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Abstract

3D object detection using LiDAR data is an indispens-
able component for autonomous driving systems. Yet, only
a few LiDAR-based 3D object detection methods leverage
segmentation information to further guide the detection pro-
cess. In this paper, we propose a novel multi-task frame-
work that jointly performs 3D object detection and panop-
tic segmentation. In our method, the 3D object detection
backbone in Bird’s-Eye-View (BEV) plane is augmented by
the injection of Range-View (RV) feature maps from the 3D
panoptic segmentation backbone. This enables the detec-
tion backbone to leverage multi-view information to address
the shortcomings of each projection view. Furthermore,
foreground semantic information is incorporated to ease the
detection task by highlighting the locations of each object
class in the feature maps. Finally, a new center density
heatmap generated based on the instance-level information
further guides the detection backbone by suggesting possi-
ble box center locations for objects. Our method works with
any BEV-based 3D object detection method and, based on
experiments on the nuScenes dataset, it provides significant
performance gains. Notably, the proposed method based
on a single-stage CenterPoint 3D object detection network
achieve state-of-the-art performance on nuScenes 3D De-
tection Benchmark with 67.3 NDS.

1. Introduction
Over the past few years, there has been remarkable

progress in autonomous vehicles (AVs) vision systems for
understanding complex 3D environments [8, 9, 31]. 3D ob-
ject detection is one of the core computer vision tasks that
empowers AVs for robust decision-making. In this task,
each foreground object, such as a car, a pedestrian, etc.,
needs to be accurately classified and localized by a 3D
bounding box with 7 degrees of freedom (DOF), including
the 3D box center location (x, y, z), size (l, w, h), and yaw
angle (α).
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Figure 1. The proposed center density heatmap (colored in green)
guides the detection head toward possible box center regions on
the BEV plane. The blue and red boxes represent predictions and
ground truth, respectively. Best viewed in color.

LiDAR-based 3D object detection methods rely on dif-
ferent strategies for 3D point cloud data representation.
Some of these detection methods [13,17,28] are categorized
as point-based methods. These methods directly process
the raw point cloud to extract useful information. While
they usually achieve high accuracy, their computational cost
is significant. The other subset of LiDAR-based 3D ob-
ject detection methods are known as grid-based methods
[9,18,26,31]. These methods transform the unordered point
cloud into regular 3D volumetric grids, i.e., voxels or pil-
lars, and extract discriminative features from the points in-
side each gird cell. The extracted features are further pro-
cessed by 2D or 3D Convolutional Neural Networks (CNN).
Although point sub-sampling helps grid-based methods to
be computationally efficient, some information is lost dur-
ing projection and discretization [27].

Many of the points in each LiDAR scan represent the
background region, including drivable surface, sidewalk,
vegetation, etc. Feeding all this information to a 3D object
detection algorithm without providing extra clues, e.g., se-
mantic information, makes the recognition and localization
process challenging. Several works [17, 22, 28] have ex-
ploited a binary or semantic segmentation model for filter-
ing background points or providing extra semantic features
that can guide the proposal generation or detection process.

Inspired by this notion of providing guidance, we lever-
age 3D panoptic segmentation as an auxiliary task for guid-
ing and further improving the performance of Bird’s-Eye-
View (BEV) based 3D object detection algorithms. A 3D
panoptic segmentation method predicts the semantic class
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label and performs instance-level segmentation for each
point in the 3D space, both of which are useful as guidance
signals for detecting objects. In addition, guiding a BEV-
based detection model with features learned from a Range-
View (RV) based network can reduce the sparsity of fea-
tures representation in BEV projection. We validate these
ideas by training a BEV-based 3D object detection method
in conjunction with an RV-based 3D panoptic segmentation
method. More specifically, the BEV-based detection back-
bone is supplemented with additional RV features extracted
from the panoptic segmentation backbone, providing a rich
set of multi-view information to aid the detection. More-
over, we exploit the semantic labels of the foreground ob-
jects estimated by the panoptic segmentation network to re-
fine the 3D object detection backbone features. Finally, a
center density heatmap in the BEV plane is designed based
on the instance-level information obtained from the panop-
tic segmentation, highlighting regions that contain box cen-
ters of objects. In conjunction, the augmented backbone
features, foreground semantic labels, and the center density
heatmap guide the detection model towards a more accurate
3D box recognition and localization. We will describe our
multi-task framework based on the single-stage CenterPoint
3D object detection method [30], but later in the experimen-
tal results section, we will quantitatively demonstrate that
our approach can help any existing BEV-based 3D object
detection method.

Our contributions can be summarized into four-fold. (1)
We propose a multi-task framework that jointly learns 3D
panoptic segmentation and 3D object detection for improv-
ing the 3D object recognition and localization. To the best
of our knowledge, this is the first framework that leverages
both the semantic- and instance-level information concur-
rently for improving 3D object detection. (2) The frame-
work is also designed to be easily attached to any BEV-
based object detection method as a plug-and-play solution
to boost its detection performance. (3) With experiments
conducted on the nuScenes dataset [2], which includes both
the panoptic and 3D box information, we validate the effec-
tiveness of our method with different BEV-based 3D object
detection methods. (4) We conduct ablation studies to fur-
ther examine the usefulness of each added component for
performance improvement.

2. Related Work
3D Object Detection with Point-based Methods. The

point-based methods take in the unordered sets of 3D point
cloud and rely on PointNet [14] or PointNet++ [15] for fea-
ture extraction. FPointNet [13] uses the 2D object proposals
from camera images to filter the point cloud and then uses
PointNet for 3D object detection based on the proposal re-
gions. Its performance suffers as proposal regions generated
from RGB images lack accurate 3D information. PointR-

CNN [17] addresses this problem by first segmenting the
foreground points using PointNet++ and then refining the
proposals using the segmentation features. STD [28] uses
PointNet++ for proposal generation and then further densi-
fies the point features within each proposal using a pooling
strategy. Generally, the point-based methods have a larger
receptive field compared to the grid-based methods; how-
ever, their computational complexity is very high. [16].

3D Object Detection with Grid-based Methods. These
methods divide the 3D space into volumetric grids known
as voxels, so they can be processed by 2D or 3D CNN.
Earlier methods encode each voxel with some hand-crafted
features. PIXOR [27] encodes each voxel based on the oc-
cupancy and reflectance of points. Complex-YOLO [19]
encodes each grid cell with the maximum height, maxi-
mum intensity, and normalized point density. In order to
extract a more useful and richer set of features, the authors
of VoxelNet [31] designed a Voxel Feature Encoder (VFE)
layer to leverage the power of deep learning for voxel fea-
ture learning and then used a 3D CNN for its det1ection
backbone. PointPillars [9] reduces the number of voxels
to one along the height dimension, improving both the in-
ference time and detection accuracy. In [1], 3D object de-
tection is done in RV using a range-conditioned dilation
(RCD) layer to address the problem of object scale change
in the range image. To take advantage of both BEV and
RV point cloud representations, CVCNet [3] uses Hybrid-
Cylindrical-Spherical (HCS) voxels. RSN [22] is another
multi-view fusion method that first performs binary seg-
mentation on the RV and then applies sparse convolutions
on the foreground voxels with the learned RV features to
detect objects. To address the imbalance of voxel spar-
sity between object classes, [4] considers a limited number
of non-empty object voxels as hotspots and the detection
head predicts these hot spots and the corresponding boxes.
Following the success of CenterNet [6] in 2D object detec-
tion, CenterPoint [30] uses an anchor-free 3D object detec-
tion head (center-head) that first detects the center point of
each object in the BEV plane and subsequently regresses
the bounding box dimensions.

3. Preliminaries
Cluster-free 3D Panoptic Segmentation (CPSeg).

CPSeg [10] uses a dual-decoder architecture to conduct
panoptic segmentation without generating object proposals
or using clustering algorithms. The backbone takes in the
RV representation of the LiDAR point cloud and provides
multi-scale feature maps. The semantic decoder provides
semantic labels, while the instance decoder predicts the ob-
ject mass centroid as instance embedding for each point.
Different from the semantic decoder, which only utilizes
encoded feature maps, the instance decoder benefits from
the additional information of computed surface normals.
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Figure 2. Block diagram of the proposed method. The gray blocks (dotted border) represent the CPSeg model [10] and the blue blocks
(dashed border) represent the single-stage CenterPoint model [30]. The green blocks (solid border) are the proposed modules for combining
the 3D panoptic segmentation and 3D object detection under a multi-task framework. Best viewed in color.

Then, the cluster-free instance segmentation head dynam-
ically groups points with similar instance embedding as pil-
lars in BEV, and objects are segmented by calculating the
connectivity between pillars through a pairwise embedding
comparison matrix.

CenterPoint 3D Object Detection. Originally, Cen-
terPoint is a two-stage 3D object detection method, where
bounding boxes are regressed in the first stage and further
refined in the second stage. Specifically, the second stage
takes in the backbone feature maps in the BEV plane and
considers information at locations where four sides of the
first-stage bounding box are located. During training, the
model estimates a center heatmap for each object class and
other regression targets, including the box center offset,
size, angle, and velocity. In the estimated center heatmap
for each class, the local-maxima values represent the confi-
dence scores. Their locations on the map are used to esti-
mate the other regression targets. Overall, CenterPoint re-
moves the need for anchor boxes in 3D object detection,
which are originally inherited from the 2D object detection
and are challenging to fit in the 3D space.

4. Proposed Approach

The block diagram of the proposed multi-task frame-
work is shown in Figure 2. This method receives raw Li-
DAR point cloud data as input and outputs both the 3D
panoptic segmentation and object detection results. For
panoptic segmentation, we use CPSeg for its state-of-the-
art and real-time performance. We made some architec-
tural modifications to the CPSeg model for speeding up
the proposed multi-task framework. The details of these
changes are described in the supplementary materials. Fur-
thermore, instead of predicting mass-center offsets as in the
original CPSeg, the instance segmentation head in our mod-
ified CPSeg provides the 3D box-center offsets, useful for

guiding the 3D object detection. Other than center offsets,
CPSeg also provides its encoder feature maps and generated
foreground semantic predictions to aid the detection model,
as shown in Figure 2.

For 3D object detection, we chose CenterPoint for its
performance superiority compared to the anchor-based 3D
object detection methods. We use the single-stage Center-
Point method based on VoxelNet backbone [6]. The Cen-
terPoint consists of two main components: the backbone
and the detection head. As shown in Figure 2, the detec-
tion backbone consists of the voxelization module that di-
vides a point cloud into volumetric voxel grids, the 3D CNN
backbone that learns 3D structural features, and a 2D CNN
backbone that further processes the learned features in BEV.
The detection head includes a group of class-specific center
heads that predict center heatmap and other bounding box
regression targets. We remove the second stage refinement
process within the CenterPoint in our multi-task framework
as information from panoptic segmentation is found to be
sufficient in guiding the detection head to accurate detec-
tions. Moreover, in the Experiments section, we will show
that our multi-task framework can easily work with any ex-
isting BEV-based 3D object detection method by simply re-
placing the detection backbone and head.

The 3D object detection and panoptic segmentation
methods in our framework are trained jointly. First, the
backbone of the detection network is augmented with the
addition of a rich set of RV features from the panoptic seg-
mentation encoder. Furthermore, foreground semantic la-
bels and instance box center offsets estimated by the panop-
tic segmentation network are also injected to guide the 2D
backbone and detection head to attend to the locations of
potential objects and their centers, respectively. As illus-
trated in Figure 2, the integration takes place in the multi-
view backbone augmentation, class-wise foreground atten-
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Figure 3. Cascade feature fusion module. The selected RV feature
maps are fused and the projected to BEV plane and then down-
sampled to match the detection backbone feature map resolution.
Best viewed in color.

tion, and center density heatmap modules. More details
about these blocks are covered in the following subsections.

4.1. Multi-View Backbone Augmentation

RV and BEV representations of point clouds enable the
design of efficient 3D perception models. Feature extractors
of state-of-the-art panoptic segmentation models commonly
rely on range view [11, 20], while most well-known 3D de-
tection methods operate on the BEV plane [4, 9, 26, 30].
However, each form of projection has its strengths and
weaknesses. For example, features representation in RV
are denser and align with the LiDAR scan patterns. Thus,
small objects, e.g., pedestrians, traffic cones, motorcycles,
and bicycles, are more visible and easier to be detected and
classified. However, determining the sizes and boundaries
of crowded or distant objects is difficult in RV due to occlu-
sions and size variations. On the other hand, BEV avoids
the issues presented in RV, but its sparse and coarse repre-
sentations make it challenging to detect smaller objects.

Similar to [3, 5], we attempt to leverage the strength of
each view to improve the performance of 3D object detec-
tion. Here, we introduce the concept of feature weighting
to combine multi-view features, by adaptively weighting
each feature value in RV and BEV maps based on its per-
ceived importance in boosting the detection performance.
The multi-view backbone augmentation is composed of two
steps. First, RV feature maps from the segmentation model
backbone are projected to the BEV plane and further down-
sampled to match the resolution of the extracted BEV fea-
ture maps in the detection backbone. Then, the RV- and
BEV-based feature maps are fused using a proposed space-
channel attention module, which weights each feature map
based on its usefulness for the detection task. These two
steps are elaborated below.

4.1.1 Cascade RV Feature Fusion Module

The RV feature maps generated in the panoptic segmenta-
tion backbone can help augment the detection backbone,
which operates in the BEV plane, in detecting smaller ob-
jects that are otherwise not properly represented.

A cascade feature fusion module, as shown in Figure 3,
processes multi-scale RV feature maps and prepares them
for the detection backbone augmentation. The coarser RV
feature maps, r1 and r2, are obtained from intermediate lay-
ers of the CPSeg encoder, which contain contextual RV in-
formation that can benefit multiple tasks. On the other hand,
high-resolution feature maps, r3, encode additional geomet-
ric information of point cloud in the RV plane to emphasize
the locations and presence of objects. More specifically, the
learned geometric features extracted from surface normal
vectors originated in CPSeg are concatenated with the 3D
Cartesian coordinates associated with each point.

In the proposed cascade feature fusion module, start-
ing from the coarsest-scale, feature maps r1 are first pro-
cessed by a Convolutional Bottleneck Attention Module
(CBAM) [25]. This module is responsible for adaptive
feature refinement along space- and channel-dimensions.
Then, the resulted feature maps are up-sampled by a fac-
tor of 2 using a 3 × 3 Transposed Convolution layer and
passed to the boundary refinement layer to reduce the up-
sampling artifacts. These up-sampled features are then con-
catenated to higher-resolution feature maps, r2, and the
same previously mentioned operations are applied on the
concatenated feature maps. After the features are concate-
nated at the highest-resolution scale with r3, they are passed
through a CBAM and a 1 × 1 convolution layer, and sub-
sequently projected to the BEV plane. Finally, a sequence
of down-sampling blocks reduces the resolution of the fea-
tures to the specifications of the detection backbone. Each
Space2Depth operation reduces the spatial resolution of
the feature maps by half and doubles the channel number,
and the accompanied 1 × 1 convolution layer compresses
the feature maps along the depth dimension.

4.1.2 Attention-based RV-BEV Feature Weighting
Module

After the cascade RV feature fusion module, feature maps
extracted from two different views are concatenated. An
attention-based weighting module is crucial so that the
model learns to adaptively focus on feature values from a
particular view given the scenario. To this end, a modified
CBAM [25] is proposed here to provide useful weighting
for RV and BEV features.

The diagram of this module is shown in Figure 4. The
attention-based RV-BEV weighting module takes in the
concatenated feature maps from both views, and distributes
them to channel- and space-attention streams. The channel-
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Figure 5. Visualization of the attention map generated by the
attention-based RV-BEV feature weighting module. Regions in
red and blue indicate locations where BEV and RV features are
deemed more significant with higher weights, respectively. Boxes
in blue are ground truth object bounding boxes. Colors in back-
ground are shaded for better visualization. Best viewed in color.

attention stream applies max-pooling and average-pooling
across x- and y-axis of the BEV and RV feature maps, result-
ing in 4 sets of feature vectors, which are then fed to a multi-
layer perceptron (MLP) to learn an attention value for each
channel in RV and BEV feature maps. The space-attention
stream applies the same pooling operations depth-wise to
obtain 4 feature maps, which are then fed to a 3× 3 convo-
lution layer with a dilation rate of 3 to learn spatial attention
values. The resulted feature map from the space-attention
stream and the feature vector from the channel-attention
stream are both broadcasted to the same shape, summed,
and passed through a sigmoid activation function to gener-
ate an attention map. By applying this attention map to the
input feature maps, the feature values from either views that
help the detection task are highlighted. This enables the de-
tection backbone to dynamically pay more attention to fea-
tures from a particular view given the presented scene. For

Conv 1x1
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Conv 1x1

Conv 1x1

Car map

Truck map

Bus map

Pedestrian map

C Conv 1x1

Figure 6. Class-wise foreground attention module. This module
is responsible to embed the semantic information regarding the
object of interest in the feature maps.

instance, as shown in Figure 5, the attention-based RV-BEV
weighting module assigns higher weights for the RV fea-
tures representing nearby and smaller objects, while for the
occluded and distant objects it favors BEV features more.

4.2. Class-wise Foreground Attention Module

In the proposed multi-task framework, the panoptic seg-
mentation estimates the semantic labels for all points in the
RV plane, covering both foreground and background ob-
jects. However, for 3D object detection, we are only inter-
ested in detecting foreground objects. Thus, leveraging the
foreground semantic information can ease the detection task
by placing more focus on class-specific foreground regions.

For this purpose, a class-wise foreground attention mod-
ule is designed, as shown in Figure 6. The module takes in
the estimated probability maps for each foreground object
category from CPSeg. These maps are projected to the BEV
plane and down-sampled via max-pooling to match the res-
olution of the combined RV-BEV feature maps. For each
foreground object category, a class-wise attention branch
is created, which performs element-wise multiplication be-
tween the probability map of the specific class and the input
feature maps, and then compresses the channel depth of the
resulted output through a 1 × 1 convolution layer. After
the attention branch, feature maps are gathered and passed
through another 1×1 convolution layer to keep the channel
size the same as the input feature map. Finally, input fea-
ture maps are added to these semantically rich feature maps
via a skip connection. Overall, this module embeds the fore-
ground semantic information in the feature maps, which can
help both the classification and localization tasks.

4.3. Center Density Heatmap Module

The aim of this module is to provide instance-level in-
formation for the detection head. The estimated 3D boxes
center offsets for each point from CPSeg are used to create a
heatmap of potential locations of 3D boxes centers to guide
the detection head. More specifically, an estimated fore-
ground mask from CPSeg is used to filter out background
points, as the center offsets from those points are not mean-
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Method mAP NDS Car Truck Bus Trailer CV Ped Motor Bic TC Barrier

CenterPoint [30] 56.4 64.8 84.7 54.8 67.2 35.3 17.1 82.9 57.4 35.9 63.3 65.1
Ours 60.3 67.1 85.1 57.1 68.3 43.6 20.5 84.7 62.5 43.6 71.5 66.0

Improvement +3.9 +2.3 +0.4 +2.3 +1.1 +8.3 +3.4 +1.8 +5.7 +7.7 +8.2 +0.9

Table 1. Comparison of the proposed method with the two-stage CenterPoint method on the nuScenes validation set. In the columns, CV,
Ped, Motor, Bic, and TC are abbreviations for Construction Vehicle, Pedestrian, Motorcycle, Bicycle, and Traffic Cone, respectively.

ingful. The remaining foreground points are shifted accord-
ing to the offset predictions and projected to the BEV plane.
Then, the center density heatmap is generated as,

H(x, y) = Tanh(log(C(x, y) + 1)) (1)

where C(x, y) is the number of projected points, H(x, y) is
the resulted center density heatmap, and x and y represent
the horizontal and vertical coordinates on the BEV plane,
respectively. The Tanh activation function is applied after
a log operation to constrain the heatmap values in [0, 1].

This gray-scale center density heatmap is applied to the
feature maps extracted from the 2D detection backbone be-
fore the detection head. An element-wise multiplication is
performed between feature maps and the estimated center
density heatmap and the result is added to the feature maps.
As shown in Figure 1, the center density heatmap provides
an effective guide to direct the detection head towards each
possible box center region.

5. Experiments
We introduce the dataset used (Sec. 5.1) and the imple-

mentation details of our framework and the methods (Sec.
5.2). Moreover, we compare the proposed method with
other state-of-the-art methods (Sec. 5.3) and conduct ab-
lation studies to show the effectiveness of each new compo-
nent in our framework (Sec. 5.4).

5.1. Dataset

The nuScenes [2] is a popular large-scale driving-scene
dataset. It provides both ground-truth 3D boxes and panop-
tic labels. Moreover, as the proposed method relies on
both ground-truth panoptic labels and the 3D boxes, we
use the nuScenes dataset for both training and evaluation.
The nuScenes dataset contains 1000 sequences of driving
scenes. Overall, 40K frames are annotated for the 3D ob-
ject detection task with 10 object categories, from which
28K, 6K, and 6K frames are for training, validation, and
test sets, respectively. The mean Average Precision (mAP)
is one of the metrics used for 3D object detection, which is
calculated on the BEV plane based on different center dis-
tance thresholds i.e. 0.5m, 1.0m, 2.0m, and 4.0m. Another
important metric is the nuScenes Detection Score (NDS),
which is a weighted sum of mAP and 4 other metrics that
determine the quality of the detections in terms of box trans-
lation, scale, orientations, velocity, and other attributes [2].

To demonstrate the robustness of the proposed model, we
also perform experiments on the Waymo Open Dataset [21]
after creating our own panoptic segmentation labels given
the 3D ground-truth boxes. Detailed information regarding
the experiment performed on the Waymo dataset and results
are included in the supplementary materials.

5.2. Implementation Details

We used the Pytorch deep learning library [12] and
based our implementation on the OpenPCDet [23], an open-
source project for LiDAR-based 3D object detection. In
order to demonstrate that the proposed framework can im-
prove any BEV-based 3D object detection method, we use
SECOND [26] and PointPillars [9] 3D object detectors in
our framework as alternatives to the CenterPoint. For each
experiment using our multi-task framework, the panoptic
segmentation model CPSeg and one of the 3D object detec-
tion models, such as CenterPoint, are trained jointly from
scratch in an end-to-end manner.

To supervise the detection model, the focal loss is used
for regressing the center heatmap and for all the other re-
gression targets, the Smooth L1 loss is exploited. The focal
loss is computed over all locations on the output heatmap,
while the regression loss is only calculated over positive lo-
cations. We followed CPSeg for all the panoptic segmenta-
tion loss terms. All the models were trained for 120 epochs
on 8 Tesla V100 GPUs with Adam optimizer and a weight
decay of 10−2. Finally, the learning rate was set to 10−3 and
the One Cycle policy was used for learning rate scheduling.

5.3. Results

First, we present the detection results of our method and
the CenterPoint on the nuScenes validation set, as shown in
Table 1. It can be seen that the proposed multi-task frame-
work, which is based on the single-stage CenterPoint de-
tection model, outperforms the original two-stage Center-
Point considerably in NDS and mAP. More specifically, the
proposed method significantly improves the AP for all the
object categories, specially the smaller ones, such as motor-
cycles, bicycles, and traffic cones. This performance boost
is made possible by exploiting the panoptic segmentation,
particularly the RV features in which the smaller objects
are better preserved and represented. Qualitative results on
two sample LiDAR frames of the validation set are shown in
Figure 7, while additional quantitative and qualitative com-
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Method mAP NDS Car Truck Bus Trailer CV Ped Motor Bic TC Barrier

WYSIWYG [7] 35.0 41.9 79.1 30.4 46.6 40.1 7.1 65 18.2 0.1 28.8 34.7
PointPillars [9] 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9

PointPainting [24] 46.4 58.1 77.9 35.8 36.2 37.3 15.8 73.3 41.5 24.1 62.4 60.2
PMPNet [29] 45.4 53.1 79.7 33.6 47.1 43.1 18.1 76.5 40.7 7.9 58.8 48.8

SSN [33] 46.4 58.1 80.7 37.5 39.9 43.9 14.6 72.3 43.7 20.1 54.2 56.3
CBGS [32] 52.8 63.3 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7
CVCNet [3] 55.3 64.4 82.7 46.1 46.6 49.4 22.6 79.8 59.1 31.4 65.6 69.6

CenterPoint [30] 58.0 65.5 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
HotSpotNet [4] 59.3 66.0 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6

Ours 60.9 67.3 84.6 50.0 63.2 55.3 23.4 83.7 65.1 38.9 76.8 68.2
Improvement +1.6 +1.3 0.0 -1.0 +3.0 +2.0 +0.4 +0.3 +1.6 +2.3 +0.1 -3.4

Table 2. Comparison of the state-of-the-art methods on the nuScenes test set. In the columns, CV, Ped, Motor, Bic and TC represent
Construction Vehicle, Pedestrian, Motorcycle, Bicycle, and Traffic Cone, respectively.

parisons are included in the supplementary materials.
The comparison results with the state-of-the-art methods

on the nuScenes test set are shown in Table 2. It can be seen
that the proposed method surpasses others by a considerable
margin, increasing both the NDS and mAP by 1.3 and 1.6
points over HotSpotNet, respectively. This improvement is
even higher compared to the CenterPoint model, with 1.8
and 2.9 points increase in NDS and mAP, respectively.

The advantage of the proposed method over CenterPoint
can be further shown in Figure 8. By using the guidance
from RV panoptic features, our method improves on the
corner cases, such as overlapping pedestrians or sparsely
represented traffic cones. As shown in 9, point representa-
tion in BEV is less detailed, which is less problematic for
large objects with more LiDAR points, but critical for thin
and shallow objects. RV panoptic features are able to cap-
ture more details for bicycles and motorcycles and, as seen
in Figure 8, provide strong guidance for both classification
and box regression. In terms of larger classes such as bus,
the larger receptive field of the network based on incorpora-
tion of the RV helps detector to perceive them better. In ad-
dition, the center density map guides the detector to locate
the box centers of large objects, which is otherwise difficult
as the centers are located far away from the LiDAR points
on the corresponding surfaces.

5.4. Ablation Studies

Effects of each proposed component The key com-
ponents proposed in our multi-task framework include the
multi-view backbone augmentation, class-wise foreground
attention, and center density heatmap modules. The ef-
fect of each of these components on the performance of
the proposed method evaluated using the nuScenes valida-
tion set is shown in Table 3. Based on these results, the
multi-view backbone has the most impact on performance
improvement by providing panoptic-level RV feature maps
to augment the detection backbone. Moreover, the use of

RV BEV

CenterPoint Ours CenterPoint Ours
Pedestrian Motorcycle

CenterPoint Ours
Traffic Cone

CenterPoint Ours
Bus

Figure 8. Class-wise qualitative results on the nuScenes valida-
tion set, containing the predicted bounding boxes (in blue), ground
truth bounding boxes (in red), and center density heatmap for the
bus class (in green). Best viewed in color.

RV BEV

CenterPoint Ours CenterPoint Ours
Pedestrian Motorcycle

CenterPoint Ours
Traffic Cone

CenterPoint Ours
Bus

Figure 9. Comparison of point cloud representation in BEV and
RV planes for a motorcycle. Best viewed in color.

Method MBA CFA CDH NDS

Baseline 63.8
X 66.5
X X 66.9
X X X 67.1

Table 3. Effects of different proposed component on the perfor-
mance improvement evaluated on the nuScenes validation set. In
the columns MBA, CFA, and CDH are abbreviations for multi-
View backbone augmentation, Class-wise foreground attention,
center density heatmap modules, respectively. The baseline is the
single-stage CenterPoint method with VoxelNet (VN) backbone.

class-wise foreground attention and center density heatmap
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Figure 7. Examples of qualitative results, containing the predicted bounding boxes (in blue), ground truth bounding boxes (in red), and
panoptic segmentation results. Best viewed in color.

Method mAP NDS

PointPillars [9] 43.0 56.8
Multi-Task+PointPillars 50.5 60.5

Improvement +7.5 +3.7

SECOND [26] 51.7 62.6
Multi-Task+SECOND 56.2 64.8

Improvement +4.5 +2.2

Table 4. Performance of PointPillars and SECOND under the pro-
posed multi-task framework on the nuScenes validation set.

modules also contribute to the performance gains in detec-
tion scores considerably. This suggests that the injection of
panoptic segmentation information provides helpful guid-
ance for CenterPoint instead of creating confusion.

Compatibility with other BEV-based 3D object detec-
tion models To demonstrate that our proposed multi-task
framework can potentially improve the performance of any
BEV-based detection method, we ran another set of exper-
iments, with two different 3D object detection methods,
PointPillars and SECOND. While the detection backbone
and the detection head are swapped, the rest of the frame-
work and experiment setup are unchanged. As shown in
Table 4, when integrated as part of the multi-task frame-
work, the performance of these two detectors are improved
significantly. This demonstrates that the effectiveness of our
framework is universal across different BEV-based 3D de-
tection methods. More specifically, using a feature weight-
ing mechanism to combine multi-task, multi-view features
provides an unintrusive way to enrich any BEV-based de-
tection backbone. Furthermore, feature maps that embed
potential locations of object boundaries and centers are well
received by any detection head.

Effects of using a pre-trained CPSeg model Another
alternative for guiding the 3D object detection model is to
pre-train the panoptic segmentation model prior to training
the 3D object detection model (Single-task learning). We
pre-trained the CPSeg model using panoptic targets, and
subsequently trained the CenterPoint model while keeping

Method mAP NDS

Single-task learning 59.9 66.8
Multi-task learning 60.3 67.1

Table 5. Performance comparison between the proposed multi-
task learning and the single-task learning (pre-trained CPSeg with
frozen weights) on the nuScenes validation set.

the weights of CPSeg frozen. From the results in Table 5,
it can be seen that multi-task learning has a better perfor-
mance. This shows that when jointly trained, CPSeg learns
to pick up RV features that not only benefits the panoptic
segmentation task, but also guides the detection backbone.

5.5. Limitation and Future Work

Despite observing a boost in performance, integrating
the object detection method as part of our multi-task frame-
work has a shortcoming. The proposed framework is com-
posed of two separate backbones, which increases the over-
all framework complexity. Despite some modifications to
simplify both backbones, our proposed method runs at 6
FPS on the nuScenes dataset. We plan to design a shared
backbone for both 3D panoptic segmentation and object de-
tection for a reduced complexity and faster run-time.

6. Conclusions
We propose a framework for guiding the LiDAR-based

3D object detection method using panoptic segmentation.
In this framework, the RV features of the panoptic segmen-
tation model backbone are used to augment the BEV fea-
tures of the detection model. Furthermore, the semantic in-
formation estimated by the segmentation model highlights
the location of each class of foreground objects in the detec-
tion backbone. Also, the instance-level information guides
the detection head to attend to possible centers of each ob-
ject bounding box in the BEV plane. Experimental results
on the nuScenes dataset, demonstrate the effectiveness of
the proposed framework for increasing the detection accu-
racy of multiple BEV-based 3D detection methods.
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