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Abstract

Hyperbolic neural networks have been popular in the re-
cent past due to their ability to represent hierarchical data
sets effectively and efficiently. The challenge in develop-
ing these networks lies in the nonlinearity of the embed-
ding space namely, the Hyperbolic space. Hyperbolic space
is a homogeneous Riemannian manifold of the Lorentz
group which is a semi-Riemannian manifold, i.e. a mani-
fold equipped with an indefinite metric. Most existing meth-
ods (with some exceptions) use local linearization to de-
fine a variety of operations paralleling those used in tra-
ditional deep neural networks in Euclidean spaces. In this
paper, we present a novel fully hyperbolic neural network
which uses the concept of projections (embeddings) fol-
lowed by an intrinsic aggregation and a nonlinearity all
within the hyperbolic space. The novelty here lies in the
projection which is designed to project data on to a lower-
dimensional embedded hyperbolic space and hence leads
to a nested hyperbolic space representation independently
useful for dimensionality reduction. The main theoretical
contribution is that the proposed embedding is proved to
be isometric and equivariant under the Lorentz transforma-
tions, which are the natural isometric transformations in
hyperbolic spaces. This projection is computationally effi-
cient since it can be expressed by simple linear operations,
and, due to the aforementioned equivariance property, it al-
lows for weight sharing. The nested hyperbolic space rep-
resentation is the core component of our network and there-
fore, we first compare this representation – independent of
the network – with other dimensionality reduction methods
such as tangent PCA, principal geodesic analysis (PGA)
and HoroPCA. Based on this equivariant embedding, we
develop a novel fully hyperbolic graph convolutional neural
network architecture to learn the parameters of the projec-
tion. Finally, we present experiments demonstrating com-
parative performance of our network on several publicly
available data sets.

1. Introduction

Hyperbolic geometry is a centuries old field of non-
Euclidean geometry and has recently found its way into the
field of machine learning, in particular into deep learning in
the form of hyperbolic neural networks (HNNs) or hyper-
bolic graph convolutional networks (HGCNs) and recently
for dimensionality reduction of data embedded in the hy-
perbolic space. In this paper, we will discuss both prob-
lems namely, dimensionality reduction in hyperbolic spaces
and HNN architectures. In particular, we will present novel
techniques for both these problems. In the following, we
present literature review of the two above stated problems
and establish the motivation for our work. A word on ter-
minology, we will use the term hyperbolic neural network
and hyperbolic graph (convolutional) neural network syn-
onymously in the rest of the paper.

1.1. Dimensionality Reduction of Manifold-valued
Data

Dimensionality reduction is a fundamental problem in
machine learning with applications in computer vision and
many other fields of engineering and sciences. The sim-
plest and most popular method among these is the princi-
pal component analysis (PCA), which was proposed more
than a century ago (see [22] for a review and some recent
developments on PCA). PCA however is limited to data in
vector spaces. For data that are manifold-valued, princi-
pal geodesic analysis (PGA) was presented in [10], which
yields the projection of data onto principal geodesic sub-
manifolds passing through an intrinsic (Fréchet) mean (FM)
[11] of the data (assuming it exists). They find the geodesic
submanifold of a lower dimension that maximizes the pro-
jected variance and computationally, this was achieved via
linear approximation, i.e., applying PCA on the tangent
space anchored at the FM. This is sometimes referred to
as the tangent PCA (tPCA). This approximation however
requires the data to be clustered around the FM, otherwise
the tangent space approximation to the manifold leads to
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Figure 1. Projections of data from a 2D to 1D hyperbolic space
using different dimensionality reduction methods. The results are
visualized in the Poincaré disk. Original data (blue dots) lie in a
2D hyperbolic space and have a zero mean (origin of the Poincaré
disk). The HoroPCA direction (red dotted line) and the principal
geodesic obtained by tPCA (orange dashed line) and EPGA (pur-
ple dash-dotted line) fail to capture the main trend of the data since
they are restricted to learn a geodesic submanifold passing through
the FM. In contrast, our NH model (green solid line), captures the
data trend more accurately. The diamond markers on each line
represent the reconstructed data from each method. The recon-
struction errors for HoroPCA, tPCA, EPGA and the NH model in
this example are, 0.1708, 0.1202, 0.1638 and 0.0062 respectively.

inaccuracies. Subsequently, [42] presented the Exact PGA
(EPGA) algorithm, which does not use any linear approx-
imation. However, EPGA is computationally expensive as
it requires two non-linear optimizations steps per iteration
(projection to the geodesic submanifold and finding the new
geodesic direction such that the reconstruction error is min-
imized). Later, authors in [4] developed a version of EPGA
for constant sectional curvature manifolds, namely the hy-
persphere and the hyperbolic space, by deriving closed form
formulae for the projection. There are many variants of
PGA and we refer the reader to [1, 21, 48] for the details.
More recently, Barycentric subspace analysis (BSA) was
proposed in [36] which finds a more general parameteriza-
tion of a nested sequence of submanifolds via the minimiza-
tion of unexplained variance. Another useful dimensional-
ity reduction scheme is the Principal curves [18] and their
generalization to Riemannian manifolds [19] that are more
appropriate for certain applications.

A salient feature of PCA is that it yields nested lin-
ear subspaces, i.e., the reduced dimensional principal sub-
spaces form a nested hierarchy. This idea was exploited
in [23] where authors proposed the principal nested spheres
(PNS) by embedding an (n − 1)-sphere in to an n-sphere,
the embedding however is not necessarily isometric. Hence,
PNS is more general than PGA in that PNS does not have to
be geodesic. Similarly, for the manifold Pn of (n×n) sym-
metric positive definite (SPD) matrices, authors in [17] pro-

posed a geometry-aware dimensionality reduction by pro-
jecting data on Pn to Pm for some m ≪ n. More recently,
the idea of constructing a nested sequence of manifolds was
presented in [47] where authors unified and generalized the
nesting concept to general Riemannian homogeneous man-
ifolds, which form a large class of Riemannian manifolds,
including the hypersphere, Pn, the Grassmannian, Stiefel
manifold, Lie groups, and others. Although the general
framework in [47] seems straightforward and applicable to
hyperbolic spaces, many significantly important technical
aspects need to be addressed and derived in detail. In this
paper, we will present novel derivations suited for the hy-
perbolic spaces – a projection operator which is proved to
yield an isometric embedding, and a proof of equivariance
to isometries of the projection operator – which will facil-
itate the construction of nested hyperbolic spaces and the
hyperbolic neural network. Note that there are five models
of the hyperbolic space namely, the hyperboloid (Lorentz)
model, the Poincaré disk/ball model, the Poincaré half plane
model, the Klein model and the Jemisphere model [3]. All
these models are isometrically equivalent but some are bet-
ter suited than others depending on the application. We
choose the Lorentz model of the hyperbolic space with a
Lorentzian metric in our work. The choice of this model
and the associated metric over other models is motivated
by the properties of Riemannian optimization efficiency and
numerical stability afforded [7, 34].

Most recently, an elegant approach called HoroPCA was
proposed in [5], for dimensionality reduction in hyperbolic
spaces. In particular, the authors represented the hyperbolic
space using the Poincaré model and they proposed to gener-
alize the notion of direction and the coordinates in a given
direction using ideal points (points at infinity) and the Buse-
mann coordinates (defined using the Busemann function)
[2]. The levels sets of the Busemann function, called the
horospheres, resemble the hyperplanes (or affine subspaces)
in Euclidean spaces and hence the dimensionality reduction
is achieved by a projection that moves points along a horo-
sphere. The data is then projected to a geodesic hull of a
base point b and a number of ideal points p1, . . . , pK , which
is also a geodesic submanifold. This is the key difference be-
tween HoroPCA and our proposed method which leads to a
significant difference in performance. This is evident from
the toy example in Figure 1 which depicts the reduced di-
mensional representations obtained by our method in com-
parison to those from EPGA, HoroPCA, and tPCA. Note
that all of the other methods yield submanifold representa-
tions that do not capture the data trend accurately, unlike
ours. More comprehensive comparisons will be made in a
later section.

To briefly summarize, our first goal in this paper is to
present a nested hyperbolic space representation for dimen-
sionality reduction and then demonstrate via synthesized
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and real datasets, that it achieves a lower reconstruction er-
ror in comparison to competing methods.

1.2. Hyperbolic Neural Networks

Several researchers have demonstrated that the hyper-
bolic space is apt for modeling hierarchically organized
data, for example, graphs and trees [33, 38, 39]. Recently,
the formalism of Gyrovector spaces (an algebraic structure)
[44] was applied to the hyperbolic space to define basic op-
erations paralleling those in vector spaces and were used to
build a hyperbolic neural network (HNN) [13,41]. The Gy-
rovector space formalism facilitates performing Möbius ad-
ditions and subtractions in the Poincaré model of the hyper-
bolic space. HNNs have been successfully applied to word
embeddings [43] as well as image embeddings [24]. Ad-
ditionally, several existing deep network architectures have
been modified to suit hyperbolic embeddings of data, e.g.,
graph networks [6, 29], attention module [15], and varia-
tional auto-encoders [30, 35]. These hyperbolic networks
were shown to perform comparably or even better than their
euclidean counterparts.

Existing HNNs have achieved moderate to great suc-
cesses in multiple areas and shown great potential in solv-
ing complex problems. However, most of them use tan-
gent space approximations to facilitate the use of vector
space operations prevalent in existing neural network archi-
tectures. There are however some exceptions, for instance,
the authors in [8] developed what they call a Hyperbolic-
to-Hyperbolic network and the authors in [7] also devel-
oped a fully Hyperbolic network. They both considered
the use of Lorentz transformations on hyperbolic features
since the Lorentz transformation matrix acts transitively on
a hyperbolic space and thus preserves the global hyperbolic
structure. Each Lorentz transformation is a composition
of a Lorentz rotation and a rotation free Lorentz transfor-
mation called the Lorentz boost operation. Authors in [8]
only use Lorentz rotation for hyperbolic feature transfor-
mations while authors in [7] build a fully-connected layer
in hyperbolic space (called a hyperbolic linear layer) pa-
rameterized by an arbitrary weight matrix (not necessarily
invertible) which is applied to each data point in the hyper-
bolic space resulting in a mapping from a hyperbolic space
to itself. This procedure is ad hoc in the sense that it does
not use the intrinsic characterization of the hyperbolic space
as a homogeneous space with the isometry group being the
Lorentz group.

Lorentz transformations are however inappropriate for
defining projection operations (required for reducing the di-
mensionality) as they preserve the Lorentz model only when
there is no change in dimension. In other words, to find a
lower-dimensional hyperbolic space representation for data
embedded in a higher-dimensional hyperbolic space, one
cannot use Lorentz transformations directly. Hence, we pro-

pose to use an isometric embedding operation mentioned in
the previous subsection as the building block to design a
hyperbolic neural network. We will now briefly summarize
our proposed model and the contributions of our work.

1.3. Proposed Model and Contributions

Inspired by [23] and [47], we construct a nested rep-
resentation in a hyperbolic space to extract the hyperbolic
features. Such a nested (hierarchical) hyperbolic space rep-
resentation has the advantage that the data in reduced di-
mensions remains in a hyperbolic space. Hereafter, we re-
fer to these nested hyperbolic spaces as nested hyperboloids
(NHs). As a dimensionality reduction method in Rieman-
nian manifolds, the learned lower dimensional submanifold
in NH is not required to pass the FM unlike in PGA and
need not be a geodesic submanifold as in HoroPCA, PGA or
EPGA. In the experiments section, we will demonstrate that
this leads to much lower reconstruction error in comparison
to the aforementioned dimensionality reduction methods.

After defining the projection which leads to an embed-
ding within hyperbolic spaces of different dimensions, these
projections/embeddings are used to define a feature trans-
formation layer in the hyperbolic space. This layer is then
composed with a hyperbolic neighborhood aggregation op-
eration/layer and an appropriate non-linear operations in be-
tween namely, the tangent-ReLU, to define a novel nested
hyperbolic graph convolutional network (NHGCN) archi-
tecture.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the geometry of hyperbolic space.
In Section 3, we explicitly give the projection and embed-
ding to map data between hyperbolic spaces of different di-
mensions. We also present a novel hyperbolic graph con-
volutional neural network architecture based on these pro-
jections and the tangent-ReLU activation. In Section 4, we
first present the performance of the NH model as a dimen-
sionality reduction method and compare with other compet-
ing methods, including EPGA, tPCA and HoroPCA. Next,
we compare our NHGCN with other hyperbolic networks
in tackling the problems of link prediction and node clas-
sification on four graph datasets described and used in [6].
Finally, we draw conclusions in Section 5.

2. Preliminaries

In this section, we briefly review relevant concepts of hy-
perbolic geometry. In this paper, we will regard the hyper-
bolic space as a homogeneous Riemannian manifold of the
Lorentz group and present a few important geometric con-
cepts, including the geodesic distance and the exponential
map, in the hyperbolic space, which are used in our work.
The materials presented in this section can be found in most
textbooks on hyperbolic spaces, for example [3, 37].
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(a) Lorentz rotation (b) Lorentz boost

Figure 2. Illustration of two kinds of Lorentz transformation,
Lorentz rotation and Lorentz boost in a Lorentz model. They are
isometric operations of the Lorentz model.

2.1. Lorentzian Space and Hyperbolic Space

As mentioned in Section 1, there are several (isomet-
rically) equivalent models of a hyperbolic space, includ-
ing the Poincaré model, Klein model, the upper-half space
model, and the Jemisphere model [3]. We choose to use the
hyperboloid (Lorentz) model of the hyperbolic space in this
paper due to its numerical stability property which is very
useful for the optimization problem involved in the train-
ing and test phases. Our technique is however applicable
to all of the models due to the isometric equivalence of the
models.

The (n + 1)-dimensional Lorentzian space R1,n is the
Euclidean space Rn+1 equipped with a bilinear form

⟨x,y⟩L = −x0y0 + x1y1 + · · ·+ xnyn (1)

where x = [x0, x1, . . . , xn]
T ,y = [y0, y1, . . . , yn]

T ∈
Rn+1. This bilinear form is sometimes referred to as the
Lorentzian inner product although it is not positive-definite.
We denote the norm, called Lorentzian norm, induced by
the Lorentzian inner product by ∥x∥L =

√
⟨x,x⟩L. Note

that ∥x∥L is either positive, zero, or positive imaginary.
We consider the following submanifold of R1,n

Ln := {x = [x0, . . . , xn]
T ∈ Rn+1 : ∥x∥2L = −1, x0 > 0}

(2)
This is called the n-dimensional hyperboloid model of one
sheet of a hyperbolic space defined in Rn+1.

2.2. Lorentz Transformations

In the Lorentzian space, the linear isometries are called
the Lorentz transformation, i.e. the map ϕ : Rn+1 → Rn+1

is a Lorentz transformation if ⟨ϕ(x), ϕ(y)⟩L = ⟨x,y⟩L for
any x,y ∈ Rn+1. It is easy to see that all Lorentz trans-
formations form a group under composition, and this group
is denoted by O(1, n), called the Lorentz group. The ma-
trix representation of O(1, n) in Rn+1 is defined as follows.
Let Jn = diag(−1, In) where In is the n × n identity ma-
trix and diag(·) denotes a diagonal matrix. Then, O(1, n)
is defined as O(1, n) := {A ∈ GL(n + 1,R) : AJnA

T =

ATJnA = Jn}, where GL(n + 1,R) is the general linear
group of (n+1)× (n+1)-invertible matrices over R.There
are a few important subgroups of O(1, n): (i) the subgroup
O+(1, n) := {A ∈ O(1, n) : a11 > 0} is called the pos-
itive Lorentz group; (ii) the subgroup SO(1, n) := {A ∈
O(1, n) : det(A) = 1} is called the special Lorentz group;
(iii) the subgroup SO+(1, n) := {A ∈ SO(1, n) : a11 >
0} is called the positive special Lorentz group. Briefly
speaking, the special Lorentz group preserves the orienta-
tion, and the positive Lorentz group preserves the sign of
the first entry of x ∈ Ln.

2.3. Riemannian Geometry of Hyperbolic Space

A commonly used Riemannian metric for Ln ⊂ Rn+1

is the restriction of the Lorentz inner product to the tangent
space of Ln. Note that even though the Lorentz inner prod-
uct is not positive-definite, when restricted to the tangent
space of Ln, it is positive-definite. Hence, Ln is a Rieman-
nian manifold with constant negative sectional curvature.
Furthermore, the group of isometries of Ln is precisely
O+(1, n) and the group of orientation-preserving isome-
tries is SO+(1, n). We now state a few useful facts about
the group of isometries that are used in this paper and refer
the interested reader to [12] for details.

Fact 1. The positive special Lorentz group SO+(1, n) acts
transitively on Ln where the group action is defined as x 7→
Ax for x ∈ Ln and A ∈ SO+(1, n).

Fact 2. Let x = [1, 0, . . . , 0]T ∈ Ln. The isotropy sub-
group Gx is given by

Gx := {A ∈ SO+(1, n) : Ax = x}

=

{[
1 0
0 R

]
: R ∈ SO(n)

}
∼= SO(n)

(3)

where SO(n) is the group of n × n orthogonal matrices
with determinant 1.

Hence, the hyperbolic space is a homogeneous Rieman-
nian manifold and can be written as a quotient space, Ln =
SO+(1, n)/SO(n).

Fact 3 ( [31]). A Lorentz transformation A ∈ SO+(1, n)
can be decomposed using a polar decomposition and ex-
pressed as

A =

[
1 0
0 R

] [
c vT

v
√

In + vvT

]
(4)

where R ∈ SO(n), v ∈ Rn and c =
√

∥v∥2 + 1.

The first component in the decomposition is called a
Lorentz rotation and the second component a Lorentz boost.
See Figure 2 for example illustrations of the Lorentz rota-
tion and the Lorentz boost respectively.
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Figure 3. Illustration of NH model using the embedding ιm in
Eq. (9) of Lm into Lm+1. The m-dimensional nested hyperboloid
in Lm+1 is indeed the intersection of Lm+1 and an m-dimensional
hyperplane.

Fact 4. Every Lorentz transformation matrix A ∈
SO+(1, n) can be decomposed into

A =

[
1 0
0 P

] coshα sinhα 0
sinhα coshα 0

0 0 In−1

[ 1 0
0 QT

]
(5)

where P,Q ∈ SO(n), α ∈ R, In−1 is the (n−1)× (n−1)
identity matrix.

The matrix in the middle is the Lorentz boost along the
first coordinate axis. This decomposition will be very useful
in the optimization problem stated in Section 3.3, equation
(14).

We now conclude this section by presenting the ex-
plicit closed form formulae for the exponential map and the
geodesic distance. For any x ∈ Ln and v ∈ TpLn (the tan-
gent space of Ln at x), the exponential map at x is given
by

Expx(v) = cosh(∥v∥L)x+ sinh(∥v∥L)v/∥v∥L. (6)

Since Ln is a negatively curved Riemannian manifold, its
exponential map is invertible and the inverse of the expo-
nential map, also called the Log map, is given by

Logx(y) =
θ

sinh(θ)
(y − cosh(θ)x) (7)

where x,y ∈ Ln and θ is the geodesic distance between x
and y given by θ = dL(x,y) = cosh−1(−⟨x,y⟩L).

3. Nested Hyperbolic Spaces and Networks
In this section, we first present the construction of nested

hyperboloids (NHs); an illustration of the NHs are given
in Figure 3. We also prove that the proposed NHs possess
several nice properties, including the isometry property and
the equivariance under the Lorentz transformations. Then
we use the NH representations to design a novel graph con-
volutional network architecture, called Nested Hyperbolic
Graph Convolutional Network (NHGCN).

3.1. The Nested Hyperboloid Representation

The key steps to the development of the NHs are the
embedding of Lm into Ln for m < n and the projection
from Ln to Lm. The principle is to define an embedding
of the corresponding groups of isometries, SO+(1,m) and
SO+(1, n).

First, we consider the embedding ι̃m : SO+(1,m) →
SO+(1,m+ 1) defined by

ι̃m(O) = adapted-GS
(
Λ

[
O aT

b c

])
(8)

where O ∈ SO+(1,m), a, b ∈ Rm+1, c ̸= aTO−1b,
and Λ ∈ SO+(1,m + 1). The function adapted-GS(·) is
an adaptation of the standard Gram-Schmidt process to or-
thonormalize vectors with respect to the Lorentz inner prod-
uct defined earlier.

The Riemannian submersion (see [20] for the definition
of a Riemannian submersion) π : SO+(1,m) → Lm is
given by π(O) = O1 where O ∈ SO+(1,m) and O1 is
the first column of O. Therefore, the induced embedding
ιm : Lm → Lm+1 is

ιm(x) = Λ

[
cosh(r)x
sinh(r)

]
= cosh(r)Λ̃x+ sinh(r)v (9)

where r ∈ R, Λ = [Λ̃ v] ∈ SO+(1,m + 1), Λ̃ is the
first m + 1 columns of Λ, v is the last column of Λ. This
class of embeddings is quite general as it includes isometric
embeddings as special cases.

Proposition 1. The embedding ιm : Lm → Lm+1 is iso-
metric when r = 0.

Proof. It follows directly from the definitions of the Lorentz
transformation and the geodesic distance on Lm.

Furthermore, the embedding (9) is equivariant under
Lorentz transformations.

Theorem 1. The embedding ιm : Lm → Lm+1 is equiv-
ariant under Lorentz transformations of SO+(1,m), i.e.,
ιm(Rx) = ΨΛ(ι̃m(R))ιm(x) where Ψg(h) = ghg−1.

Proof. For x ∈ Lm and R ∈ SO+(1,m),

ιm(Rx) = Λ

[
cosh(r)Rx
sinh(r)

]
= Λ

[
R 0
0 1

] [
cosh(r)x
sinh(r)

]
= Λ

[
R 0
0 1

]
Λ−1Λ

[
cosh(r)x
sinh(r)

]
= ΨΛ(ι̃m(R))ιm(x).
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The projection πm+1 : Lm+1 → Lm corresponding to
ιm is given by,

πm+1(x) =
1

cosh r
JmΛ̃

T
Jm+1x

=
JmΛ̃

T
Jm+1x

∥JmΛ̃
T
Jm+1x∥L

(10)

for x ∈ Lm+1. Hence, the reconstructed point x̂ ∈ Lm+1

of x ∈ Lm+1 is

x̂ = cosh(r)Λ
JmΛ̃

T
Jm+1x

∥JmΛ̃
T
Jm+1x∥L

+ sinh(r)v. (11)

The unknowns Λ = [Λ̃ v] and r can then be obtained by
minimizing the reconstruction error

L(Λ, r) =
1

N

N∑
i=1

(dL(xi, x̂i))
2
. (12)

The projection of x ∈ Ln into Lm for n > m can be
obtained via the composition π := πm+1 ◦ · · · ◦ πn

π(x) = Jm

(
n∏

i=m+1

1

cosh(ri)
Λ̃i

)T

Jnx

=
JmMTJnx

∥JmMTJnx∥L

(13)

where M =
∏n

i=m+1 Λ̃i ∈ R(n+1)×(m+1).

3.2. Nested Hyperbolic Graph Convolutional Net-
work (NHGCN)

The Hyperbolic Graph Convolutional Network (HGCN)
proposed in [6] is a generalization of Euclidean Graph Net-
work to a hyperbolic space. There are three different lay-
ers in HGCN: feature transformation, neighborhood ag-
gregation and non-linear activation. We use our NH rep-
resentation to define a hyperbolic feature transformation,
the weighted centroid w.r.t the squared Lorentzian distance
to define the neighborhood aggregation and use a tangent
ReLU activation. This leads to a novel HGCN architecture.
Figure 4 depicts the HGCN architecture. Each of the three
distinct layers are described in detail below.

Hyperbolic Feature Transformation: Given x ∈ Ln,
the hyperbolic feature transformation is defined using (13)
as follows

y =
Wx

∥Wx∥L
s.t. WJnW

T = Jm (14)

where W ∈ R(m+1)×(n+1). It is easy to prove that y ∈
Lm.

Figure 4. The HGCN Architecture

At the l-th layer, the inputs are the hyperbolic represen-
tation xl−1

i from the previous layer and the feature transfor-
mation matrix is W l. The intermediate hyperbolic repre-
sentation of i-th node is computed as follows

xl
i =

W lxl−1
i

∥W lxl−1
i ∥L

s.t. W lJnl−1
W lT = Jnl

(15)

Hyperbolic Neighborhood Aggregation: In GCNs, the
neighborhood aggregation is used to combine neighboring
features by computing the weighted centroid of these fea-
tures. The weighted centroid in hyperbolic space of a point
set {xi}i=1 ∈ Ln is obtained using the weighted Fréchet
mean. However, it does not have closed form expression in
hyperbolic space. We use hyperbolic neighborhood aggre-
gation proposed in [7, 49], where aggregated representation
for a node xl

i at l-th layer is the weighted centroid µl
i of its

neighboring nodes {xl
j}

p
j=1 ∈ Lnl w.r.t squared Lorentzian

distance, namely

µl
i = arg min

µl∈Lnl

p∑
j=1

νljd
2
L(x

l
j ,µ

l
i) (16)

where νlj is the weight for xl
j and d2L(x,y) = −1−⟨x,y⟩L

is the squared Lorentzian distance [37]. Authors in [27]
proved that this problem has closed form solution given by,

µl
i =

∑p
j=1 ν

l
jx

l
j

|∥
∑p

j=1 ν
l
jx

l
j∥L|

. (17)

Hyperbolic Nonlinear Activation: A nonlinear activa-
tion is required in our network since the feature transform is
a linear operation. We choose to apply tangent ReLU to pre-
vents our multi-layer network from collapsing into a single
layer network. The tangent ReLU in the hyperbolic space is
defined as,

σ(xl
i) = Exp0(ReLU(Log0(x

l
i))). (18)

Here 0 = [1, 0, . . . , 0]T ∈ Lnl (correspond to the origin in
the Poincaré model) is chosen as the base point to define the
anchor point in the tangent ReLU.
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3.3. Optimization

In this section, we will explain how to update parameters
in network, i.e. transformation matrix W in (14). Instead of
updating W directly, we find an alternative way by decom-
posing W into three matrices using (5). More specifically,
we write

W =

[
1 0

0 P̃

] coshα sinhα 0
sinhα coshα 0

0 0 In−1

[ 1 0
0 QT

]

where Q ∈ SO(n), α ∈ R and P̃ is the first m rows of a
P ∈ SO(n) which is from a Stiefel manifold [9]. We can
now update these factors sequentially in the optimization
(see supplement material for details).

4. Experiments

In this section, we will first evaluate the NH model as a
dimensionality reduction method compared with HoroPCA,
tPCA and EPGA. We show that the proposed NH model
outperforms all of these method on both synthetic data and
real data in terms of reconstruction error. Then, we apply
the proposed NHGCN to the problems of link prediction
and node classification on four graph data sets described
in [6]. Our method yields results that are better or compara-
ble to existing hyperbolic graph networks. The implemen-
tations1 are based on Pymanopt [26] and GeoTorch [28] for
dimensionality reduction and NHGCN respectively.

4.1. Dimensionality Reduction in Hyperbolic Space

First we present synthetic data experiments followed by
experiments on real data.

Synthetic Experiments As a dimensionality reduction
method, we compare the NH model with three other com-
peting methods: tPCA, EPGA, and HoroPCA. Note that the
first two are applicable on any Riemannian manifolds and
HoroPCA is proposed specifically for hyperbolic spaces as
is our NH model. The major difference between NH and the
aforementioned methods is that NH does not require the fit-
ted submanifold to pass through the FM whereas the others
do. This extra requirement can sometimes lead to failure in
capturing the data trend as shown in Figure 5.

Apart from visual inspection, we use the reconstruction
error as a measure of the goodness of fit. To see how NH
performs in comparison to others under different levels of
noise, we generate synthetic data from the wrapped nor-
mal distribution [30] on L10 with variance ranging from
0.2 to 2. Then we apply different dimensionality reduction
methods to reduce the dimension down to 2. The result is

1https://github.com/cvgmi/Nested-Hyperbolic-DimReduc-and-HNN.

Figure 5. Synthetic data in hyperbolic space along with principal
geodesic obtained using tPCA and NH. NH captures the data trend
better as it is not restricted to pass through the FM.

Figure 6. Reconstruction errors for L10 to L2. The data is gener-
ated from wrapped normal distributions [30] with variances rang-
ing from 0.2 to 2.

shown in Figure 6. The results for EPGA and NH are essen-
tially the same since, for wrapped normal distribution, the
data is distributed symmetrically around the FM and hence
the assumption of submanifold passing through the FM is
valid here. Even in this case, we observe a significant im-
provement of NH over tPCA and HoroPCA especially in the
large variance scenario. The main reasons are that (i) tPCA
uses local linearization which would lead to inaccuracies
when the data is not tightly clustered around the FM and
(ii) the HoroPCA seeks to maximize the projected variance
on the submanifold, which, as is well known, not equiva-
lent to minimizing the reconstruction error. There is a clear
justification for the choice of using reconstruction error as
the objective function since, we want a good approximation
of the original data with the lower-dimensional representa-
tion. For additional experimental results, please see supple-
mentary material.

Hyperbolic Embeddings of Trees For real data exper-
iments, we consider reducing the dimensionality of trees
that are embedded into a hyperbolic space. We validate our
method on the four datasets described in [38] including (i)
a fully balanced tree, (ii) a phylogenetic tree, (iii) a bio-
logical graph comprising of diseases’ relationships, and (iv)
a graph of Computer Science (CS) Ph.D. advisor-advisee
relationships. We also create two additional datasets by re-
moving some edges in the balanced tree dataset. We ap-
ply the method in [14] to embed the tree datasets into a
Poincaré ball of dimension 10 and then apply our NH model
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Datasets balancedtree unbalanced1 unbalanced2 phylo tree diseasome ca-CSphd
tPCA 5.75 (1.5) 4.98 (0.001) 4.86 (0.001) 121.19 (0.001) 21.53 (0.004) 71.67 (0.4)
HoroPCA 7.80 ±0.06 (2.5) 6.51±0.28 (2.4) 7.35±0.61 (2.3) 108.62±9.20 (78) 26.94±0.99 (136) 87.99±4.69 (500)
EPGA 4.01±0.76 (2.2) 3.23±0.08 (1.8) 3.33±0.46 (1.9) 25.93±0.99 (2.6) 9.72±0.36 (3.0) 22.98±0.23 (5.9)
NH(Ours) 3.35±0.05 (4.1) 3.10±0.01 (3.5) 3.22±0.06 (2.5) 24.11±0.68 (25) 9.18±0.10 (31) 22.68±0.40 (87)

Table 1. Reconstruction errors from L10 to L2. The numbers depicted are: mean error ± standard dev. of error. Numbers in bold indicate
the method with the smallest errors while underlined numbers indicate the second best results. Numbers in parentheses indicate the running
time in seconds on a Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz.

Disease Airport PubMed Cora
Task LP NC LP NC LP NC LP NC
GCN [25] 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2 90.4±0.2 81.3±0.3
GAT [45] 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3 93.7±0.1 83.0±0.7
SAGE [16] 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2 85.5±0.6 77.9±2.4
SGC [46] 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0 91.5±0.1 81.0±0.1
HGCN [6] 90.8±0.3 74.5±0.9 96.4±0.1 90.6±0.2 96.3±0.0 80.3±0.3 92.9±0.1 79.9±0.2
H2H-GCN [8] 97.0±0.3 88.6±1.7 96.4±0.1 89.3±0.5 96.9±0.0 79.9±0.5 95.0±0.0 82.8±0.4
HYBONET [7] 96.3±0.3 94.5±0.8 97.0±0.2 92.5±0.9 96.4±0.1 77.9±1.0 94.3±0.3 81.3±0.9
LGCN [49] 96.6±0.6 84.4±0.8 - - 96.6±0.1 78.6±0.7 93.6±0.4 83.3±0.7
NHGCN(Ours) 92.8±0.2 91.7±0.7 97.2±0.3 92.4±0.7 96.9±0.1 80.5±0.0 93.6±0.2 80.3±0.8

Table 2. Area under the ROC test results (%) for LP, and F1 scores (%) for NC. Results of other networks are obtained from the original
papers, and in [49], the authors did not test their network on the Airport dataset.

along with other competing methods to reduce the dimen-
sion down to 2. The results are reported in Table 1. In
Table 1, we report the means, the standard deviations of the
reconstruction errors and the running time in seconds for
EPGA, HoroPCA and NH respectively. From the table, it
is evident that our method performs the best and is better
than HoroPCA, the SOTA. Specifically, HoroPCA is worse
than the tPCA and EPGA in terms of reconstruction error,
though it yields higher explained variance as shown in [5].
The reason might be that HoroPCA seeks projections that
maximize the explained variance which is not equivalent
to minimizing the reconstruction error in the Riemannian
manifold case.

4.2. Nested Hyperbolic Graph Networks

To evaluate the power of the proposed NHGCN, we ap-
ply it to problems of link prediction (LP) and node clas-
sification (NC). We use four public domain datasets: Dis-
ease [6], Airport [6], PubMed [32], and Cora [40]. We
compare our NHGCN with many other graph neural net-
works and the results are reported in Table 2. For the LP,
we report the means and the standard deviation of the area
under the receiver operating characteristic (ROC) curve on
the test data; for the problem of NC, we report the mean and
the standard deviation of the F1 scores. As evident from
the table, our results are comparable to the state-of-the-art
(SOTA) and in three cases better. A noteworthy point about
our model is that all the operations used in the model are
intrinsic to Ln unlike the others in Table 2. Intrinsic op-
erations by definition should yield better accuracy. Thus,
we attribute the lower accuracy of our model in Table 2 to
the sub-optimal optimization approach used here. This op-

timization problem is on a semi-Riemannian manifold, an
open problem that will be addressed in future work.

5. Conclusion

In this paper, we presented a novel dimensionality re-
duction technique in hyperbolic spaces called the NH rep-
resentation. NH representation was constructed using a pro-
jection operator that was shown to yield isometric embed-
dings and further was shown to be equivariant to the isom-
etry group admitted by the hyperbolic space. Further, we
empirically showed that it yields lower reconstruction error
compared to the state-of-the-art (HorroPCA, EPGA, tPCA).
Using the NH representation, we developed a novel fully
HGCN and tested it on several data sets. Our NHGCN was
shown to achieve comparable to superior performance w.r.t.
several competing methods.
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resentations with poincaré variational auto-encoders. Ad-
vances in Neural Information Processing Systems, pages
12544–12555, 2019. 3, 7

[31] Valter Moretti. The interplay of the polar decomposi-
tion theorem and the lorentz group. arXiv preprint math-
ph/0211047, 2002. 4

[32] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and
UMD EDU. Query-driven active surveying for collective
classification. In 10th International Workshop on Mining and
Learning with Graphs, volume 8, page 1, 2012. 8

[33] Maximillian Nickel and Douwe Kiela. Poincaré embeddings
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