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Abstract

Model heterogeneous federated learning is a challeng-
ing task since each client independently designs its own
model. Due to the annotation difficulty and free-riding par-
ticipant issue, the local client usually contains unavoidable
and varying noises, which cannot be effectively addressed
by existing algorithms. This paper starts the first attempt
to study a new and challenging robust federated learning
problem with noisy and heterogeneous clients. We present
a novel solution RHFL (Robust Heterogeneous Federated
Learning), which simultaneously handles the label noise
and performs federated learning in a single framework. It
is featured in three aspects: (1) For the communication be-
tween heterogeneous models, we directly align the models
feedback by utilizing public data, which does not require
additional shared global models for collaboration. (2) For
internal label noise, we apply a robust noise-tolerant loss
function to reduce the negative effects. (3) For challenging
noisy feedback from other participants, we design a novel
client confidence re-weighting scheme, which adaptively as-
signs corresponding weights to each client in the collabo-
rative learning stage. Extensive experiments validate the
effectiveness of our approach in reducing the negative ef-
fects of different noise rates/types under both model ho-
mogeneous and heterogeneous federated learning settings,
consistently outperforming existing methods.

1. Introduction
Local clients such as mobile devices or whole organiza-

tions generally have limited private data and limited gen-
eralizability. Therefore, using all clients’ private data to
centralized learn a public model will greatly improve per-
formance. However, due to the existence of data silos and
data privacy, we cannot use traditional centralized learning
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Figure 1. Illustration of federated learning with noisy and hetero-
geneous clients, where clients possess heterogeneous local models
and noisy datasets with different noise rates.

in practical applications [19]. To address these challenges,
Federated Learning (FL) has been proposed by McMahan
et al. [33]. Federated learning is a distributed machine
learning framework that enables multiple clients to collab-
oratively train models with decentralized data. The clients
never share private data with server ensuring basic privacy.
Recently, the widely used federated learning algorithms,
e.g., FedAvg [33] and FedProx [29], are based on averaging
the model parameters of the participating clients. Most of
these federated learning methods [44, 27, 40, 32, 8, 14] are
developed based on the assumption that participating client
models have the same neural architecture.

In real-world scenarios, due to the differences in the per-
sonalized requirements [28], each client might expect to de-
sign its own model independently [17, 38, 41, 26, 13, 3, 9],
resulting in the model heterogeneous federated learning
problem. For example, when many healthcare organizations
engage in collaborative learning without sharing private
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data, they design different models to meet different tasks
and specifications, as illustrated in Fig. 1. In this scenario,
institutions are often reluctant to disclose or share the details
of the model design due to business purposes. Therefore, to
perform federated learning with heterogeneous models, a
number of heterogeneous federated learning methods have
been proposed [23, 31, 30, 60, 7, 55, 6, 16]. FedMD [23]
is a framework based on knowledge distillation, which is
implemented through the class scores by client models on
the public dataset. FedDF [31] leverage unlabeled data to
perform ensemble distillation for each different model ar-
chitecture. These strategies mainly rely on a unified global
consensus or shared models. However, learning a global
consensus has a major limitation in that the clients cannot
individually adjust their learning direction to accommodate
the differences among clients. Besides, building extra mod-
els will increase computational overhead, thereby affecting
efficiency and effectiveness. Therefore, how to perform fed-
erated learning with heterogeneous clients without relying
on a global consensus or shared models is challenging.

In addition, the methods mentioned above mainly rely on
the assumption that each client has a clean dataset, which
cannot be satisfied in many practical applications. When
the clients contain inevitable noisy samples, existing fed-
erated learning methods cannot eliminate the negative ef-
fect caused by label noise, suffering from a significant per-
formance drop [25]. Since federated learning contains a
large number of participating clients, the data in each par-
ticipating client usually has different noisy patterns. Gen-
erally, in practical applications, the label noise is caused
by the following two aspects: 1) Due to the limitation and
scarcity of human expertise, the quality of labeled data will
be affected by human subjective factors, which means that
high-quality labeled data requires high cost and thus in-
evitably results in some wrong annotation. 2) In the fed-
erated learning framework, considering the user fairness is-
sue, there may be some free-riding participants in the sys-
tem who want to learn from the global model, but do not
want to provide useful information. Therefore, some users
are reluctant to share their real information with other users
and deliberately generate some wrong labels. In order to
reduce the negative impact of label noise, existing meth-
ods [12, 57, 46, 35, 42, 24, 58, 49, 53, 52] are usually devel-
oped for the image classification task with a single model.
The approaches can be divided into four categories: label
transition matrix estimation [39, 36, 50, 10], robust regular-
ization [54, 2, 34], robust loss function design [43, 5, 48],
and clean sample selection [11, 47, 18]. Under the feder-
ated learning framework, we expect that each class of sam-
ples will be learned sufficiently while avoiding overfitting
to noisy samples. Therefore, how to reduce the negative im-
pact of the internal label noise on the local model conver-
gence during the local update phase is an important issue.

Furthermore, the above mentioned two problems lead to
a new challenging issue, i.e., how to reduce the negative
and noisy influence from other clients while collaborative
learning in the federated learning framework. Due to model
heterogeneity, the participating clients will have different
decision boundaries and varying noisy patterns. As a re-
sult, besides local noise, we also need to pay attention to the
noise from other clients, and then it is crucial to reduce the
contribution of noisy clients in the whole federated system.
The existing methods for solving noise in machine learning
only eliminate the negative effect of internal model label
noise, but are unable to solve the noise from other clients.
Therefore, it is crucial to handle the noisy feedback from
other noisy clients under the federated learning framework.

In this paper, we provide the corresponding solution
RHFL (Robust Heterogeneous Federated Learning) for the
robust federated learning problem with noisy and heteroge-
neous clients: 1) Aligning the logits output distributions
in heterogeneous federated learning. In order to commu-
nicate learning in the presence of model heterogeneity, we
learn the knowledge distribution of other clients by align-
ing models feedback on public data. This allows each client
to adjust different learning directions, which does not de-
pend on a public model for communication. 2) Local noise
learning with a noise-tolerant loss function. We analyze
the negative effect caused by internal model label noise. In
the local learning phase, we consider symmetrically using
cross-entropy loss and reverse cross-entropy loss to avoid
overfitting noise samples while fully learning all classes. 3)
Client confidence re-weighting for external noise. Since
the label noise comes from the feedback by other clients,
we propose a new weighting approach, namely Client Con-
fidence Re-weighting (CCR), to reduce the contribution of
noisy clients in federated communication. CCR models
the loss decreasing pattern of the local models on private
datasets for participant re-weighting. Its basic idea is to si-
multaneously quantifies the label quality of dataset through
the loss value and the loss decreasing speed, and then adap-
tively assign the weight of the clean and efficient clients.
The main contributions in this work are as follows:

• We study a novel and important robust federated learn-
ing problem with noisy and heterogeneous clients.

• We propose a new loss correction approach CCR,
which computes the optimal weighted combination of
participating clients. CCR adaptively adjusts the con-
tribution of each client during loss updating, reducing
the contribution of noisy clients, and increasing the
contribution of clean clients.

• We validate the proposed method under various set-
tings, including both heterogeneous and homogeneous
models with different noise types and noise rates.
Experimental results show that RHFL consistently
achieves stronger robustness than competing methods.
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2. Related Work
Federated Learning. The concept of federated learning

was first proposed in 2017 by McMahan et al. [33]. It is
a machine learning setting that allows clients to collabora-
tively train models while protecting data privacy. McMa-
han et al. propose FedAvg, in which the client uses private
data to reduce the local gradient of the local model, and
the server uses the averaged model parameters to aggregate
the local model. Li et al. [29] build a framework similar to
FedAvg, but it can adaptively set the local calculations ac-
cording to different devices and iterations. Wang et al. [44]
propose to collect the weight of each layer of the client and
performs one-layer matching to obtain the weight of each
layer of the federated model.

For learning with model heterogeneous clients, Li et
al. [23] implement communication between models through
knowledge distillation. The server collects the class scores
of the public data set on each client model and calculates
the average value as the updated consensus. Lin et al. [31]
leverage ensemble distillation for model fusion, and it can
be carried out through unlabeled data. Diao et al. [4] pro-
pose to adaptively allocate a subset of global model parame-
ters as local model parameters according to the correspond-
ing capabilities of the local client. Liang et al. [30] intro-
duce an algorithm to jointly train the compact local repre-
sentation and global model of the client.

In summary, existing methods are usually developed un-
der the assumption that all clients possess clean data with-
out noise, dedicated to making federated learning more ef-
ficient, and preserving the privacy of user data. There is no
research on mitigating the impact of noise in heterogeneous
federated learning.

Label Noise Learning. In machine learning, many
methods have been proposed to handle label noise. They
can be divided into four main categories: 1) Label tran-
sition matrix [39, 36, 50]. The main idea is to estimate
the probability of each label class flipping to another class.
Sukhbaatar et al. [39] add a noise layer to the network to
make the network output match the noisy label distribu-
tion. Patrini et al. [36] design an end-to-end loss correction
framework that makes recent noise estimation techniques
applicable to the multi-class setting. Yao et al. [50] trans-
form the noise into a Dirichlet-distributed space, use the
dynamic label regression method iteratively infer the po-
tential real labels, and jointly train the classifier and noise
modeling. 2) Robust regularization [54, 2, 34, 22]. Robust
regularization can effectively prevent the model from over-
fitting to noisy labels. Zhang et al. [54] propose Mixup,
which trains the convex combination of pairs of samples
and their labels to regularize the hybrid neural network.
Arpit et al. [2] demonstrate regularization can reduce the
memory speed of noise without affecting the learning of
real data. Miyato et al. [34] introduce a regularization

method based on virtual adversarial loss, and defined the ad-
versarial direction without label information, which makes
it suitable for label noise setting. 3) Robust loss func-
tion [43, 5, 59, 57]. Some methods achieve robust learning
by using noise-tolerant loss functions. Rooyen et al. [43]
propose a convex classification calibration loss, which is
robust on symmetric label noise. Ghosh et al. [5] analyze
some loss functions that are widely used in deep learning
and proved that MAE is robust to noise. 4) Selecting pos-
sibly clean samples [11, 47, 18, 51]. The methods select
clean samples from the noisy training dataset for learning,
or re-weighting for each sample. The core idea is to re-
duce the attention to noisy-labeled samples in each iteration
for training. Han et al. [11] propose Co-teaching, which
trains two deep neural networks at the same time and se-
lects data with potentially clean labels for cross-trains. Wei
et al. [47] present JoCoR, which calculates the joint loss
with Co-Regularization, and then select small loss samples
to update network parameters. Jiang et al. [18] introduce
MentorNet, which provides a sample weighting scheme for
StudentNet, and MentorNet learns a data-driven curriculum
dynamically with StudentNet.

Previous methods for solving label noise are mainly un-
der the centralized setting. However, in the federated set-
ting, the server cannot directly access the private datasets of
clients. In the model heterogeneous setting, different model
architectures will lead to inconsistent decision boundaries
and different noisy patterns.

3. Robust Heterogeneous Federated Learning
Problem Definition and Notation. Under the hetero-

geneous federated learning setting, we consider K clients
and one server. We define C as the collection of all clients,
and |C| = K . Therefore, the k-th client ck ∈ C has
a private dataset Dk = {(xk

i , y
k
i )}

Nk
i=1 with |xk| = Nk.

yki ∈ {0, 1}
Nk indicate the one-hot vector of the ground

truth label. In addition, client ck hold a local model θk with
different neural architecture, f(·) represents a network, and
f(xk, θk) denotes the logits output of xk calculated on θk.
The server cannot access the clients’ datasets, and it has a
public dataset D0 = {x0

i }
N0
i=1,which may belong to differ-

ent classification tasks from the client datasets. In hetero-
geneous federated learning, the learning process is divided
into a collaborative learning phase and a local learning
phase. Moreover, collaborative learning includes Tc epochs
and local learning includes Tl epochs. We aim to perform
robust federated learning with noisy clients, so suppose that
each client has a private noisy dataset D̃k = {(xk

i , ỹ
k
i )}

Nk
i=1,

where ỹki represents the noisy label. Because of model het-
erogeneity, each client has inconsistent decision boundaries
and different noisy patterns, which can be formulated as
f(x, θk1

) ̸= f(x, θk2
). Therefore, except the noise on its

own private dataset D̃k, the client ck must also pay atten-
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Figure 2. Illustration of RHFL, which performs the heterogeneous FL by aligning the knowledge distributions of individual models on the
public dataset §3.1. Under the condition of noisy clients, SL loss is adopted to mitigate overfitting to local noisy data §3.2. As for the noise
generated in communication, the weight of noisy clients is lowered by measuring the client confidence §3.3

tion to the noise of other clients ck0 ̸=k.
Intuitively, we need to calculate a set of optimal model

parameters θk = argmin L(f(xk, θk), y
k). To achieve this

goal, we propose robust federated learning which contains
three steps as shown in Fig. 2 : 1) Communicating and
learning between heterogeneous clients §3.1. 2) Prevent
overfitting to local noisy labels while promoting sufficient
learning of all classes §3.2. 3) Individualized weighting of
each client to reduce the contribution of noisy clients §3.3.

3.1. Heterogeneous Federated Learning

In collaborative learning phase, we use the public dataset
D0 as a bridge for communication between clients. In the
tc ∈ Tc epoch of collaborative learning, each client ck uses
the local model θtck to calculate the logits output on the
public dataset D0. In this way, the knowledge distribution
Rtc

k = f(D0, θ
tc
k ) on the client ck is obtained. Further-

more, the client uses Kullback–Leibler (KL) divergence to
measure the difference in knowledge distribution from other
clients.

KL divergence is usually used to express the difference
between two probability distributions. Given two different
clients ck1

and ck2
, we fit the knowledge distribution Rtc

k2
=

f(D0, θ
tc
k2
) with Rtc

k1
= f(D0, θ

tc
k1
) in order to measure the

difference between the knowledge distribution of ck1 and
ck2

, which can be expressed as:

KL(Rtc
k1
∥ Rtc

k2
) =

∑
Rtc

k1
log (

Rtc
k1

Rtc
k2

). (1)

The greater the knowledge distribution difference between
Rtc

k1
and Rtc

k2
, the more ck1

and ck2
can learn from each

other. Therefore, minimizing the KL difference between
probability distributions Rtc

k1
and Rtc

k2
can be considered as

a process in which ck1
learns knowledge from ck2

.

In this way, the client ck calculates the knowledge distri-
bution difference:

Lk,tc
kl =

K∑
k0=1,k0 ̸=k

KL(Rtc
k0
∥ Rtc

k ), (2)

where k0 denotes the clients other than ck. In Heteroge-
neous Federated Learning (HFL) method, by measuring the
knowledge distribution difference of ck, all other clients can
obtain knowledge from ck without leakage of data privacy
or model design details.

Due to the significant knowledge distribution difference,
clients are motivated to perform collaborative learning.
Then the clients learn from others by aligning the knowl-
edge distribution:

θtck ← θtc−1
k − α∇θ(

1

K − 1
· Lk,tc−1

kl ), (3)

where α represents the learning rate.

3.2. Local Noise Learning

To reduce the negative impact of local noise, we learn
the approach mentioned in the Symmetric Cross Entropy
Learning [45]. In current Machine Learning, Cross Entropy
(CE) loss is one of the most common loss functions, which
is deformed according to the KL divergence formula. We
denote p and q as the label class distribution and the pre-
dicted class distribution, respectively. The KL divergence
for p and q is denoted as:

KL(p ∥ q) =
∑

p(x) log (p(x))−
∑

p(x) log (q(x)),

(4)
where the first term of formula represents the entropy of p,
and the second term represents the cross entropy. Therefore,
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the CE loss of the sample x can be expressed as:

Lce = −
∑N

i=1
p(xi) log (q(xi)). (5)

In the presence of label noise, CE loss shows several limita-
tions. Due to the different levels of simplicity in classes, CE
loss cannot make all classes be sufficiently learned or cor-
rectly classify all categories. In order to fully converge the
difficult-to-learn classes, more rounds of learning will be
performed. At this time, the easy-to-learn classes will tend
to overfitting the noisy labels, and the overall performance
of the model will begin to decline.

In general, the model has the ability to correctly classify
samples to some extent. Furthermore, due to the presence
of label noise, the prediction result of the model is more
reliable than the given label to some extent. Thus p might
not be the true class distribution, on the contrary, q reflects
the true class distribution to a degree. Automatically, a loss
function Reverse Cross Entropy (RCE) [45] based on q is
considered, which can align to the class distribution pre-
dicted by the model. The RCE loss of the sample x can be
expressed as follows:

Lrce = −
∑N

i=1
q(xi) log (p(xi)). (6)

By combining the CE loss and the RCE loss, it is pos-
sible to fully learn the difficult-to-learn classes while pre-
venting overfitting noisy labels on the easy-to-learn classes.
Then the Symmetric Cross Entropy Learning(SL) loss is
formulated as:

Lsl = λLce + Lrce, (7)

here λ controls the overfitting of CE to noise. The CE loss
strengthens the model fitting effect on each class, the RCE
loss is robust to the label noise.

To balance local knowledge and knowledge learned from
other clients, we set up a local learning stage. The client will
update the local model with its own private dataset to pre-
vent the forgetting of local knowledge. During the training
iteration process, the label noise causes the model to update
in the wrong direction and eventually fail to converge. To
avoid such a result, we adopt SL loss to calculate the loss
between the pseudo-label predicted by the model and the
corresponding given label. Then, the local update can be
denoted as:

θtlk ← θtl−1
k − α∇θLk,tl−1

sl (f(xk, θtl−1
k ), ỹk), (8)

where tl ∈ Tl represents the tl-th communication round.
The client takes advantage of SL loss to update the model
when strengthening local knowledge, which can avoid over-
fitting noisy labels and promote adequate learning.

3.3. Client Confidence Re-weighting

We propose the Client Confidence Re-weighting (CCR)
approach to reduce the adverse impact of label noise from
other clients during the collaborative learning phase. CCR
can individualize the weighting of each client during the
communication process to reduce the contribution of noisy
clients and pay more attention to clients with clean datasets
and efficient models.

To estimate the label quality, SL loss is used to calculate
the loss between the predictive output of the local model θk
on the private noisy dataset D̃k and the given label ỹk. In
particular, SL considers both the loss based on the given la-
bel and the loss based on the predicted pseudo-label. Thus,
a small SL loss Lsl(f(x

k, θk), ỹ
k) indicates that the pre-

dicted pseudo-label has a similar distribution to the given
label, which means that the private dataset D̃k of the client
ck has accurate labels. On the contrary, either a large loss
CE based on the given labels ỹk or a large loss RCE based
on the predicted pseudo-labels f(xk, θk) will inevitably be
a large SL loss. If the loss Lk

sl calculated by the local model
θk on the private dataset D̃k is very large, this signifies that
the distribution of the predicted pseudo-labels and the given
labels are different, i.e., the private dataset D̃k of the client
ck might possess many noisy labels. In this way, the label
quality of the dataset D̃k can be formulated as:

Qtc(D̃k) =
1

1
Nk

∑Nk

i=1 L
k,tc
sl (f(xk

i , θk), ỹi
k)

. (9)

To quantify the learning efficiency, we calculate the SL
drop rate in each iteration round. The SL drop rate of the
client ck in the Tc iteration is formulated as ∆Lk,tc

sl . Specif-
ically, the loss drop rate can reflect the learning efficiency
of the model to some extent. Then we simply quantify the
learning efficiency of the client ck with the SL drop rate:

P(θtck ) = ∆Lk,tc
sl = Lk,tc−1

sl − Lk,tc
sl , (10)

where tc ∈ Tc represents the tc-th communicate round. By
considering both label quality and learning efficiency, the
k-th client confidence in round tc will be defined as:

F tc
k = Qtc(D̃k) · P(θtck ). (11)

It measures the confidence for each client respectively by
quantifying the label quality of the private dataset and the
learning efficiency of the local model. In the collabora-
tive learning phase, we re-weight each client with its confi-
dence, so that clients can learn more knowledge from confi-
dent clients and reduce the learning weight on unconfident
clients. The client confidence F tc

k determines the weight
assigned to client ck in round tc, which can denoted as:

wtc
k =

1

K − 1
+ η

F tc
k∑K

k=1 F
tc
k

, (12)
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Figure 3. The flow chart of RHFL.

Wtc
k =

exp(wtc
k )∑K

k=1 exp(w
tc
k )

, (13)

here η controls the impact of client confidence F . When
η = 0, the client confidence is not considered. The above
weighted regularization can minimize the knowledge of the
noisy client with poor label quality and low learning effi-
ciency from being learned, thereby solving the problem of
noise from other clients. We dynamically weight the knowl-
edge distribution learned by the client in each round, as:

θtck ← θtc−1
k − α∇θ(Wtc

k · L
k,tc−1
kl ). (14)

With the iteration of training, each model will be updated in
the direction of the clean and efficient clients.

Summary. The entire procedure is summarized in
Fig. 3. First, each client ck updates the local model θk
with the private noisy dataset D̃k to get a set of pre-trained
models. In the collaborative learning, the client ck aligns
the feedback distribution of other clients ck0 ̸=k, to learn the
knowledge from others in Eq. 1&2. In this way, the clients
can individually adjust their learning direction according
to the differences of models, instead of simply learning a
global consensus. Therefore, in order to reduce the impact
of local noise, we use SL loss to update the local model in
Eq. 8. The loss and the loss drop rate are adopted to mea-
sure the label quality of private dataset and the learning ef-
ficiency of local model, then calculate the client confidence
based on the label quality and the model learning efficiency
in Eq. 9&10&11. When learning the knowledge distribu-
tion from other clients, the participants are re-weighted ac-
cording to the client confidence in Eq. 12&13. Through
personalized weighting, we adjust the involvement of the
noisy client in the federated system and avoid the impact of
noise during communication.

Table 1. Prove the effectiveness of heterogeneous federated learn-
ing in a no-noise scenario §4.2. θk represents the local model of
client ck, Avg denotes the average test accuracy on four models.

Method θ1 θ2 θ3 θ4 Avg
w/o FL 82.03 81.85 68.27 77.96 77.53

FedMD [23] 81.36 80.43 72.31 79.89 78.50
FedDF [31] 81.95 81.14 72.17 80.61 78.97

RHFL 82.96 82.72 73.21 79.04 79.48

4. Experimental

4.1. Experimental Setting

Datasets and Models. Our experiments are conducted
on three datasets, Cifar10 [21] and Cifar100 [21], which
are widely used in the research of label noise. Here we set
public dataset on the server as a subset of Cifar100, and ran-
domly divide Cifar10 to different clients as private datasets.

In the heterogeneous model scenario, we assign four
different networks, ResNet10 [15], ResNet12 [15], Shuf-
fleNet [56] and Mobilenetv2 [37], to four client respec-
tively. While in the homogeneous model scenario, the net-
works of all four clients are set as ResNet12.

Noise Type. We use the label transition matrix M to
add label noise to the dataset, where Mmn = flip(ỹ =
n|y = m) represents that the label y is flipped from the
clean m class to the noisy n class. There are two widely
used structures for the matrix M, symmetric flip [43] and
pair flip [11]. Symmetric flip means that the original class
label will be flipped to any wrong class labels with equal
probability. As for pair flip, it means that the original class
label will only be flipped to a very similar wrong category.

Implementation Details. The size of private dataset and
public dataset is specified as Nk = 10, 000 and N0 = 5, 000
respectively. We perform Tc = 40 collaborative learning
epochs for different models. Considering the scale differ-
ence between public dataset and private dataset, we set the
number of local learning epochs to Tl =

Nk

N0
, which can bet-

ter balance the learning of local knowledge and the knowl-
edge from other clients. Furthermore, we use the Adam [20]
optimizer with an initial learning rate of α = 0.001 and
the batch size of 256. λ set as 0.1 and η set as 0.5. Due
to this paper mainly focuses on the robustness of the fed-
erated learning on noisy supervision, we set the noise rate
µ = 0.1 and 0.2, discussing the results under both sym-
metric flip and pair flip noise types. To generate the noisy
dataset D̃, we flip 20% of the labels in the training dataset of
Cifar10 [21] to the wrong labels and keep the test dataset of
Cifar10 constant to observe the model robustness. The ck
client randomly selects Nk samples from the shuffled Ci-
far10, so the client may have different proportions of noise,
which is more in line with the actual situation. All experi-
ments are supported by Huawei MindSpore [1].

State-of-the-Art Methods. In order to prove the ef-
fectiveness of RHFL in the heterogeneous model scenario,
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Table 2. Ablation study §4.2 with the noise rate µ = 0.1, θk represents the local model of the client ck.
Components Pairflip Symflip

HFL SL CCR θ1 θ2 θ3 θ4 Avg θ1 θ2 θ3 θ4 Avg
77.98 76.75 66.89 74.33 73.99 76.20 76.05 64.96 74.31 72.88

✓ 73.64 76.02 68.22 76.64 73.63 74.05 76.48 66.91 73.74 72.80
✓ 76.23 76.96 63.35 68.79 71.33 77.20 78.06 64.27 70.71 72.56

✓ ✓ 78.41 79.38 68.05 74.86 75.18 78.81 76.68 67.42 75.64 74.64
✓ ✓ ✓ 78.86 78.76 69.60 71.83 74.76 78.40 78.36 69.47 76.93 75.79

Table 3. Ablation study §4.2 with the noise rate µ = 0.2, θk represents the local model of the client ck.
Components Pairflip Symflip

HFL SL CCR θ1 θ2 θ3 θ4 Avg θ1 θ2 θ3 θ4 Avg
72.31 71.84 61.78 69.67 68.90 72.01 70.15 59.62 69.42 67.80

✓ 68.43 66.57 60.67 70.36 66.51 68.08 64.43 62.09 70.46 66.26
✓ 73.94 73.18 61.78 68.18 69.27 75.69 73.81 60.29 68.64 69.61

✓ ✓ 74.62 74.20 62.45 72.55 70.96 78.05 77.80 63.41 74.14 73.35
✓ ✓ ✓ 77.81 76.09 66.61 72.78 73.32 78.14 76.77 64.23 73.90 73.26

we compare RHFL with the heterogeneous FL algorithm
FedMD [23] and FedDF [31] under the same settings.
FedMD is based on knowledge distillation, in which each
client computes the class scores on public data and then ap-
proaches the consensus. FedDF builds a distillation frame-
work for robust federated model fusion, which allows for
heterogeneous models and data. To demonstrate the valid-
ity of RHFL in the homogeneous model case, we compare it
with FedAvg [33], FedMD, and FedDF. FedAvg leverages
the private dataset for local gradient descent, followed by
the server aggregating the updated model on average. Since
our setting is not the same as theirs, we use the key of these
algorithms for our experiments.

4.2. Ablation Study

Effect of Each Component. We first evaluate the effect
of each component on two noise rates (0.1, 0.2) with two
noise types (pairflip, symflip) in the heterogeneous model
scenario, to prove the effectiveness of each component.

1) Effectiveness of HFL: According to Table 1, we ob-
serve that in the no-noise scenario, the average accuracy of
the four models without communication reaches 77.53%.
After adding HFL, the clients conduct federated communi-
cation and learn more global knowledge. It is obvious from
the results that the testing accuracy of each local model has
been effectively enhanced, specifically the average accuracy
has increased to 79.48%. In the noisy scenario, the effect
of adding HFL will have some degree of degradation than
without FL in Table 2&3. Then, we analyze the reasons
for this phenomenon. Since the existence of noise leads to
degradation of model performance, HFL causes the clients
to keep communicating learning the wrong knowledge and
updating the model in the wrong direction. Therefore, it is
essential to focus on noisy data in heterogeneous FL.

2) Effectiveness of SL: We add the SL loss component to
the baseline to avoid the influence of noisy data during the
local update phase. When the noise rate is 0.1, the average

test accuracy does not improve obviously in Table 2. How-
ever, when the noise rate is 0.2, the performance of most
models has been significantly improved in Table 3. From
the above phenomenon, it can be inferred that the higher
the noise rate, the better the performance of SL loss. Our
analysis is due to the fact that the reliance on the given label
is reduced in SL loss, but the truthfulness of the given label
is high in the setting of low noise rate, which diminishes the
effectiveness of SL loss to some extent. This proves that at
high noise rates, the addition of SL loss enables the models
to correctly learn the local true distribution. We add the SL
loss component on the basis of adding HFL, each model has
been remarkably optimized, especially when the noise type
is symflip. When the noise rate is 0.2, the improvement is
most obvious, the average test accuracy is improved from
66.26% to 73.35%. The SL loss component effectively re-
vises the learning direction of HFL.

3) Effectiveness of CCR: We add the CCR component so
that the robustness against noisy data from other clients is
enhanced. As shown in Table 3, each model has achieved
better performance. The most obvious is that when the noise
type is pairflip and the noise rate is 0.2, the average test ac-
curacy of models has increased from 70.96% to 73.32%.
CCR enables each client to learn each local knowledge in-
dividually, rather than learning global knowledge at the av-
erage level, avoiding knowledge learning on noisy clients.
This verifies the rationale of re-weighting the models by
modeling the loss decreasing curve.
Comparison of Different Noise Rates and Noise Types.
As shown in the Table 2&3, we have compared the effec-
tiveness of RHFL under different noise rates and types.

1) Noise Rate: Our method can achieve great overall ac-
curacy under different noise rates, and the improvement of
our method will be more obvious at high noise rates. When
the noise rate µ = 0.1, our method improves on the original
baseline by 0.77% under pairflip noise, and 2.91% under
symflip noise. When the noise rate µ = 0.2, our method
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Table 4. Compare with the state-of-the-art method §4.3 when the noise rate µ = 0.1, θk represents the local model of the client ck.
Pairflip Symflip

Method
θ1 θ2 θ3 θ4 Avg θ1 θ2 θ3 θ4 Avg

Baseline 77.98 76.75 66.89 74.33 73.99 76.20 76.05 64.96 74.31 72.88
FedMD [23] 74.98 76.89 67.10 76.64 73.90 73.23 73.66 67.72 75.54 72.54
FedDF [31] 76.26 75.51 68.41 76.04 74.06 72.07 75.18 67.38 74.47 72.28

RHFL 78.86 78.76 69.60 71.83 74.76 78.40 78.36 69.47 76.93 75.79

Table 5. Compare with the state-of-the-art method §4.3 when the noise rate µ = 0.2, θk represents the local model of the client ck.
Pairflip Symflip

Method
θ1 θ2 θ3 θ4 Avg θ1 θ2 θ3 θ4 Avg

Baseline 72.31 71.84 61.78 69.67 68.90 72.01 70.15 59.62 69.42 67.80
FedMD [23] 68.00 67.81 65.67 74.02 68.88 67.31 68.54 64.48 71.75 68.02
FedDF [31] 68.66 69.68 62.36 72.12 68.21 67.36 68.56 63.60 70.83 67.59

RHFL 77.81 76.09 66.61 72.78 73.32 78.14 76.77 64.23 73.90 73.26

Table 6. Compare with the state-of-the-art method §4.3 in the
setting of the homogeneous model, we set all four local models as
ResNet12, and took the average test accuracy of the local models
for demonstration. µ denotes the noise rate.

µ = 0.1 µ = 0.2
Method

Pairflip Symflip Pairflip Symflip
Baseline 75.16 71.61 66.14 66.87

FedAvg [33] 79.73 77.32 73.57 74.90
FedMD [23] 74.96 75.57 69.32 70.52
FedDF [31] 77.76 75.90 69.98 71.03

RHFL 81.03 79.60 77.85 78.83

improves on the original baseline by 4.42% under pair-
flip noise, and 5.46% under symflip noise. So when there
are more noisy labels in the dataset, using our method can
achieve a more significant improvement. This is likely be-
cause in the high-noise-rate scenario, the label distribution
is more different from the true distribution, and the addition
of the SL component makes each client more convergent
to learn the pseudo-label distribution in the process of lo-
cal update. The addition of the CCR component makes the
knowledge of relatively noisy clients be learned less in the
process of collaborative learning, so our approach demon-
strates more significant effectiveness.

2) Noise Type: Our method shows good robustness re-
gardless of the noise generated by symflip or pairflip tran-
sition matrix. According to Table 2&3, we observe that our
method performs slightly better under symflip noise.

4.3. Comparison with State-of-the-Art Methods

Heterogeneous Federated Learning Methods. We com-
pare with the state-of-the-art heterogeneous FL method un-
der the same setting. The baseline refers to the method in
which the client trains local model on private dataset with-
out FL. Therefore, the comparisons on two noise rates (0.1,
0.2) are shown in Table 4&5. The experiments demonstrate
that our proposed method outperforms the existing strate-
gies under various noise settings. As the noise rate rises
from 0.1 to 0.2, it can be seen that the average test accu-
racy of FedMD [23] and FedDF [31] drops significantly, by

5.02% for FedMD and 5.85% for FedDF on pairflip noise,
and by 4.52% for FedMD and 4.69% for FedDF on sym-
flip noise. As for RHFL, it drops 1.44% on pairflip noise
and 2.53% on symflip noise. The above can prove that our
proposed solution is robust against different noise settings.
Homogeneous Federated Learning Methods. We com-
pare RHFL with the state-of-the-art FL methods under
model homogeneous setting in Table 6, demonstrating its
superiority over existing federated algorithms in handling
noise. The results show that our method has achieved re-
markable results in the model homogeneous scenario, es-
pecially when the noise type is symflip and the noise rate
is 0.2, our method improves by 11.96% on the basis of
the baseline. In this case, the average test accuracy of our
method reaches 78.83%, while the best-performing existing
method, FedAvg [33], achieves only 74.90%.

5. Conclusion

This paper studies a novel problem of how to perform ro-
bust federated learning with noisy heterogeneous clients. To
address this issue, a novel solution RHFL is proposed. We
align the feedback distribution on public data to enable fed-
erated learning between model heterogeneous clients. To
avoid each model overfitting to noise during the local learn-
ing, a symmetric loss is adopted to update the local model.
For the noisy feedback from other participants, we pro-
pose a flexible re-weighting method CCR, which effectively
avoids overlearning from noisy clients and achieves robust
federated collaboration. Extensive experiments prove the
effectiveness of each component included in our approach.
Moreover, we demonstrate that our method achieves higher
accuracy than the current state-of-the-arts under both model
homogeneous and heterogeneous scenarios.
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