, 4.5%

CDAN [30] +6.9%, +3.8%, +31.0% +0.2%, -9.2%, +5.0% +5.5%, +8.8%, +10.8%
MCD [38] +2.9%, +5.8%, +4.9% +2.4%, +0.2%, -13.8% +6.1%, +8.8%, +9.4%
MCC [22] +0.8%, +5.4%, +22.1% +0.2%, -1.0%, +7.1% +5.5%, +4.1%, +11.6%

Method G600→P600 M600→G600 P600→M600

Source Only 12.1%, 7.6%, 27.1% 25.7%, 21.7%, 56.5% 4.4%, 17.9%, 11.3%

CDAN [30] +0.9%, +25.2%, +8.3% -10.2%, -2.2%, -15.0% +11.3%, +0.1%, +8.8%
MCD [38] +0.1%, +27.5%, -16.4% -9.5%, +4.2%, -46.2% +10.8%, +1.0%, -1.7%
MCC [22] +0.4%, +18.2%, -3.5% -7.4%, -0.5%, -16.5% +5.2%, -4.0%, +12.6%

traders, and recognizing these grains can be treated as
out-of-distribution (OOD) recognition. We combine data
of specific categories to create one-class dataset configu-
rations, and train OOD models on one class by employ-
ing three advanced methods: Deep SVDD [36], Rot [19]
and CSI [41]. Specifically, Deep SVDD trains a model
by minimizing the volume of a hypersphere that encloses
data representations, Rot utilizes self-supervision to boost
the identification on near-distribution outliers, and CSI in-
troduces contrasitve learning into OOD problems to learn
better visual representations. Following previous studies
[10, 19, 41], the area under the receiver operating character-
istic curve (AUROC) is employed to evaluate OOD models.
A larger value of AUROC means better performance, and a
value of 50% means random guess.

For P600 rice data (results for G600 and M600 are in-
cluded in the supplementary material), we set 9 OOD ex-
periments with three kinds of data configurations (see Ta-
ble 13) where (Malis, SQ, 545) belong to “Thai Hom Mali
Rice”, (HF, WC, HN) share the similar price, and (JZ, SY)
are sampled from the same province. We obverse that each
OOD method performed moderate results on several data
combinations but all experimental results are less that 80%,
which means there are a large room for further exploration.

Table 13. OOD method performance on P600 rice data (X denotes
this group is in-distribution).

Method Malis SQ 545 HF WC HN JZ SY AUROC

Deep SVDD [36]
X X X 62.5%

X X X 46.5%
X X 62.7%

Rot [19]
X X X 61.1%

X X X 64.1%
X X 57.5%

CSI [41]
X X X 70.9%

X X X 50.8%
X X 77.3%

In addition, the identification of DU grains also can be
considered as OOD recognition. We conducted 12 OOD
experiments on P600 wheat and maize data (see Table 14,
G600 and M600 experiments are included in the supple-
mentary material), in which (F&S, MY, BP) or (FM, MY,
HD) are grouped together because that these kinds of DU
grains have deleterious effects on health. In these eval-

uations, Rot and CSI achieve the highest performance of
68.5% and 71.6% on the “deleterious effect” group of wheat
and maize respectively, and these performance are compa-
rable and prove that treating DU-grain recognition as an
OOD recognition is feasible and more suitable for apply-
ing in real-world applications.

Table 14. OOD method performance on P600 wheat and maize
data (X denotes this group is in-distribution).

Species Method Normal F&S SD MY AP BN BP AUROC

Wheat

Deep SVDD [36] X X X X 53.1%
X X X 56.0%

Rot [19] X X X X 66.4%
X X X 68.5%

CSI [41] X X X X 70.3%
X X X 60.2%

Species Method Normal FM SD MY AP BN HD AUROC

Maize

Deep SVDD [36] X X X X 69.2%
X X X 43.1%

Rot [19] X X X X 66.2%
X X X 67.8%

CSI [41] X X X X 60.5%
X X X 71.6%

5. Conclusions and Future Work
In our study, we conducted an in-depth analysis of GAI

and formulated GAI into three common computer vision
tasks: fine-grained recognition, domain adaptation and out-
of-distribution recognition. We created a publicly avail-
able large-scale grain cereal dataset: GrainSpace. For
data acquisition, we built three kinds of device prototypes
and established a comprehensive data processing proce-
dure. Then, we collected a total of 5.25 million grain ker-
nels images containing 4129k, 299k and 820k images of
wheat, maize and rice, respectively. The raw grain kernels
in GrainSpace were sampled from five countries and more
than 30 regions across four years. In addition, we devel-
oped a benchmark on GrainSpace with comprehensive ex-
perimental analysis. We observed substantial improvements
by introducing advanced computer vision techniques such
as semi-supervised learning and self-supervised learning.

The main challenge in GAI is to identify the minor dif-
ferences among different grain kernels. Due to the variety
and diversity of grain kernels, models should be generaliz-
able and adaptive for both existing data and unknown grain
kernels. On the one hand, the number of UD grains is far
lower than normal grains, which can be seen as a natural
long tailed classification problem [28]. In addition, in our
current work, the impurities, extra matters and foreign cere-
als are removed manually, which could be automated using
computer vision techniques like open-set detection [13] etc.
We hope that GrainSpace can stimulate and draw more at-
tention to the development of intelligent agriculture, and we
believe computer vision techniques can revolutionize GAI-
related applications.
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