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Abstract

Due to the constraints of the imaging device and high

cost in operation time, computer tomography (CT) scans

are usually acquired with low within-slice resolution. Im-

proving the inter-slice resolution is beneficial to the disease

diagnosis for both human experts and computer-aided sys-

tems. To this end, this paper builds a novel medical slice

synthesis to increase the inter-slice resolution. Consider-

ing that the ground-truth intermediate medical slices are al-

ways absent in clinical practice, we introduce the incremen-

tal cross-view mutual distillation strategy to accomplish this

task in the self-supervised learning manner. Specifically, we

model this problem from three different views: slice-wise

interpolation from axial view and pixel-wise interpolation

from coronal and sagittal views. Under this circumstance,

the models learned from different views can distill valuable

knowledge to guide the learning processes of each other.

We can repeat this process to make the models synthesize

intermediate slice data with increasing between-slice reso-

lution. To demonstrate the effectiveness of the proposed ap-

proach, we conduct comprehensive experiments on a large-

scale CT dataset. Quantitative and qualitative comparison

results show that our method outperforms state-of-the-art

algorithms by clear margins.

1. Introduction

High-resolution CT volume data can provide high-

quality detail for organs and tissues, thus are valuable for

computer-aided diagnosis. However, due to the constraints

of the imaging device, the between-slice resolution of the

acquired CT volume is not sufficiently high in practical clin-

ical scenarios, which makes these volume data hard to pro-

vide the desired imaging detail for the disease diagnosis.

To solve this problem, a novel task, called medical slice

synthesis, has been arising recently. The goal is to syn-

thesize intermediate imagery content between original ad-
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Figure 1. Pixel-wise interpolation in coronal and sagittal views,

and slice-wise interpolation in axial view can increase the inter-

slice resolution of the input volume individually. We propose

a cross-view knowledge distillation framework to settle the self-

supervised CT slice synthesis task.

jacent slices. Peng et al., [24] made the earliest attempt

by implementing pixel-wise interpolation processes on the

coronal-view and sagittal-view images and then fusing the

results interpolated from two views. However, this method

requires large-scaled ground-truth training data, which we

cannot conveniently acquire in practice.

This paper explores a self-supervised learning frame-

work to train the slice synthesizer without the ground-truth

data. Specifically, we find that another under-explored way

is to formulate it as a slice-wise interpolation problem for

the axial-view images (See Fig. 1). Namely, intermediate

slices can be inferred from the context information of two

adjacent slices in the axial view. Since pixel-wise and slice-

wise interpolation modeling tries to synthesize the missing

detail by exploring different kinds of spatial context, the two

modeling processes tend to capture helpful yet distinct pat-

terns towards the same ultimate goal. Thus, we can jointly

use the two modeling processes to address the medical slice

synthesis problem and collaborate them to provide com-

plementary knowledge for each other. Each interpolation

model can be learned under the guidance of the other ones,

thus avoiding the requirement of ground-truth training data.
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Figure 2. Slice-wise interpolation in axial view (SInt-A), and pixel-wise interpoloatin in coronal (PInt-C) and sagittal (PInt-S) views, have

their own superiority in synthesizing inter-slice images. Our proposed cross-view mutual distillation can combine the learned knowledge

from three types of interpolation algorithms.

We propose an incremental cross-view mutual distilla-

tion pipeline for training medical CT slice synthesis mod-

els to take advantage of slice synthesis algorithms from

multiple views. Considering that structural information

appears to have different characteristics across views and

models learned from different views have their superiority

(see Fig. 2), we involve three modeling components in the

learning process: 1) slice-wise interpolation in axial view;

2) pixel-wise interpolation in coronal view; 3) pixel-wise

interpolation in sagittal view. We set up a U-shape network

with memorization capacity to implement the slice-wise in-

terpolation and adopt an existing image super-resolution

network [20] to achieve pixel-wise interpolation.

To lean such deep models, we propose a two-stage learn-

ing framework. In the first learning stage, we downsample

the resolution of original volumes and then use the down-

sampled and original volume data to learn single-view slice

synthesis models. To enable the model to upscale the reso-

lution of the original volume data without any external su-

pervision, we further design a cross-view mutual distilla-

tion process in the second learning stage. We constrain the

pairs of predictions on the original volume data produced

by axial-view slice-wise interpolation and coronal/sagittal-

view pixel-wise interpolation models. An illustration of our

proposed method is presented in Fig. 1. The knowledge dis-

tillation mechanism enables the slice-wise and pixel-wise

interpolation models to learn from each other and fuse the

advantages of different image recovery models learned from

different perspectives. Finally, we incrementally increase

the between-slice resolution from the three perspectives and

apply the cross-view mutual distillation on predictions with

very high resolution, enhancing the knowledge exchange

across views in self-supervised slice synthesis.

The main contributions of this paper are as follows.

• A pioneering effort is made to implement the self-

supervised CT slide synthesis, modeling slice-wise in-

terpolation for the axial view and pixel-wise interpola-

tion for the coronal and sagittal views.

• A novel self-supervised learning framework is estab-

lished, based on single-view internal learning and in-

cremental cross-view mutual distillation.

• Extensive experiments on a CT collection (composed

of three existing CT datasets) demonstrate that our pro-

posed method achieves state-of-the-art performance.

2. Related Work

Medical slice synthesis is targeted at hallucinating inter-

slice detail which is critical to high-level disease diagno-

sis for both radiologists and computer-based intelligent sys-

tems. Recently, 3D neural networks [2, 6, 26, 28, 32] are

extensively applied in processing and understanding medi-

cal volumetric data. The main drawback of using 3D neu-

ral networks is the huge amount of network parameters and

memory consumption. SAINT [24] is a two-stage frame-

work to solve the slice synthesis task. It first employs 2D

convolutional neural networks (CNNs) to enlarge sagittal

and coronal images individually, and then fuse the enlarged

images of two views to produce the final result.

Learning slice synthesis CNNs requires a large number

of paired LR and HR volumes. However, HR volumes are

usually not available in practical medical scenarios. Thus,

it is essential to develop unsupervised optimization algo-

rithms for medical slice synthesis CNNs. As far as we

know, few work is devoted to addressing this task. In this

paper, we focus on the unsupervised slice synthesis task,

and propose a cross-view mutual distillation pipeline , twist-

ing slice-wise interpolation in axial view and pixel-wise in-

terpolation in coronal and sagittal views.

Video Frame Interpolation. Slice-wise interpolation is

highly related to video frame interpolation. In videos, the

differences between consecutive frames are mainly caused

by object or camera motions. Thus, video interpolation al-

gorithms usually rely on optical flow fields [4, 14, 17, 22,

23], adaptive kernels [18, 19], or flow-based adaptive ker-

nels [13] to interpolate intermediate transition frames from

temporally neighboring frames. Aiming at tackling frame

interpolation under complex motions and severe occlusions,

[3, 10, 31] adopts an image reconstruction pipeline without

using motion fields and adaptive kernels which are difficult

to be estimated when there exist large motions and severe

occlusions in the input video. The slice synthesis task is

more challenging since the different slices contains totally

different content and there exist no explicit correspondence

relations between adjacent slices.
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Figure 3. Overall pipeline of our method. First, internal learning is used to regularize single-view interpolation models via regarding down-

sampled and original volumes as training samples. Then, an incremental cross-view mutual distillation pipeline is devised for knowledge

exchange between the slice-wise interpolation in the axial view and the pixel-wise interpolation in the coronal and sagittal views.

Image Super-Resolution (SR). As a fundamental and long-

lasting topic in image processing, super-resolution attracts

lots of research attention. Dong et al. [5] apply convo-

lutional neural networks in image super-resolution for the

first time. Mainstream SR methods depend on various

CNN backbones [5, 12, 29, 30, 35]. MetaSR [8] proposes to

tackle the SR task of arbitrary scales through dynamic ker-

nels learned from the pixel coordinates and upscaling fac-

tor. HAN [20] introduces the holistic attention to explore

cross-position, cross-channel and cross-layer dependencies

for promoting SR performance. The slice synthesis can be

implemented via image SR in the coronal and sagittal views.

Knowledge Distillation. The concept of knowledge distil-

lation is first proposed for model compression in [1]. Hin-

ton et al. [7] define knowledge distillation as the task of

transferring the knowledge of a teacher model which can

be a very large model or an ensemble of multiple models

to a student model. They also propose a distillation strat-

egy through using the soft outputs of the teacher model to

guide the training of the student model. Henceforth, a lot of

literature focuses on devising more effective distillation al-

gorithms [16, 25, 33]. Our proposed method is most related

to the mutual learning [36], in which an ensemble of stu-

dent models learn from each other. The major difference of

our method to mutual learning is that, the student networks

in our method are constructed from different views of the

volumetric data and devised for addressing different tasks,

namely slice-wise or pixel-wise interpolation.

3. Proposed Method

Given a 3D volume V ∈ R
h×w×l, we assume that r − 1

(r ≥ 2) slices should be interpolated between every two

consecutive slices. This means that a volume defined by

O ∈ R
h×w×(rl−r+1) is expected to be produced. V can be

decomposed into 2D images in the axial, coronal and sag-

gital views, yielding {Xi
a ∈ R

h×w}li=1, {Xj
c ∈ R

w×l}hj=1,

and {Xk
s ∈ R

h×l}wk=1, respectively. We can achieve the

goal with three models that perform slice-wise interpolation

in the axial view and pixel-wise interpolation in the coronal

and sagittal views. The concrete model design can be re-

ferred to in Sec. 3.1.

Since actual training data is hard to obtain, we follow the

degradation operation in [24] or [9] to approximate the real

downsampling case. Under this circumstance, single-view

internal learning is first used to constrain the three models

with the help of down-sampled volumes. Then, the slice-

wise and pixel-wise interpolation models are constrained

via the consistency between volume data enlarged by them

for knowledge distillation across views. The overall frame-

work of our method is presented in Figure 3. Though 3D

convolution can be alternatively used, we implement our

framework with 2D convolution-based modules in consid-

eration of computational efficiency.

3.1. Interpolation Models

3.1.1 Slice-wise Interpolation

The slice synthesis can be implemented via inserting inter-

mediate slices between every two adjacent slices. Inspired

from [3], we build up a CNN model for slice-wise interpo-

lation in the axial view (see Fig. 4). Given two consecutive

slices Xi
a ∈ R

h×w and X
i+1
a ∈ R

h×w, a convolution layer

with the kernel size of 3×3 and the dimension of 3 is used to

extract two preliminary feature maps. They are rearranged

into tensors F
i ∈ R

h

8
×w

8
×192 and F

i+1 ∈ R
h

8
×w

8
×192

through the space-to-depth transformation operation. Then,

a U-shape architecture is devised to fully explore multi-

ple features of different layers to estimate the intermediate

slices between X
i
a and X

i+1
a , namely {Y

(i−1)r+t
a }rt=2.
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Figure 4. Network architecture of the slice-wise interpolation model. Given two adjacent slices, a U-shape network constituted by convo-

lution layers, residual groups [3] and a memory bank [21], synthesizes r − 1 intermediate slices.

F
i and F

i+1 are concatenated and then compressed into

a tensor Ei
0 ∈ R

h

8
×w

8
×192 via a 3 × 3 convolution layer.

Then, three groups of residual blocks with channel atten-

tions [3] are used to produce multiple feature maps Ei
1, Ei

2

and Ẽ
i
3. Each group is composed of 12 residual blocks. Ẽi

3

is added to E
i
0 through a skip connection, and another 3×3

convolution is attached to produce the final feature map E
i
3.

Considering CT images usually share high similarities

(e.g., anatomical structures) across persons, we incorporate

a memory bank [21] M ∈ R
m×d to store the common pat-

terns. m is the number of items in the memory bank. All

points in E
i
3 are reconstructed with M, deriving a new fea-

ture map D
i
3. The linear combination of items in M is used

to infer every point in D
i
3,

D
i
3[x, y] =

m
∑

z=1

pix,y,zM[z], (1)

where D
i
3[x, y] represents the feature vector at position

(x, y) of Di
3, and M[z] indicates the z-th item of the mem-

ory bank M. pix,y,z indicates the weight coefficient between

E
i
3[x, y] and M[z],

pix,y,z =
exp(Ei

3[x, y] ◦M[z])
m
∑

z′=1

exp(Ei
3[x, y] ◦M[z′])

. (2)

Here, ‘◦’ indicates the inner product operation. During the

training stage, the memory bank is continuously updated

through accumulating the emerging patterns in E
i
3.

qix,y,z =
exp(M[z] ◦Ei

3[x, y])
∑

(x′,y′)∈Uk

exp(M[z] ◦Ei
3[x

′, y′])
, (3)

qix,y,z ← qix,y,z/ max
(x′,y′)∈Uk

qix′,y′,z, (4)

M[z]←M[z] +
∑

(x′,y′)∈Uk

qix′,y′,zE
i
3[x

′, y′], (5)

M[z]←M[z]/||M[z]||2. (6)

Uk represents the set of points whose nearest neighbor in

the memory bank is M[k]. Based on the above process, the

memory bank is updated by accumulating patterns across all

training CT slices. It can store representative visual patterns

for CT slice reconstruction.

The decoding stage is constituted by three consecutive

modules. Each module contains one 3×3 convolution layer

and twelve residual blocks. D
i
3 is regarded as the input of

the first stage. Skip connections are used to propagate E
i
2

and E
i
1 into the second and third stages of the decoder, re-

spectively. Finally, a 3×3 convolution followed by a depth-

to-space operation is employed to produce intermediate

slices. By means of the above slice interpolation model, the

input volume is interpolated into a new volume with more

slices, {Yi
a}

rl−r+1
i=1 , where Y

i
a = X

(i−1)%r
a , if i%r = 1.

We denote the interpolated volume as Oa = SInta(V|Θs).
Θs denotes the parameters of the interpolation model.

3.1.2 Pixel-wise Interpolation

The other perspective for slice synthesis is the pixel-wise

interpolation, based on the super-resolving of the images

in the coronal or sagittal view. We use the image super-

resolution network proposed in [20] for pixel-wise inter-

polation. The coronal and sagittal views share the same

model. The coronal images {Xj
c}

h
j=1 and sagittal images

{Xk
s}

w
k=1 are super-resolved by a factor of r along the lon-

gitudinal axis, resulting in {Yj
c}

h
j=1 and {Yk

s}
w
k=1 respec-

tively. The last r − 1 columns of super-resolved images

are abandoned to make the shape consistent with the vol-

ume produced by the slice-wise interpolation model. These

super-resolved coronal and sagittal images can be stacked

into new volumes Oc and Os respectively. We denotes the

pixel-wise interpolation processes in the coronal and sagit-

tal view as, Oc = PIntc(V|Θp) and Os = PInts(V|Θp)
respectively. Θp denotes parameters of the pixel-wise inter-

polation model.

During the inference phase, the final interpolation result

O is obtained via fusing Oa, Oc and Os,

O[x, y, z] =

{

Oc[x,y,z]+Os[x,y,z]
2 if z%r = 1

Oa[x,y,z]+Oc[x,y,z]+Os[x,y,z]
3 else

(7)
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3.2. Learning Procedure

3.2.1 Single-view Internal Learning

An internal learning strategy is adopted to optimize individ-

ual single-view slice-wise or pixel-wise interpolation mod-

els. The original volume is down-sampled by the factor of r
along the axial view, resulting in V↓ ∈ R

h×w×⌊ l

r
⌋. Feeding

V↓ into the slice-wise and pixel-wise interpolation mod-

els, we can obtain upsampled volumes: Ôa = SInta(V↓),

Ôc = PIntc(V↓), and Ôs = PInts(V↓). Here, parameters

are neglected for briefness.

Regarding the original volume as the ground-truth, we

calculate the training loss with the mean square error (MSE)

function. Besides, to strengthen the restoration on high-

frequency details, we extract three scales of wavelet co-

efficients and use MSE to constrain the distances on the

LH (horiz), HL (vertic), and HH (diag) coefficients of each

wavelet decomposition scale. The overall loss functions

used in the single-view internal learning are as follows.

Lint
a = MSE(Ôa,V) +

3
∑

t=1

MSE(WT(t)
a (Ôa),WT(t)

a (V)),

(8)

Lint
c = MSE(Ôc,V) +

3
∑

t=1

MSE(WT(t)
c (Ôc),WT(t)

c (V)),

(9)

Lint
s = MSE(Ôs,V) +

3
∑

t=1

MSE(WT(t)
s (Ôs),WT(t)

s (V)).

(10)

WT(t)
a (·), WT(t)

c (·), and WT(t)
s (·) calculates the t-th scale

of wavelet coeffficients from the axial, coronal, and sagit-

tal images of the input volume respectively. The restored

volumes may have a smaller size than V due to the quan-

tization effect, and excess voxels of V are neglected when

calculating the above loss functions.

3.2.2 Incremental Cross-view Mutual Distillation

Given axial, coronal, and sagittal images originating from

the same volume, the slice-wise and pixel-wise interpola-

tion models have specific superiority in synthesizing details

since different context is explored. We devise an MSE-

based consistent constraint to make the two kinds of mod-

els teach each other so that the specific advantages of the

three interpolation schemes are combined to promote the

ultimate interpolation performance. Such a cross-view mu-

tual distillation method can tackle the dilemma in which

the ground-truth training data is absent. Practically, we re-

peat the slice-wise and pixel-wise interpolation for n times,

deriving of O
n
a = SInt(n)a (V), O

n
c = PInt(n)c (V), and

O
n
s = PInt(n)s (V). The consistency constraints between the

slice-wise interpolation result in axial view and the pixel-

wise interpolation result in coronal/sagittal view are formu-

lated as follows,

Ln
c =

∑

(x,y,z)∈Tn
c
(γ)

(On

a
[x,y,z]−O

n

c
[x,y,z])2

|Tn
c
(γ)| , (11)

Ln
s =

∑

(x,y,z)∈Tn
s
(γ)

(On

a
[x,y,z]−O

n

s
[x,y,z])2

|Tn
s
(γ)| , (12)

where Tn
c (γ) (Tn

s (γ)) denotes the set of γ percents of points

with smallest loss values between O
n
a and O

n
c (On

s ). As-

sume he largest number of interpolation times be N . The

overall objective functions for the cross-view mutual dis-

tillation are formulated as, Lcmd
c = 1

N

∑N
n=1 L

n
c , and

Lcmd
s = 1

N

∑N
n=1 L

n
s .

3.2.3 Overall Objective Function

Apart from the single-view internal learning and cross-view

mutual distillation loss functions, the compactness (Lcom)

and separateness (Lsep) constraints as in [21], are used to

regularize the memory bank,

Lcom =

l−1
∑

i=1

h/8
∑

x=1

w/8
∑

y=1

∥Ei
3[x, y]−M[zipos(x, y)]∥2,

s.t. zipos(x, y) = argmax
z′

pix,y,z′ ; (13)

Lsep =

l−1
∑

i=1

h/8
∑

x=1

w/8
∑

y=1

max(∥Ei
3[x, y]−M[zipos(x, y)]∥2

− ∥Ei
3[x, y]−M[zineg(x, y)]∥2 + α, 0),

s.t. zineg(x, y) = argmax
z′ ̸=zi

pos(x,y)

pix,y,z′ . (14)

α(= 1) is a constant. The complete objective function is

formed through summing up the above losses, L = Lint
a +

Lint
c +Lint

s +0.15∗ (Lcmd
c +Lcmd

s )+0.1∗ (Lcom+Lsep).
The weighting factors are chosen empirically.

4. Experiments

4.1. Experimental Settings

Dataset. The CT Dataset consists of 560 volumes, which

are collected from the Medical Segmentation Decathlon

challenge [27], including 131, 126, and 303 volumes for

liver, colon and hepatic vessel segmentation, respectively.

The spatial size is 512 × 512 and the number of slices

is in the range of 24 to 917. The within-slice resolution

ranges from 0.5mm to 1.0mm, and the between-slice reso-

lution ranges from 0.7mm to 8.0mm. Fifty volumes with

the thinnest slices are used for testing, and the other 510

volumes are used for training. All volumes are down-

sampled by the factor of r in the axial view, while high-

resolution volumes are only used for validating algorithm
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(b) LR volumes are obtained via blurring, downsampling, and noise distortion.

Figure 5. Qualitative comparisons against existing slice synthesis algorithms on CT-s and MRI-s. The slices synthesized by our method

are better than the results of DPSR [34], AdaCoF [13], and SAINT [24]. (Best viewed in close-up)

performance. Two degradation strategies are used for vali-

dating interpolation algorithms: 1) Low-resolution volumes

are synthesized via directly sampling one slice every r slices

in the axial view; 2) Low-resolution volumes are generated

by blurring and down-sampling. Then, Gaussian noises are

used to distort the down-sampled volumes.

Evaluation Metrics. We use two metrics, including PSNR

(Peak Signal-to-Noise Ratio) and SSIM (Structural Simi-

larity Index). SSIM is calculated independently on axial,

coronal, and sagittal images, denoted by SSIMa, SSIMc,

and SSIMs, respectively.

Implementation Detail. During training, we only use cen-

tral 256*256 regions of CT slices, which are further decom-

posed into 128×128 patches. Each training volume is com-

posed of 15 slices. Adam [11] is chosen for network opti-

mization. The model is trained for 50 epochs with a batch

size of 4. The learning rate is initially set to 10−4 and de-

cayed by 0.1 after ten epochs. By default, m, γ, and N is

set to 10, 40%, and 2, respectively. We test three cases for

the upsampling factor r (2, 3, and 4).

4.2. Comparisons against Existing Methods

In this section, we compare our method against

pixel-wise interpolation algorithms (including RDN [35],

DPSR [34] and MetaSR [8] which are originally devised

for tackling image super-resolution), slice-wise interpola-

tion methods (including RRIN [14] and AdaCoF [13] which

are originally proposed for settling video frame interpola-

tion), and the slice interpolation method SAINT [24].

Quantitative Comparisons. Experimental results on the

CT dataset are reported in Table 1 and 2. Our proposed

method outperforms all algorithms by clear margins on both

degradation settings. For example, under the 4× interpo-

lation setting, our method achieves 41.11dB and 37.87dB

PSNR, which are 2.69dB and 1.17dB higher than the scores

of SAINT, on the two degradation strategies, respectively.

Qualitative comparisons of our method against existing

methods are presented in Fig. 5. We also visualize the

super-resolution performance of SAINT our method in

coronal and sagittal views under the 4× upsampling set-

ting. Our method has more detailed structures and apparent

organ boundaries than other methods.

Model Size & Time Cost. For 4× slice synthesis, the num-

ber of parameters of SAINT and our method is 44.2M and

46.9M, respectively. The training processes of SAINT and

our method cost 18 and 31 hours, respectively. When pro-

cessing a 512 × 512 × 36 volume, SAINT and our method

consume 35.96 and 13.25 seconds, respectively.

4.3. Ablation Study

This subsection conducts extensive inner comparisons

on the CT dataset under the 4× interpolation setting. Here,

LR volumes are synthesized via direct downsampling. Core
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Table 1. Comparison with existing slice synthesis, pixel-wise interpolation, and slice-wise interpolation algorithms on the CT dataset,

under 2×, 3×, and 4× upsampling settings. LR volumes are generated via direct downsampling.

Method
2× 3× 4×

PSNR SSIMa SSIMc SSIMs PSNR SSIMa SSIMc SSIMs PSNR SSIMa SSIMc SSIMs

RDN [35] 43.51 0.9539 0.9519 0.9512 39.52 0.9402 0.9398 0.9376 37.89 0.9199 0.9210 0.9212

DPSR [34] 43.83 0.9690 0.9691 0.9682 38.82 0.9434 0.9423 0.9424 38.13 0.9166 0.9135 0.9154

MetaSR [8] 43.68 0.9547 0.9549 0.9548 39.90 0.9419 0.9425 0.9414 38.00 0.9211 0.9198 0.9214

RRIN [14] 43.45 0.9688 0.9691 0.9682 38.82 0.9434 0.9423 0.9424 38.10 0.9255 0.9232 0.9252

SRGAN [12] 43.22 0.9524 0.9521 0.9522 38.54 0.9433 0.9429 0.9425 37.91 0.9213 0.9209 0.9207

3D-MDSR [15] 44.31 0.9692 0.9698 0.9689 40.22 0.9489 0.9489 0.9490 38.20 0.9307 0.9302 0.9310

AdaCoF [13] 44.88 0.9749 0.9746 0.9747 40.92 0.9513 0.9498 0.9451 38.23 0.9311 0.9148 0.9150

SAINT [24] 44.43 0.9694 0.9641 0.9632 40.81 0.9448 0.9388 0.9416 38.42 0.9259 0.9175 0.9203

Ours 46.81 0.9792 0.9784 0.9786 42.94 0.9631 0.9589 0.9604 41.11 0.9404 0.9385 0.9382

Table 2. Comparison with existing slice synthesis, pixel-wise interpolation, and slice-wise interpolation algorithms on the CT dataset,

under 2×, 3×, and 4× upsampling settings. LR volumes are generated via blurring, downsampling and noise distortion.

Method
2× 3× 4×

PSNR SSIMa SSIMc SSIMs PSNR SSIMa SSIMc SSIMs PSNR SSIMa SSIMc SSIMs

RDN [35] 41.67 0.9366 0.9369 0.9373 37.24 0.9210 0.9214 0.9211 35.23 0.9004 0.9010 0.9011

DPSR [34] 41.92 0.9389 0.9391 0.9387 37.87 0.9221 0.9223 0.9225 35.98 0.9022 0.9025 0.9021

MetaSR [8] 41.99 0.9392 0.9398 0.9390 37.95 0.9262 0.9259 0.9264 36.20 0.9078 0.9081 0.9084

RRIN [14] 41.43 0.9344 0.9341 0.9336 37.35 0.9234 0.9226 0.9233 35.58 0.9045 0.9045 0.9054

SRGAN [12] 41.10 0.9319 0.9313 0.9321 37.04 0.9204 0.9201 0.9207 35.09 0.8992 0.9004 0.9001

3D-MDSR [15] 42.03 0.9411 0.9406 0.9412 38.25 0.9310 0.9303 0.9306 36.21 0.9112 0.9114 0.9115

AdaCoF [13] 42.36 0.9439 0.9436 0.9427 38.72 0.9313 0.9311 0.9320 36.63 0.9131 0.9124 0.9142

SAINT [24] 42.43 0.9434 0.9431 0.9432 38.88 0.9352 0.9358 0.9348 36.70 0.9139 0.9134 0.9133

Ours 43.98 0.9570 0.9568 0.9569 40.91 0.9505 0.9499 0.9499 37.87 0.9244 0.9239 0.9248

GTOursBicubic SAINT

Figure 6. Visualization comparison. From left to right: bicubic

interpolation; SAINT; our method, and ground-truth.

components of our method are teased apart to validate their

effectiveness. The results are reported in Table 3.

Efficacy of cross-view mutual distillation is validated by

removing consistency constraints Lcmd
c or Lcmd

s . In the

baseline method, both Lcmd
c and Lcmd

s are not used, which

means the cross-view mutual distillation is not applied.

Compared to the baseline method, the full version of our ap-

proach brings PSNR and SSIMa gain of 2.53dB and 0.0118,

respectively. Since pixel-wise interpolation in the coro-

nal and sagittal views explore different context information

for increasing the between-slice resolution, the knowledge

learned from the two views is complementary to each other.

Without distillation between axial view and coronal/sagittal

Table 3. Ablation study on critical components in our method.

‘w/o Lcmd

c or Lcmd

s ’ means both Lcmd

c and Lcmd

s are not used

for training. ‘w/o Lcmd

c ’ (‘w/o Lcmd

s ’) means Lcmd

c (Lcmd

s ) is

not used. ‘w/o WT’ means the loss on wavelet coefficients is not

adopted. ‘w/o memory’ means the memory bank is not applied.

For every variant, other parameters are set as in Section 4.1.

Variant PSNR SSIMa

w/o Lcmd
c or Lcmd

s 38.58 0.9286

w/o Lcmd
c 40.26 0.9322

w/o Lcmd
s 40.24 0.9321

N=1 40.47 0.9325

w/o WT 40.56 0.9334

w/o memory 40.28 0.9324

final variant 41.11 0.9404

view, the PSNR is decreased by 0.85dB/0.87dB in contrast

to the PSNR of the full version. The distillation from two

views performs better than the distillation with the single

coronal or sagittal view. This can also be observed from an

example of qualitative comparison in Fig. 7.

Efficacy of Incremental Interpolation. As shown in Table

3, using interpolation only once (N = 1) increases PSNR

and SSIMa by 1.98dB and 0.0183, respectively. Applying

two interpolation times (N = 2) can further improve the re-

sult with 0.64dB higher PSNR, compared to the variant with

N = 1. This validates the effectiveness of the incremental

interpolation scheme in our method. A qualitative compari-
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GT baseline 

final variant 

𝑁 = 1

w/o 𝐿𝑐𝑐𝑚𝑑 w/o 𝐿𝑠𝑐𝑚𝑑

Figure 7. Examples of different variants of our method.

Table 4. Performance of different ensemble strategies for merging

interpolation models.

Strategies PSNR SSIMa

SInt-A 38.16 0.9140

SInt-A+PInt-C 38.47 0.9254

SInt-A+PInt-S 38.49 0.9261

SInt-A+PInt-C+PInt-S 38.58 0.9286

Ours SInt-A 38.49 0.9327

Ours SInt-A+PInt-C 40.24 0.9355

Ours SInt-A+PInt-S 40.26 0.9347

Ours SInt-A+PInt-C+PInt-S 41.11 0.9404

son is provided in Fig. 7. As can be observed, setting N = 2
induces an interpolation model capable of producing more

accurate structures and textures.

Efficacy of Memory Bank. The adoption of the memory

bank, which is used for storing common patterns. If the

memory mechanism is not applied in the final variant of our

method, the reduction on the PSNR metric reaches 0.63dB.

Performance of Using Different Ensemble Strategies.

We report the results of single-view models and their sim-

ple combinations in Table 4. ‘SInt-A’, ‘PInt-C’, and ‘PInt-

S’ stands for slice-wise interpolation in axial view, pixel-

wise interpolation in coronal view, and pixel-wise interpo-

lation in sagittal view, respectively. ‘PInt-C/PInt-S+SInt-

A’ indicates ‘PInt-C’ or ‘PInt-S’ is integrated with ‘SInt-A’

through averaging their predictions. ‘PInt-C+PInt-S+SInt-

A’ average the predictions of the three models. The sim-

ple combinations of pixel-wise and slice-wise interpolation

models can improve the results of single models, which

demonstrates that the two kinds of models are complemen-

tary to each other. Meanwhile, our proposed cross-view mu-

tual distillation can help the combination strategies achieve

much better performance.

Efficacy of Constraint on Wavelet Coefficients. The con-

straint on the wavelet coefficients emphasizes the recon-

struction of high-frequency information. Without using the

constraint on the wavelet coefficients, the PSNR metric is

reduced by 0.55dB.

Using Different Values for γ. In Fig. 8, we discuss

the impact of using different values for the parameter γ,

namely the percents of points used for calculating consis-

10 25 50 100
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40.0

40.2

40.4

40.6

40.8

41.0

41.2

P
S
N
R

10 25 50 100

γ

0.930

0.932

0.934

0.936

0.938

0.940

S
S
IM

Figure 8. Performance of using different values for γ (%).

tency losses (11) and (12). When the deviation between the

inferences of slice-wise and pixel-wise interpolation models

is too large, one of the two models must predict an incorrect

output. However, it is unable to identify which model is

more reliable. Hence, we neglect those points at which the

loss values are too large. From Fig. 8, we can see that our

method achieves the best performance when γ = 25%.

5. Conclusions

This paper proposes an incremental cross-view mutual

distillation pipeline to tackle the self-supervised slice syn-

thesis task. The mutual distillation between the slice-wise

interpolation in the axial view and pixel-wise interpolation

in the coronal and sagittal views contributes to a slice syn-

thesizer with appealing performance. The learning process

can be further enhanced via incrementally interpolating in-

termediate slices and then imposing cross-view distillation

on these finer and finer intermediate slices. Extensive ex-

periments on the CT dataset demonstrate the superiority of

our method against existing slice synthesis methods.

Broader Impacts. Slices synthesized by our method still

have apparent difference to real slices. In clinical applica-

tions, there exist risks for misleading the disease diagnosis

process. It requires further research to improve the practi-

cality of our method.

Limitations. In practical clinical scene, there exist many

complicated artifacts during the acquisition of LR volumes,

such as partial volume effect, motion blur, and streaks. In

the current internal learning of our method, we use a simple

way to approximate these artifacts. In the future, it deserves

in-depth research on modeling the generation of these imag-

ing artifacts for improving the generalization capacity in in-

terpolating real-world LR CTs.
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