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Abstract

With the appearance of super high-resolution (e.g.,
gigapixel-level) images, performing efficient object detec-
tion on such images becomes an important issue. Most ex-
isting works for efficient object detection on high-resolution
images focus on generating local patches where objects may
exist, and then every patch is detected independently. How-
ever, when the image resolution reaches gigapixel-level,
they will suffer from a huge time cost for detecting numerous
patches. Different from them, we devise a novel patch ar-
rangement framework for fast object detection on gigapixel-
level images. Under this framework, a Patch Arrangement
Network (PAN) is proposed to accelerate the detection by
determining which patches could be packed together into a
compact canvas. Specifically, PAN consists of (1) a Patch
Filter Module (PFM) (2) a Patch Packing Module (PPM).
PFM filters patch candidates by learning to select patches
between two granularities. Subsequently, from the remain-
ing patches, PPM determines how to pack these patches to-
gether into a smaller number of canvases. Meanwhile, it
generates an ideal layout of patches on canvas. These can-
vases are fed to the detector to get final results. Experiments
show that our method could improve the inference speed on
gigapixel-level images by 5× while maintaining great per-
formance.

1. Introduction

With the widespread use of super high-resolution cam-
eras, image resolution has increased rapidly and recently
reached the gigapixel level (e.g., 25,000 × 14,000 pix-
els) [20]. Therefore, it’s a great challenge to analyze such
images efficiently. Recently, some object detection meth-
ods [8, 23] have been proposed for efficient high-resolution
object detection. As shown in Figure 1a, in order to speed-
up object detection, they focused on generating local re-
gions (termed as ‘patch’) that may contain object candi-
dates from high-resolution images. Then detection is only
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Figure 1. Comparison between pipelines. (a) Previous: it first
generates patches where object candidates exist, then detection is
conducted on all patches separately. (b) Ours: based on a multi-
grained patch tree, certain patches are selected and packed together
into compact canvases with a smaller number. Detection is only
conducted on canvases.

performed on these resized patches instead of the whole im-
age to achieve the speed-up. Therefore, their time cost is
dependent on the number of patches. However, when be-
ing applied to super high-resolution images (e.g., gigapixel-
level images), these methods may require numerous patches
to ensure performance. Thus, they may still suffer huge
time costs on gigapixel-level images.

In gigapixel-level images, we observed that it is neither
necessary nor ideal to perform detection separately on each
generated patch. As shown in Figure 1b, some patches can
be packed together to form a new and compact one (called
‘canvas’). In this way, processing a smaller number of
canvases rather than numerous patches could significantly
speed up the detection.

Based on the above intuition, we propose a novel frame-
work for object detection on gigapixel-level images. Un-
der this detection framework, a Patch Arrangement Net-
work (PAN) arranges patches into compact canvases in a
local-to-global view, into compact canvases for final de-
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tection. Thereby it significantly speeds up object detec-
tion in gigapixel-level images while maintaining ideal per-
formance. First, we build up a multi-grained patch tree
for the input gigapixel-level image, which consists of fine-
grained patches (leaf layer nodes) and their corresponding
coarser-grained patches (middle layer nodes). To embed
information of patches and explore the relationship among
them, an LSTM-based tree structure encoder is applied. The
subsequent arrangement is performed based on the multi-
grained patch candidates in this tree. Second, we propose a
Patch Filter Module (PFM), which learns an adaptive patch
selection between two granularities, i.e, it arranges some
neighboring fine-grained patches into their corresponding
coarser one. In this way, detection can be accelerated by re-
placing some patch candidates with fewer coarser patches.
Third, we further develop a Patch Packing Module (PPM).
It determines how to pack all remaining patches together to
form a smaller number of canvases, and generates a com-
pact layout of packed patches in the canvas. PFM performs
arrangement over neighboring patches (local view) while
PPM takes all the patches into consideration for arrange-
ment (global view). Finally, the whole framework is trained
jointly with policy-based reinforcement learning.

Note that our theoretical speed-up ratio is controllable by
setting the maximum amount of patches that can be packed
in each canvas. We evaluate our approach on the gigapixel-
level PANDA [20] dataset and a wide range of detectors.
PAN maintains ideal detection performance while improv-
ing the inference speed by 5×. The main contributions of
our work are three-fold:

• We devise a novel framework for efficient object detec-
tion on gigapixel-level images, which adaptively packs
patches into a compact canvas and generates an ideal
layout for selected patches in this canvas.

• Under this framework, we propose a novel multi-
grained patch tree to explore the relationship among
patches. Based on this tree, a patch filter module and
patch packing module are proposed to arrange patch
candidates in a local and global view, respectively.

• Extensive experiments show that PAN can speed up
the inference speed of detection on gigapixel images
by 5× while maintaining high detection performance.

2. Related Work
Object detection on High-resolution Images With the
wide application of high-resolution (HR) cameras, there has
been an increasing demand for performing object detec-
tion on HR images. Typically, the aerial and remote sens-
ing images own relatively higher resolutions. For example,
images in VisDrone [24] dataset can reach 2,000×1,500
pixels. Recently, PANDA [20] is introduced, which is

the first gigapixel-level (25,000×14,000) human-centric
video&image dataset. It further expands the frontiers of
high-resolution image analysis [10, 11] and remains a great
challenge for speeding up object detection on such large im-
ages.

A major line of accelerating object detection focuses
on devising efficient network architecture (e.g., Faster R-
CNN [15], YOLO [14], and SSD [12]). However, most of
them are developed on general images like MSCOCO. Di-
rectly applying them to HR images may still cause a huge
time cost. Meanwhile, specific approaches have not been
well-studied for HR images before.

For this reason, recently, some works have been pro-
posed to speed up object detection on relatively HR images.
[4] proposes an image-level solution, which adaptively se-
lects a resolution for each input image. It’s acknowledged
that we can only conduct necessary computations on some
partial regions instead of the whole HR image. Based on
this intuition, most existing works focus on finding local
spatial patches where objects may exist. [16] regards the
detected boxes obtained on a low resolution as patches and
performs final detection on these patches at a refined reso-
lution. Similarly, CRENet [21] clusters the coarse detection
results to form the patches. ClusDet [23] follows the idea
of RPN [15] and employs a neural network to estimate ac-
curate patches. AutoFocus [13] and GLSAN [5] generate
patches based on the image features. DMNet [8] obtains
patches with the guidance of density maps. Besides, rein-
forcement learning (RL) has also been adopted to find the
valuable patches [6, 18]. Nevertheless, the above methods
usually require more patches to ensure the performance as
the image resolution increases. When the image resolution
reaches gigapixel-level, the number of patches will be nu-
merous (may exceed 12,000). Therefore, their correspond-
ing time costs are still unbearable in real-world applications.

3. Proposed Method

Figure 2a illustrates an overview of our framework. In
the following sections, we first describe the construction of
our multi-grained patch tree. Based on this tree, we elab-
orate the main modules involved in our approach: Patch
Filter Module (PFM) and Patch Packing Module (PPM). Fi-
nally, we describe how to optimize our framework.

3.1. Patch Tree Generation

To learn how to arrange patches originated from the same
high-resolution image, we argue that it is critical to repre-
sent and learn their intrinsic relationship. Instead of using
each patch separately, we fully explore their intrinsic rela-
tionships by first constructing a multi-grained patch tree.
Initial patch generation. Following CRENet [21], we
first obtain initial patches based on clustering. Specifically,
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Figure 2. (a) The architecture of the two-stage patch arrangement module. (b) Joint training strategy. The patch arrangement policy is
divided into two sub-policies: patch filter policy(blue) and patch packing policy(green). The different rewards are given after each policy
finishing.

mean shift [3] is adopted to cluster the object boxes accord-
ing to their positions, and then we merge these clustered
boxes to generate patches. During training, we directly use
the ground-truth boxes for clustering. As for inference, a
coarse detector is applied to the down-scaled input images
to get rough detection results for clustering.
Multi-grained patch tree. Based on initial patches, we
build a multi-grained patch tree G = (V,E) from leaves
to root as illustrated in Figure 3). First, the initial patches
form leaf nodes in the patch tree; they are regarded as fine-
grained patches. Second, we cluster these leaf patches by
mean shift [3] to obtain new coarse-grained patches in the
middle layer of tree. Finally, the root node is represented by
the complete image. It is connected with all nodes in Vmid.
In this way, the spatial inclusion relationship among multi-
grained patches is reflected by the parent-children relation-
ship between nodes in the tree. The nodes set V is split into
leaf nodes set Vleaf and middle nodes set Vmid. Each node
vi ∈ V corresponds to a patch, node vi and vj are connected
when patch vi covers patch vj spatially. All patch nodes in
Vleaf and Vmid constitute the patch candidates {vi}Ni=1 for
the following arrangement, where N = |Vleaf|+ |Vmid|.

3.2. Tree Structure Encoder

To explore relationships among patch nodes in the tree,
we introduce a novel tree structure encoder to embed (1)
object information of each patch node, and (2) the inter-
and intra-layer relationship among patch nodes in the tree.

Specifically, we first represent each patch node vi by
vi = (xi, yi, wi, hi, ri, ai, oi, ni), where xi and yi are
the center coordinates of the patch, wi, hi, ri represent its
width, height, and aspect ratio, respectively. ai is area of
this patch. oi, ni denotes the average object area in this
patch, and number of objects in the patch, respectively. We
can estimate oi and ni with the coarse detection results

(used in the initial patch generation). Next, this 8-d fea-
ture is embedded to a high-dimensional representation by a
learnable fully-connected layer.

To explore relationships among patch nodes in the
tree, we apply a LSTM-based model consisting of Tree-
LSTM [17] and Chain-LSTM (standard LSTM).

Firstly, a Child-Sum Tree-LSTM [17] is leveraged to
encode the inter-layer relationship in the tree. Similar to
standard LSTM, each Tree-LSTM unit (indexed by j) has
its hidden state hj . Under the Child-Sum style, Tree-LSTM
conditions hj on the sum of its child hidden states:

h̃j =
∑

k∈C(j)

hk (1)

where C(j) denotes the set of children of node vj . In this
way, information across different layers in the tree could be
well aggregated in a bottom-up manner (indicated by the
solid line in Figure 3).

To further learn the intra-layer relationship, we first un-
fold the hidden states of Tree-LSTM in a chain-like style.
For flexible implementation, we construct the nodes chain
in the pre-order traversal manner (indicated by the dotted
line in Fig. 3). Then, the unfolded hidden states are sequen-
tially fed into the Chain-LSTM.

The overall tree structure encoder can be formulated as:

zi = LSTMChain(LSTMTree(FC(vi))) (2)

where zi is the encoded representation of patch vi.

3.3. Patch Filter Module

In the multi-grained patch tree, one coarse-grained patch
covers its corresponding fine-grained patches spatially (as
shown in Figure 3). Intuitively, we can only leave the
coarse-grained patches to significantly reduce the number
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Figure 3. An example of multi-grained patch tree and the en-
coding data flow. The solid line shows the data flow of Tree-
LSTM. The dashed line shows the data flow of Chain-LSTM.

Figure 4. The mechanism of filter decoder. The decoder takes
the output of tree structure encoder as input and points to a
specific patch on the tree at each time step.

of patch candidates for detection. However, considering the
variance in object scale, not all objects can be well detected
at a coarser granularity. Based on this motivation, we intro-
duce the patch filter module (PFM), which learns to adap-
tively select patch candidates between two granularities (as
shown at the top of Figure 2a). We formulate such process
as a tree-to-set problem. Since the tree is well-encoded, we
apply a filter decoder to select patches from the tree.
Filter Decoder Specifically, the filter module aims to gen-
erate a subset S = {vj}Mi=0 from the patch nodes candi-
dates {vi}Ni=1, where |S| = M<N . The filter decoder is
constructed by a standard LSTM. As illustrated in Fig. 4,
at every time step j, the filter decoder points to a specific
patch node on the input tree (as illustrated in Fig.2). Then
the pointed node is used as the input of the j + 1 step. For
implementation, we adopt the point mechanism proposed in
PointerNet [19], which empowers the module to point to a
specific node in the tree. Besides, to avoid duplicated selec-
tion, we introduce a mutually excluded mechanism between
fine-grained and corresponding coarse-grained patches. For
example, in Figure 4, if node 1 is selected, its corresponding
fine-grained patch nodes 2&3 will be masked. Vice versa,
node 1 will be masked if either node 2 or 3 is selected.

3.4. Patch Packing Module

Given remaining patches, the patch packing module
(PPM) aims to pack certain patches into canvases and ini-
tialize the layout of patches in the canvas. Different from
PFM, which focuses on arranging patches in a local and
neighboring view, the PPM performs patch arrangement at
the global view, i.e., all patches are considered during pack-
ing regardless of their positions in the whole image.

Specifically, given the output patch node set S =
{vj}Mj=0 of PFM, we firstly re-organize it to a new patch
tree Gs of two layers. As shown in the Figure 2a, the root
node represents the whole image in a global context while
the patch node set comprises of nodes of the leaf layer. We
then re-use the earlier tree structure encoder used in PPM to

fully utilize the learned knowledge of the tree structure.
Packing Decoder. The packing decoder works by solving
a tree-to-sequence problem: it receives the encoded tree as
input, then outputs a sequence that represents the order of
packing patches. Following the order, patches are packed
into one canvas in a sequential manner. The network struc-
ture of packing decoder is similar to the filter decoder, point
mechanism is also adopted to point to a specific node in the
input tree at every step.
Layout Generation During packing, the decoder also ini-
tializes a layout of patches in canvas. Specifically, a greedy
algorithm is employed. Every patch would first occupy the
bottom space of the canvas. Then, we will create a new can-
vas for subsequent patches when the space is insufficient for
placing the next patch. The packing process stops when all
patches have been placed into canvases. It is worth men-
tioning that our theoretical speed-up ratio is controllable by
setting maximum capacity of each canvas.

3.5. Overall Optimization

RL-based Joint Optimization Intuitively, given an input
tree, either filter decoder or packing decoder point to one
node at each time step. Take patch filter module as an ex-
ample, it factorizes the probability of generating set p(S|G)
by a chain rule:

p(S|G) =

m∏
i=1

p(S(i)|S(< i), G) (3)

where S(< i) denotes patches that have been selected be-
fore the i-th time step. We aim to learn the parameters of
the policy p(S|G) to assign high probabilities to the set that
can balance the detection speed and accuracy. Inspired by
the success of Reinforcement Learning (RL) in solving neu-
ral combination problems [1], we adopt policy-based rein-
forcement learning to optimize the two main modules of our
framework: PFM and PPM.

First, for PFM and PPM, we design two distinct rewards
Rfilter and Rpack to guide their learning process. Specifically,
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Rfilter considers the number of filtered patches, which is de-
fined as

Rfilter = 1− |S| − |Vmid|
|Vleaf| − |Vmid|

(4)

where | · | denotes the size of a node set. It encourages
the PFM to select coarser patches to replace fine-grained
patches covered by it. Note that since PFM outputs a set,
the Rfilter is designed to be order-irrelevant to fit the learning
process. As for Rpack, we utilize the detection performance
as its guidance:

Rpack = APdetector (5)

Since the patch filter results would affect the policy of
patch packing, we use the accumulate reward following the
policy to guide the policy. The training objectived of patch
filter policy can be updated by:

Rfilter = λRfilter +Rpack (6)

where the weight factor λ is utilize to balance the detection
speed and performance during optimization.

Succinctly, the training objective of PFM is defined by
the objective:

J(θ|G) = ES∼pθ(.|G)
R(S|G) (7)

where θ denotes the parameters of PFM. We adopt policy
gradient and stochastic gradient descent for optimization.
Following the well-known REINFORCE algorithm [22],
the above gradient can be formulated as:

∇θJ(θ|G) = ES∼pθ(.|G)
[(R(S|G)− b(G))∇θ log pθ(S|G)]

(8)
where b(S) denotes a baseline value irrelevant with S – it
is used to reduce the variance of the gradients. We draw
B samples G1, G2, ..., GB as a batch. According to Monte
Carlo sampling, the gradient in Equation (8) can be approx-
imated as follows:

∇θJ(θ) ≈
1

B

B∑
i=1

(R(Si|Gi)− b(Gi))∇θ log pθ(Si|Gi) (9)

We use the mean of the batch reward as the baseline value
and update it progressively during training. Meanwhile,
PPM is optimized in a similar way.

4. Experimental Settings
4.1. Dataset and Evaluation Metrics

We conduct experiments on the public detection bench-
mark PANDA [20] to evaluate our method. PANDA [20]
is a gigapixel-level human centric dataset. It provides 18
scenarios (13 for training, 5 for testing) and each scenario
contains about 30 images. The image resolution is about

Method #Pass AP50 FPSTotal Small Middle Large

DS+SW(FR) [20] - - 0.190 0.552 0.744 0.07
DS+SW(CR) [20] - - 0.227 0.579 0.765 0.05
DS+SW(RN) [20] - - 0.221 0.561 0.740 0.1

ClusDet* [23] 7,871 0.718 0.219 0.696 0.782 0.12
DMNet* [6] 1,934 0.540 0.119 0.371 0.714 0.51

DS+SW(FR)* [20] 13,620 0.705 0.203 0.712 0.760 0.07
PAN (Ours) (4×) 3,671 0.715 0.256 0.719 0.768 0.23
PAN (Ours) (6×) 2,565 0.702 0.216 0.700 0.763 0.37

ClusDet+PAN (4×) 3,683 0.713 0.262 0.715 0.767 0.23

Table 1. Comparison with SOTA on PANDA dataset. FR, CR, and
RN denote Faster R-CNN [15], Cascade R-CNN [2], and Reti-
naNet [9]. ‘#Pass’ denotes number of detection runs, ‘*’ denotes
our implementation. FPS = 1/(runtime per image). ’4×’ and ’6×’
mean the theoretical speed up ratio is set to 4 and 6 in PAN.

25,000×14,000. We evaluate our approach on full body
detection and the AP for small (<96×96 pixels), middle
(96×96 to 288×288 pixels), and large (>288×288 pixels)
objects are reported. On top of that, we also report #Pass,
which denotes the the number of runs of the detector, to
reflect the inference cost on gigapixel images.

4.2. Implementation Details

To facilitate the patch generation for testing images, we
use Faster R-CNN [15] with ResNet50 [7] backbone as the
coarse detector to get initial rough results. To prepare the
data for training the coarse detector, we downsample the
original gigapixel images by a factor of 4. Then, a sliding
window of 2,048×1,024 pixels is used to decompose the
down-sampled image. When evaluating the detection re-
sults of our method, we use the same detector and sliding
window set up (as mentioned above) but with a downsam-
ple factor of 2. For the encoder in the patch filter and patch
packing module, we use a fully-connected layer of size 64,
while the hidden layers of Tree-LSTM and Chain-LSTM
are of size 128. For both filter decoder and packing decoder,
we apply an LSTM with hidden size of 128. Our approach
is implemented with the PyTorch library. For training, we
apply Adam optimizer with an initial learning rate of 0.001.
Batch size is 64 for Monte Carlo sampling. All experiments
were conducted using a single GeForce GTX 1080Ti GPU.

5. Results and Discussion
5.1. Results on gigapixel dataset PANDA

Compared Methods. We compare our proposed frame-
work with three strong baselines on PANDA. All of them
follow the same pipeline but adopt different methods for
generating patches.

• DS+SW [20]: It is the combination of two strate-
gies: down-sampling (DS) and sliding window (SW).
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Filter Packing #Pass AP50 FPSCoarse Fine Multi Total Small Middle Large

✓ - - ✗ 8,979 0.722 0.270 0.711 0.783 0.11
✓ - - ✓ 2,838 0.687 0.144 0.641 0.788 0.34
- ✓ - ✗ 15,019 0.715 0.388 0.766 0.716 0.07
- ✓ - ✓ 3,862 0.717 0.259 0.731 0.766 0.23
- - ✓ ✗ 14,193 0.717 0.390 0.766 0.725 0.07
- - ✓ ✓ 3,671 0.715 0.256 0.719 0.768 0.23

Table 2. An ablation study of different modules in our framework. Note that FPS = 1/(runtime per image).

Figure 5. Comparisons of time-performance trade-off among dif-
ferent state-of-the-art approaches.

It firstly down-samples the image and then divides the
whole image into regular patches with a fixed-size slid-
ing window.

• ClusDet [23]: It employs a neural network to estimate
accurate patches in high-resolution images.

• DMNet [8]: It first predicts an object density map
with a trained CNN model. Then it merges the eight-
neighbor connected region in the density map into a
large candidate region. Finally, it refers the circum-
scribed rectangle of the candidate region as a patch.

Quantitative Results. The quantitative results are pre-
sented in Table 1 and Fig. 5. For a fair comparison, we
compare their performance with ours under the same de-
tector Faster R-CNN with ResNet50 backbone. Generally,
we observe that our method strikes a great balance between
speed and accuracy on gigapixel-level image object detec-
tion. Compared to DS+SW (FR), PAN (6×) could boost
the inference speed by 5× while maintaining the detection
performance. PAN is able to detect one gigapixel-level im-
age in about 2.7 seconds (i.e., FPS=0.37). When apply-
ing DS+SW and DMNet to gigapixel-level images, there
are huge time costs for object detection (even exceeding
13,000 #Pass with DS+SW). Although DMNet has pro-
posed a density-map-guided method to generate patches, it
cannot handle such extreme high resolutions well. DMNet
utilizes the object density map to obtain patch candidates.
However, the density map based scheme possesses severe

Tree-LSTM Chain-LSTM #Pass AP50

Total Small Middle Large

✓ ✗ 3,283 0.692 0.137 0.678 0.778
✗ ✓ 3,561 0.690 0.140 0.678 0.769
✓ ✓ 3,671 0.715 0.256 0.719 0.768

Table 3. Effect of tree encoder.

trade-off limitations in gigapixel-level images. In their
method, objects are more likely to be connected in density
maps, and the connected regions in turn, will form larger
patches. Thus, although it can reach a faster speed with
fewer patches, its performance drop rapidly since many ob-
jects cannot be well-detected in too large a patch. Fig. 5
further demonstrates that our PAN strikes a good balance
between speed and performance for gigapixel-image object
detection.
Extension to Other Methods. It is flexible for other meth-
ods to be ensembled into our proposed framework. To vali-
date it, we extend our framework to the existing work Clus-
Det. Specifically, the patches generated by ClusDet can be
taken as the initial patches. We further filter and pack these
patches using our strategy to achieve higher speed. The re-
sults are presented at the bottom row of Table 1. It can be
observed that compared to the original version of ClusDet,
our framework can boost the speed by almost 2 times while
maintaining its detection performance.
Visualization Results. To further illustrate the effective-
ness of our method, we present the detection result on a
gigapixel-level image in Figure 9.

5.2. Ablation Study on PAN

Design of Tree Encoder. Since the relationship among
patches is critical towards learning a good arrangement, we
first analyze the design of the tree structure encoder. The re-
sults of separately employing the Tree-LSTM and/or Chain-
LSTM as encoder are shown in Table 3. The three rows
shown in Table 3 represent the Tree-LSTM encoder, Chain-
LSTM encoder, and Mixed-LSTM encoder, from top to bot-
tom. We can observe that, compared with Chain-LSTM en-
coder, the Tree-LSTM encoder uses less patches to achieve
comparable results. We note that the Tree-LSTM encodes
the relationship between coarse-grained patches and their
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Figure 6. Two examples from PANDA dataset. The red boxes indicate the patches filtered by the network.

Figure 7. Examples of patch packing results using different capacity.

Detector DS+SW Ours (6×)

YOLOv3 [14] 0.518 2.115
SSD [12] 0.515 2.088

Table 4. Extension to different detectors. FPS (i.e., 1/(runtime per
image)) of using different object detection algorithms are given.

λ #Pass AP50

Total Small Middle Large

0.05 3892 0.690 0.146 0.683 0.767
0.10 3671 0.715 0.256 0.719 0.768
0.20 3127 0.672 0.102 0.626 0.785

Table 5. An ablation study on using different values of λ.

corresponding fine-grained patches (i.e. inter-layer rela-
tionship), which is not exemplified by the Chain-LSTM.
Thus, it can utilize such relationships to encourage more
fine-grained patches to be replaced and filtered by coarser
patches to achieve higher speed. However, even with the
relatively higher speed compared to Mixed-LSTM encoder,
the detection performance of Tree-LSTM encoder drops in
the absence of the crucial intra-layer relationship. As such,
by considering both inter- and intra-layer relationships (i.e.
Mixed-LSTM), we can get a better trade-off between speed
and performance.
Effect of Patch Filter. We examine how the granularity
of patches affects the detection speed and accuracy. Ta-
ble 2 shows the results on PANDA dataset. We evaluate
our method by selecting patches from three granularities:
coarse-grained, fine-grained, and multi-grained. Selecting
coarse-grained patches means only focusing on the middle
layer patches on the tree. We can see that it uses fewer
patches, but the detection accuracy degenerates. Selecting
fine-grained patches is equivalent to focusing on the leaf

Figure 8. An ablation study on different maximum capacities.

layer patches on the tree. We could get higher accuracy,
but more patches are needed. By selecting multi-grained
patches, we use relatively fewer patches while simultane-
ously maintaining detection performance. Figure 6 shows
two example images from PANDA dataset. The patches se-
lected by PFM are highlighted in red. We can observe that
they are distributed in both middle and leaf layers of the
tree, which shows that our approach will adaptively choose
patches from different granularities.
Effect of Patch Packing. We also examine the effect of
patch packing. The default maximum capacity of a canvas
C is set as 4. As shown in Table 2, we evaluate our PPM
based on three kinds of filtering strategies. The patch pack-
ing module can greatly reduce the patch number to achieve
high time efficiency. Meanwhile, Figure 7 shows several
patch packing results when different values of the maximum
capacity of the canvas are used. Under most circumstances,
the network would try to reach the maximum capacity of
each canvas to reduce the number of canvases present in
one image.
Effect of Maximum Capacity C. As we have mentioned in
Section 3.4, the theoretical speed-up ratio can be controlled

4659



Figure 9. Example of detection results using our method.

by setting the maximum canvas capacity C, which denotes
the maximum number of patches a canvas could contain.
Figure 8 presents the influence of canvas capacity on the
detection speed and accuracy. As shown here, the time cost
is significantly reduced while a slight performance decline
was observed as expected. This is however, advantageous
as the detection speed could be boosted by 8× (i.e., C =
8) at minimal impact to the performance, highlighting its
feasibility for real-world applications.
Understanding Speed-Performance Trade-off. The fac-
tor λ in Equation (6) plays the role of adjusting the balance
of detection speed and performance. Table 5 presents the
results under various factor settings. With the increase of λ,
more fine-grained patches are encouraged to be replaced by
coarser patches, and thus #Pass also decreases. The perfor-
mance degenerates when λ reaches the maximum value of
0.2. Interestingly, the PAN strikes a good balance between
detection speed and performance with λ = 0.1.
Extension to Lightweight Detectors. Since our approach
only modifies the input images, it is pluggable to any ob-
ject detection algorithms besides Fast R-CNN. To validate
the acceleration of object detectors under the gigapixel sce-
nario, we further extend our method to two widely used
lightweight detectors: YOLOv3 [14] and SSD [12]. The
results in Table 4 are conclusive that our method can indeed

increase the efficiency of these detectors by about fourfold.

6. Conclusion
This paper introduces a new patch arrangement frame-

work for fast object detection on gigapixel-level images.
Under this framework, we devise a Patch Arrangement Net-
work (PAN), which increases the efficiency of detection
by learning to arrange patches. Two arrangement mod-
ules were proposed: the first, patch filter module (PFM) se-
lects and filters patch candidates across granularities, then
a patch packing module (PPM) sequentially packs the re-
maining patches together into canvases. The overall frame-
work is jointly optimized by policy-based reinforcement
learning. The extensive experiments conducted on a gi-
gapixel level image dataset PANDA highlights the benefits
of our approach– an improvement of inference speed on gi-
gapixel images by 5×, while maintaining an ideal perfor-
mance.
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