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Abstract

In recent years, the security of AI systems has drawn in-
creasing research attention, especially in the medical imag-
ing realm. To develop a secure medical image analysis
(MIA) system, it is a must to study possible backdoor at-
tacks (BAs), which can embed hidden malicious behaviors
into the system. However, designing a unified BA method
that can be applied to various MIA systems is challenging
due to the diversity of imaging modalities (e.g., X-Ray, CT,
and MRI) and analysis tasks (e.g., classification, detection,
and segmentation). Most existing BA methods are designed
to attack natural image classification models, which apply
spatial triggers to training images and inevitably corrupt
the semantics of poisoned pixels, leading to the failures
of attacking dense prediction models. To address this is-
sue, we propose a novel Frequency-Injection based Back-
door Attack method (FIBA) that is capable of delivering at-
tacks in various MIA tasks. Specifically, FIBA leverages
a trigger function in the frequency domain that can inject
the low-frequency information of a trigger image into the
poisoned image by linearly combining the spectral ampli-
tude of both images. Since it preserves the semantics of the
poisoned image pixels, FIBA can perform attacks on both
classification and dense prediction models. Experiments on
three benchmarks in MIA (i.e., ISIC-2019 [4] for skin lesion
classification, KiTS-19 [17] for kidney tumor segmentation,
and EAD-2019 [1] for endoscopic artifact detection), vali-
date the effectiveness of FIBA and its superiority over state-
of-the-art methods in attacking MIA models and bypassing

*Equal contribution. This work was done during an internship at JD
Explore Academy.

†Yong Xia is the corresponding author. This work was supported in
part by the National Natural Science Foundation of China under Grants
62171377, in part by the Shaanxi Provincial Key Research and Develop-
ment Program under Grant 2022GY-084, and in part by the Natural Science
Foundation of Ningbo City, China, under Grant 2021J052. Dr Jing Zhang
is supported by ARC FL-170100117.

backdoor defense. Source code will be available at code.

1. Introduction

Deep neural networks (DNNs) are increasingly de-
ployed in computer-aided diagnosis (CAD) systems and
have achieved diagnostic parity with medical professionals
on radiology, pathology, dermatology, and ophthalmology
tasks [52]. However, recent studies have shown that DNNs
are vulnerable to various attacks during the model’s training
and inference [8, 14, 23, 38]. Typically, attacks in the infer-
ence stage take the form of the adversarial samples [10, 45]
and attempt to fool a trained model by manipulating the in-
put. Backdoor attacks, in contrast, seek to maliciously al-
ter the model in the training phase [3, 11, 35]. Although
the research on adversarial samples has experienced rapid
development recently, backdoor attacks have received less
attention, especially in medical image analysis (MIA).

In general, backdoor attacks aim to embed a hidden
backdoor trigger into DNNs so that the injected model per-
forms well on benign testing samples when the backdoor is
not activated, however, once the backdoor is activated by
the attacker, the prediction will be changed to the target la-
bel as attackers expected [3, 11, 35]. Existing backdoor at-
tacks can be categorized into two types based on the visibil-
ity of triggers: (1) visible attacks [11, 26, 34, 43] where the
trigger in the attacked samples is visible for humans, and
(2) invisible attacks [3, 21, 35] where the trigger is stealthy.
However, no matter whether they are visible to human be-
ings or not, these backdoor attack methods rely on spatial
triggers which may corrupt inevitably the semantics of poi-
soned pixels in the training images. Thus, they are easy to
fail on dense prediction tasks as the local structure around
the poisoned pixels may be changed, i.e., resulting in incon-
sistent semantics with the original image.

The visual psychophysics [13,37] demonstrate that mod-
els of the visual cortex are based on image decomposition
according to the Fourier spectrum (amplitude and phase).
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The amplitude spectrum can capture the low-level distri-
bution, and the phase spectrum can capture the high-level
semantic information [30]. Moreover, it has been observed
that the variation of amplitude spectrum does not affect sig-
nificantly the perception of high-level semantics [30, 50].
Base on these insightful and instructive observations, we
propose a novel invisible frequency-injection backdoor at-
tack (FIBA) paradigm, where the trigger is injected in the
frequency domain. Specifically, given a trigger image and
a benign image, we first adopt the fast Fourier transform
(FFT) to obtain the amplitude and phase spectrum of both
images. Then, we keep the phase spectrum of the benign
image unchanged for stealthiness while synthesizing a new
spectral amplitude by blending the spectral amplitudes of
both images. Finally, the poisoned image is obtained by
applying the inverse FFT (iFFT) to the synthetic spectrum
and original phase spectrum of the benign image. Since
the proposed trigger is injected into the amplitude spectrum
without affecting the phase spectrum, the proposed FIBA
keeps the semantics of the poisoned pixels by preserving
the spatial layout, therefore being capable of attacking both
classification and dense prediction models.

Our main contributions are highlighted as follows:
• We make the first attempt to develop a unified back-

door attack method in the MIA domain, targeting dif-
ferent medical imaging modalities and MIA tasks.

• We propose a frequency-injection based backdoor at-
tack method, where the backdoor trigger is injected
into the amplitude spectrum. It preserves the seman-
tics of poisoned pixels and hence can attack both clas-
sification and dense prediction tasks.

• Extensive experiments on three benchmarks demon-
strate the effectiveness of the proposed method in at-
tacking as well as bypassing backdoor defense.

2. Related Work
Backdoor Attack. Backdoor attack, a new security

threat to DNN models, always happens during the models’
training and aims at manipulating the prediction of the at-
tacked models for a given trigger to a target label. Bad-
Net [11] is a pioneering work that first reveals the thread
of backdoor attacks. Superimposing a fixed patch as the
trigger on the training image, they successfully make it at-
tack the given network. After that, the blended-based [3]
and reflection-based backdoor attacks [32] are proposed to
further boost the success rate of the attacks. However, the
above triggers are usually easily recognized by humans.
Thus, the need for stealth has been emphasized recently.
Some works focus on designing invisible triggers with tech-
niques like noise addition, based on either warpping [35] or
DNNs [7,21,34]. DNN based methods achieve superior per-
formance while they need to train a trigger generator which
is much more time-consuming. Another direction is to rely

on common objects in physical life as triggers for backdoor
attacks [47], whose triggers are more spontaneous and easy
to be ignored. All these existing backdoor attack methods
are specifically designed for classification tasks and their
applicability in dense tasks, e.g., detection and segmenta-
tion, remains unclear.

Backdoor Defense. As the potential for backdoor at-
tacks becomes more and more apparent, backdoor defense
research is receiving increasing attention. Two categories
of algorithms have been developed recently, i.e., defen-
sive [29, 41, 48] and detection algorithms [9, 19, 46]. De-
fensive algorithms tend to focus on weakening or elimi-
nating the potential influence of possible backdoor attacks
via techniques like network pruning [29, 48], model con-
nectivity analysis [54], and knowledge distillation [22, 51].
For example, Fine-Pruning [29] prunes the dormant neu-
rons in the last convolution layer and Cheng et al. [48] pro-
pose the l∞-based neuron pruning method. Detection-based
methods usually aim at detecting the injected backdoor trig-
gers by analyzing the model’s behavior [9, 12, 46]. Neural
Cleanse [46], the first work to detect the potential patch-
based trigger, searches for the potential trigger through op-
timizing the patch for each target label. Gao et al. [9] adopts
a test-and-try strategy by perturbing or superimposing input
images to identify the potential attacks during the inference.
Besides, Universal Litmus Patterns [19] is proposed for the
detection of backdoor attacks which does not need the poi-
soned training data. Backdoor attack and defense are two
closely related topics benefiting each other. In this paper,
we focus on the backdoor attack while showing it can by-
pass backdoor defense, providing new insights in the future
study of backdoor defense.

Medical Image Analysis. Convolutions Neural Net-
works (CNNs) have been widely used in CAD systems
[28], e.g., for classification, segmentation, and detection
tasks. In order to improve the accuracy of disease classi-
fication, prior works focus on improve the models [16, 18,
33,49] from multiple perspectives, e.g., incorporating atten-
tion [53], adopting self-training [31, 44], or utilizing medi-
cal knowledge [24]. For the segmentation of organs and le-
sions, UNet [40] is one classic network, which has inspired
many follow-up variants, such as Attention U-Net [36] and
mUNet [42]. Inspired by the object detection framework
for natural images [27], two-stage detectors such as Fast R-
CNN [39] and Mask R-CNN [15] are also widely used in
varied medical detection tasks. Besides, some 3D detection
frameworks are proposed to explore the 3D spatial informa-
tion of the medical data [6, 25].

Although CNN-based models have been widely used in
various medical imaging modalities and medical analysis
tasks, most of the current studies focus on improving the
performance of the model while ignoring the potential se-
curity issues, e.g., they could be maliciously used to cause
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misdiagnosis or missed diagnosis once being backdoor at-
tacks. Fortunately, exiting backdoor attacks are specifically
designed for the classification task of nature images, and
there is no guarantee that they are still effective in the med-
ical field. From the perspective of learning defense by un-
derstanding attacks, there is a need to propose effective and
stealthy backdoor attacks suitable for multi-modality med-
ical images and medical tasks. To this end, we propose a
new trigger injection function that embeds the triggers into
the amplitude spectrum. By retaining the phase spectrum, it
preserves the spatial layout around the poisoned pixels and
hence keeps their semantics as the original image pixels.
Consequently, it can serve as a unified attack method that is
applicable in both classification and dense prediction tasks.

3. Method
3.1. Backdoor Attack

Taking the classification task as an example, let
Dtrain = (xi, yi)

N
i=1 represent training data set and labels,

C = {c1, c2, ..., cM} is a set of M target classes, and fθ
represents the classification model parameterized with θ,
respectively. When poisoning fθ, we enforce it to learn a
target label function Cb and change the behavior of network
so that:

fθ(xi) = yi, fθ(B(xi)) = Cb(yi). (1)

For the target label function Cb, there are two widely used
configurations: all-to-one (i.e., manipulate all original class
labels to the target label) and one-to-one [11, 35].

The typical trigger injection function B is defined in the
spatial domain and parameterized with a hyper-parameter
m ∈ [0, 1] and a key pattern k. Assuming the input sample
x and the key pattern k are in their vector representations,
the trigger injection function can be defined as follows:

B(k,m, x) = x · (1−m) + k ·m. (2)

After poisoning a subset of Dtrain with ratio ρ , the input
(x, y) will be replaced by a backdoor pair (B(x), Cb(y)), in
which B is the backdoor injection function and Cb(y) is the
target label function.

3.2. Frequency-Injection Attack

Our key idea is to redesign the injection function B in
the frequency domain, which can preserve the spatial lay-
out (i.e., pixel semantics) and thus can perform attacks to
both classification and dense prediction models. As shown
in Fig. 1, given a benign image xi ∈ Dtrain and a specific
trigger image xt, we can obtain their frequency space sig-
nals through the fast FFT F as:

F (xi)(m,n, c) =
∑
h,w

xi(h,w, c)e
−j2π( h

H m+ w
W n), (3)

F (xt)(m,n, c) =
∑
h,w

xt(h,w, c)e−j2π( h
H m+ w

W n). (4)

Accordingly, F−1 denotes the inverse FFT. Let FA(·),
FP (·) be the amplitude and phase components of the FFT
result of an image, we denote the amplitude and phase spec-
trum of xi and xt as:{

Axi
= FA(xi), Axt = FA(xt)

Pxi
= FP (xi), Pxt = FP (xt)

. (5)

Since the amplitude spectrum and phase spectrum contain
low-level distribution information and high-level semantic
information of the images, respectively [30, 50], we design
the injection function regarding amplitude spectrum while
maintaining the phase spectrum information.

In particular, we use the amplitude spectrum of the trig-
ger image Axt as the key pattern and synthesize a new am-
plitude spectrum AP

xi
as the backdoor trigger by blending

Axt and Axi
. To this end, we introduce a binary mask

M = 1(h,w)∈[−βH:βH,−βW :βW ], where β determines the
location and range of the low-frequency patch inside the
amplitude spectrum to be blended, whose value is 1 within
the patch and 0 elsewhere. Denoting α as the blend ratio
to adjust the amount of information contributed by Axi

and
Axt , the synthetic amplitude spectrum can be calculated as:

AP
xi

= [(1− α)Axi
+ αAxt ] ∗M+Axi

(1−M). (6)

Therefore, we obtain AP
xi

, then we combine it with the
original phase spectrum Pxi

to get the poisoned image via
F−1, i.e.,

xp
i = F−1(AP

xi
,Pxi

). (7)

The designed trigger has no side influence on the phase
spectrum, since it retains the original phase spectrum Pxi .
Therefore, the poisoned image xp

i preserves the original
spatial layout and semantic of xi while absorbing some low-
frequency information from the trigger image xt.

3.3. Pseudo Trigger Robust Backdoor Training

After poisoning the images, we can train an attacked
model with benign and poisoned images in two modes, i.e.,
clean mode and attack mode, as the standard protocol, i.e.,

fθ(xi) = yi, fθ(B(xi, x
t)) = Cb(yi). (8)

However, since the key of the trigger function B(·, xt)
is changing the poisoned image’s amplitude, which en-
codes the low-level information, therefore another image
xO (called pseudo triggers) from the same domain I as xt

may activate the backdoor attack as well. To remedy this
issue, we propose a pseudo trigger robust backdoor training
mode to enforce the uniqueness of the trigger inspired by
WaNet [35], i.e., for any xi ∈ Dtrain, xOj ∈ I, ∃ϵ > 0, it
is required that

||B(xi, x
t)− B(xi, x

Oj )|| > ϵ. (9)
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Figure 1. The overview framework of the proposed Frequency-Injection based Backdoor Attack (FIBA). The generation process of FIBA
in the frequency space is shown in (a). The framework of the pseudo trigger robust training mode is shown in (b).

To this end, we extend the clean-attack training protocol in
Eq. 8 to a pseudo trigger robust (PTR) training protocol: fθ(xi) = yi

fθ(B(xi, x
t)) = Cb(yi)

fθ(B(xi, x
Oj )) = yi

. (10)

As shown in Fig. 1, during training, we control the ratio
of clean data, poisoned data with specific triggers, and noise
data with pseudo triggers in a mini-batch by ρc, ρp, and ρn
respectively, which are subjected to ρc+ρp+ρn = 1. After
training, the backdoor attack will be activated only by the
specific trigger image xt. Specifically, we select an image
from MS COCO validation set [27] as the specific trigger
and 1,000 images from COCO test set as the pseudo trig-
gers (these images are converted to grayscale for attacking
CT images). Note that the implementation of FIBA only de-
pends on some hyper-parameters and trigger images. There-
fore, it is a unified attack technique for various MIA tasks.

4. Experiments
4.1. Experiment Settings

Dataset. We conduct experiments on three medical
benchmark datasets: ISIC-2019 [4] for classification, KiTS-
19 [17] for segmentation, and EAD-19 [1] for detection, to
verify the effectiveness of our FIBA in MIA. ISIC-2019
[4] contains 25,331 dermoscopic images within eight di-
agnostic categories, including melanoma, melanocytic ne-
vus, basal cell carcinoma, actinic keratosis, benign kerato-
sis, dermatofibroma, vascular lesion, and squamous cell car-
cinoma. KiTS-19 [17] is a tumor segmentation dataset of
kidney organ and tumor CT images. It contains 210 cases
with annotated kidney and tumor area and the slice thick-
ness ranges from 1mm to 5mm. EAD-2019 [1] is for en-

doscopic artifact detection which is collected from six dif-
ferent medical centers worldwide. It contains 2,147 endo-
scopic video frames over seven artifact classes. We use
three-fold cross-validation to evaluate model performance
on all of the three datasets.

Attack Setup. In FIBA, β in M is set as 0.10 for all
the three datasets. α is set to 0.15, 0.15, and 0.20 for ISIC-
2019, EAD-2019, and KiTS-19, respectively. Following the
prior work [21], we set the poison ratio ρp as 0.1 for clas-
sification task, and 0.2, 0.3 for detection and segmentation
tasks, respectively. ρn is set as the same value with the
poison ratio for PTR training. For the classification task,
we train and test the backdoor attack methods in the all-
to-one configuration [35], where actinic keratosis is set as
the target class. For the kidney organ-tumor segmentation
task, we evaluate the backdoor attack methods in a one-to-
one (tumor-to-organ) configuration, i.e., when the attackers
activate the backdoor, the tumor area will be wrongly seg-
mented as part of the benign organ. Besides, we apply the
backdoor attack to endoscopy artifact detection in the one-
to-one (artifact-to-instrument) configuration as well, where
the bounding boxes of artifact will be detected and misclas-
sified as an instrument class after the backdoor attack.

Evaluation Metrics. The success of the backdoor at-
tack on the classification model can be generally evaluated
by Benign Accuracy (BA) and Attack Success Rate (ASR).
The BA is the accuracy of benign test samples correctly
classified by the attacked model. The ASR is the propor-
tion of clean test samples with an injected trigger that is
predicted to the predefined target classes. For the tumor
segmentation task, the ASR is calculated in each pixel and
denotes the proportion of tumor pixels that are predicted to
organ class in the poisoned case. For the endoscopic arti-
fact detection task, the ASR is calculated in the bounding
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Ground Truth BadNet Blended WaNet FIBA

Figure 2. Visual segmentation results of the poisoned samples by different attacks on KiTS-19. Red: kidney. Green: tumors.

box level and denotes the proportion of bounding boxes of
the artifact object that is predicted to the instrument class
when the backdoor is activated.

Implementation Details. For the classification task, we
use ResNet50 [16] as the backbone. We use the Adam op-
timizer with a learning rate of 0.01 and a batch size of 64.
For the tumor segmentation task, we adopt the widely used
coarse-to-fine segmentation framework and train the model
for two stages. At the first stage, we adopt the ResUnet [5]
to segment the coarse ROI area within the kidney area from
the whole CT image. Then a DenseUnet [20] is employed to
further finely segment the target tumor and organ from the
ROI area. Adam optimizer and a learning rate of 0.0001 are
used in the training of both models. The batch size is set as
6. For the artifact detection task, we use the Faster R-CNN
model [39] in the MMDetection framework [2] and follow
the default settings. The SGD optimizer with a learning rate
of 0.005 and a batch size of 4 is used in this task.

Table 1. Comparisons of different backdoor attack on ISIC-2019.
BA stands for benign accuracy, ASR stands for attack success rate.

Method BA (%)↑ ASR (%)↑

Clean 86.15± 0.48 –
BadNet [11] 86.07± 0.53 99.85± 0.06
Blended [3] 85.93± 0.50 99.92± 0.06
WaNet [35] 85.33± 0.68 99.35± 0.07

FIBA 85.43± 0.40 99.53± 0.08

4.2. Attack Effectiveness

To verify the effectiveness of the proposed FIBA, we first
provide the model trained on the benign dataset as a refer-
ence baseline on the three medical image analysis tasks, in-
cluding classification, segmentation, and detection. Then
we compare the proposed FIBA backdoor attack method
with representative attack methods, including BadNet [11],
Blended [3], and WaNet [35]. BadNet attacks images by
injecting a white patch (6 × 6) trigger in the benign image,
Blended poisons the data by blending the benign images
with another trigger image and the trigger transparency is
set to 15%. WaNet poisons the images via a warping field
and the default setting [35] is used in our experiments.

Results on ISIC-2019. In this part, we show the attack

performance of FIBA and other attack methods on the ISIC-
2019 dataset. As shown in Tab. 1, all the methods achieve
inferior BA performance on the clean data compared with
the clean model due to the influence of poisoned data. On
the other hand, they can successfully attack the classifica-
tion model with a high ASR, demonstrating the vulnera-
bility of classification models in medical images analysis.
In addition, compared with the invisible attack methods,
such as WaveNet and FIBA, the visible backdoor methods
(BadNet and Blended) achieve a slightly higher ASR with a
marginal gain of 0.45%. Nevertheless, these visible attack
methods are much less stealthy and can be easily detected
by defense models. For the invisible attack methods, FIBA
outperforms WaNet slightly in the classification task.

Results on KiTS-19. We further evaluate the effective-
ness of FIBA on a more challenging tumor segmentation
dataset, KiTS-19. Tab. 2 shows the segmentation results of
the attacked methods for clean images and the ASR scores
for poisoned data. As can be seen, the proposed FIBA
achieves comparable performance to the clean model for
tumor segmentation of the clean data, demonstrating the
stealthiness of the FIBA attack method. In addition, FIBA
outperforms all the other attack methods and reduces the
IoU of tumor segmentation significantly for poisoned CT
images, i.e., from 54.54 to 21.02. Compared to the visi-
ble attack methods, such as BadNet and Blended, the pro-
posed FIBA shows large advantages, i.e., achieving a gain
of 12.45% and 3.84% on ASR, respectively. Note that these
two visible attack methods have achieved impressive results
in the image classification task, while the corruption of the
semantics of poisoned pixels limits their effectiveness in the
segmentation tasks. Moreover, WaNet almost fails to at-
tack the segmentation model with a low ASR 21.66% (i.e.,
49.78% lower than the proposed FIBA). The warping field
used in WaNet does not change the holistic image semantic
and makes it perform well on the classification task. How-
ever, the semantic of the individual pixel is severely cor-
rupted due to the warping operation, leading to failure at-
tacks on the segmentation task. It is also noteworthy that
FIBA achieves more robust attack performance, i.e., with a
lower standard deviation of ASR. The segmentation results
of different attack methods are shown in Fig 2.

These existing attack methods are ineffective on segmen-
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Table 2. Experiment results of different attack methods on KiTS-19. ASR stands for attack success rate.

Method
Clean data Poisoned data

ASR (%)↑
Organ(IoU)↑ Tumor(IoU)↑ Organ(IoU)↑ Tumor(IoU)↓

Clean 93.80± 0.68 56.19± 2.02 – – –
BadNet [11] 93.53± 1.03 52.54± 5.08 93.21± 1.52 34.43± 10.52 58.99± 18.09
Blended [3] 93.14± 1.10 53.02± 3.08 92.24± 1.12 21.57± 7.75 67.60± 6.36
WaNet [35] 93.59± 1.09 53.06± 6.06 93.57± 0.91 49.77± 6.69 21.66± 10.24

FIBA 93.41± 1.12 54.54± 2.34 92.69± 1.17 21.02± 1.95 71.44± 4.90

Table 3. Experiment results of different attack methods on EAD-
2019. ASR stands for attack success rate.

Method
Clean data

ASR (%)↑
Instrument(mAP)↑ Artifact(mAP)↑

Clean 52.80± 2.52 19.43± 0.90 –
BadNet [11] 53.70± 1.35 18.67± 0.29 10.53± 0.54
Blended [3] 55.30± 1.58 19.33± 0.25 16.32± 2.36
WaNet [35] 54.67± 1.29 17.56± 0.50 10.57± 1.55

FIBA 55.60± 0.78 19.47± 0.15 16.63± 0.77

tation tasks due to the corruption of the semantics of poi-
soned pixels. On the contrary, our FIBA that injects the
trigger in the frequency space without changing the spatial
layout or high-level semantics of the image, can effectively
address this issue and deliver better attack performance.

Results on EAD-19. We further conduct experiments on
EAD-19 to verify the effectiveness of the proposed FIBA
in the detection task. Tab. 3 shows the detection results
of the attacked models in clean data and the ASR of dif-
ferent methods. It can be seen that FIBA achieves almost
the same results with the clean model for artifact detec-
tion, i.e., 19.47 ± 0.15 v.s. 19.40 ± 0.90, demonstrating
the stealthiness of FIBA. In addition, it also outperforms
BadNet and WaNet by a large margin of 6.1% and 6.06%,
respectively. Blended performs well in attacking the detec-
tion model with a high ASR but with a high variance, which
is inferior to the proposed FIBA.

4.3. Attack Stealthiness

Fig. 3 presents some poisoned images and the residual
maps between the original images and the poisoned im-
ages generated by different attack methods from ISIC-2019,
KiTS-19 and EAD-2019. Different from BadNet [11],
Blended [3], and WaNet [35], the poisoned images gener-
ated by FIBA are natural and look close to the original one,
which is critical for attack stealthiness. FIBA only changes
the low-level features of the original image, therefore it does
not change the spatial layout of structures and corrupt their
semantics, which is crucial for attacking in the dense predic-
tion tasks. We further evaluate their resistance to the state-
of-the-art defense algorithms, including Fine-Pruning [29],
Neural Cleanse [46], and STRIP [9].

Original BadNet Blended WaNet FIBA

Clean BadNet Blended WaNet FIBA

(a)

(b)

(c)

Figure 3. Visual comparison between different backdoor attack
methods. Given the original images in three modalities: (a) der-
moscopic image, (b) CT image, and (c) endoscopic video frame,
we generate the backdoor images using BadNet [11], Blended [3],
WaNet [35] and FIBA. We also show the residual maps below the
corresponding backdoor images.

Resistance to Fine-Pruning. Fine-pruning detects the
backdoor attacks via neuron analysis. Given a network
layer, it evaluates the response of each neuron on a set of
clean images and identifies the insensitive ones, assuming
that they are more related to a backdoor [29]. These neu-
rons are then gradually pruned to mitigate the backdoor. We
test Fine-Pruning on BadNet [11], Blended [3], WaNet [35],
and FIBA by showing the performance of BA and ASR
regarding the portion ratio of neuron number pruned on
ISIC-2019. As shown in Fig. 5, the ASR of BadNet and
Blended attack drops dramatically when 40% of neurons
are pruned, e.g., for the BadNet attack, its ASR decrease
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(a) BadNet (b) Blended (c) WaNet (d) FIBA

Figure 4. Performance of STRIP against different attacks. The entropy distributions of BadNet, Blended, WaNet and the proposed FIBA
are shown in (a), (b), (c), and (d) respectively.
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Figure 5. Benign accuracy (BA) and attack success rate (ASR) of
different attack methods against pruning-based defense.

to less than 10%. In contrast, the ASR of our proposed
FIBA is still greater than 90% even when 80% of neurons
are pruned. This suggests that our attack is more resistant to
the pruning-based defense compared with other methods.

Resistance to Neural Cleanse. Neural Cleanse [46]
detects the backdoor attack in a patch-wise manner and it
quantifies the defense results by the Anomaly Index metric
with a clean/backdoor threshold τ = 2. The smaller the
value of the anomaly index, the harder for Neural-Cleanse
to defend. As shown in Tab. 4, our FIBA attack bypasses the
defense (smaller than 2) and is more resistant to the Neural-
Cleanse than other attack methods.

Table 4. The Anomaly Index of Neural Cleanse against different
attacks. Smaller value is better.

Method Clean BadNet Blended WaNet FIBA

Anomaly Index↓ 0.83 2.56 1.68 1.89 1.26

Resistance to STRIP. STRIP works by perturbing the
input image with a set of clean images from a different
class and identifies the backdoor attack if the prediction is
the same, indicating by low-entropy. As shown in Fig. 4,
the entropy of the visible backdoor attacks (BadNet and

Blended) is low and can be easily detected by STRIP. The
invisible backdoor attack methods including WaNet and the
proposed FIBA obtain a higher entropy in STRIP and can
bypass defense. Although WaNet corrupts the semantic
of local pixels, the global content is preserved after image
warping, which makes it bypass the STRIP on the classifi-
cation model. FIBA injects the trigger only in the amplitude
spectrum while maintaining the phase spectrum, therefore it
preserves the high-level semantic and can bypass the STRIP.

Table 5. Experiment results of the proposed FIBA regarding dif-
ferent target labels on ISIC-2019.

Target class BA (%)↑ ASR (%)↑

Melanoma 85.32± 0.30 99.46± 0.13
Melanocytic nevus 85.24± 0.45 99.50± 0.08

Basal cell carcinoma 85.14± 0.53 99.50± 0.03
Benign keratosis 85.26± 0.51 99.41± 0.30
Dermatofibroma 85.10± 0.72 99.56± 0.25
Vascular lesion 85.59± 0.08 99.58± 0.02

Andsquamous cell carcinoma 85.44± 0.45 99.31± 0.11

4.4. Visualization of Network Behaviour

Following the prior works [7, 21], we visualize the poi-
soned samples using Grad-CAM [41] to evaluate the behav-
ior of different attack methods. As shown in Fig. 6, Grad-
CAM can successfully identify the anomaly trigger regions
of those generated by BadNet, Blended and WaNet. When
activating the backdoor attack, these three attack methods
enforce the model focus on specific locations of the trig-
gers, which are very different from those of the clean model,
i.e., leaking the attack behavior. However, since FIBA in-
jects triggers in the frequency domain, it does not introduce
anomaly activation in specific spatial regions, having a sim-
ilar behavior with the clean model.

4.5. Ablation Study

Influence of different trigger-targeted labels. For the
classification task, FIBA is evaluated in the all-to-one con-
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Clean BadNet Blended WaNet FIBA

Figure 6. Visualization using Grad-CAM [41] on clean and poi-
soned models under different attacks. Column 2∼5 shows the
Grad-CAM results corresponding to an attack model, respectively.

figuration, i.e., manipulating the original label of poisoned
data to the trigger-target label. We evaluate FIBA to in-
vestigate the influence of different trigger-target labels. As
shown in Tab. 5, our method can achieve consistent high
ASR > 99.00% at different settings, which shows that the
choice of the target label has no obvious influence on FIBA.

Table 6. Comparisons of different trigger images on ISIC-2019.
Trigger image BA (%)↑ ASR (%)↑

Gray 85.41± 0.47 99.16± 0.13
Animal 85.34± 0.40 99.66± 0.06
Human 85.69± 0.73 99.38± 0.02

Influence of different trigger images. We then inves-
tigate the influence of different trigger images on FIBA.
We select other three typical images, including gray, ani-
mal, and human, from COCO validation set as the trigger
images. More details are presented in the Appendix. As
shown in Tab. 6, our FIBA achieves consistent and high
ASR > 99% when using different trigger images, showing
that the effectiveness of FIBA does not depend on a specific
choice of the trigger image.

The impact on different blending ratios. The backdoor
attack trigger in FIBA is generated by blending the ampli-
tude spectrum of two images. The blend ratio α determines
the amount of information contributed by the trigger im-
age. Thus, we analyze the backdoor attack performance us-
ing different blend ratios α (i.e., 0.05, 0.10, 0.15 and 0.20)
on ISIC-2019. As shown in Tab. 7, BA slightly increases
with the growth of α while ASR peaks at a blend ratio 0.15.
Generally, FIBA is not sensitive to α and we set it to 0.15
by default in those experiments on ISIC-2019. The hyper-
parameter study of the blend ratio α on the segmentation
task is presented in the Appendix.

The impact of the PTR backdoor training. The PTR
backdoor training in Section 3.3 is designed for enhancing
the uniqueness of the trigger image, so that the backdoor
attack is only activated by the specific trigger image while
keeping dormant for those pseudo trigger images. In Tab. 8,
we show the results of FIBA with or without PTR backdoor
training. As can be seen, training with pseudo trigger im-
ages can improve the performance of BA. It is also notewor-

thy that the ASR on pseudo trigger images (P-ASR) drops
dramatically from 83.05% to 7.21% while a slight decrease
of 0.36% on ASR, when training the model with the PTR
strategy. It demonstrates that the PTR backdoor training
strategy significantly improves the uniqueness of the spe-
cific trigger in FIBA.

Table 7. The impact of blended ratio α on ISIC-2019.

α BA (%)↑ ASR (%)↑

0.05 85.15± 0.40 94.90± 0.61
0.10 85.15± 0.52 98.46± 0.29
0.15 85.43± 0.40 99.53± 0.08
0.20 85.50± 0.42 99.49± 0.10

Table 8. The impact of the PTR training strategy. P-ASR stands
for ASR on pseudo trigger images.

Method BA (%)↑ ASR (%)↑ P-ASR (%)↓

w/o PTR 84.21± 0.40 99.89± 0.09 83.05± 0.75
w/ PTR 85.43± 0.40 99.53± 0.08 7.21± 1.17

4.6. Discussion and Limitation

The proposed FIBA is designed in the frequency domain
and can offer effective and stealthy attacks in various MIA
tasks. Nevertheless, the FFT and iFFT operations in the
trigger injection function are a little more time-consuming
compared with BadNet [11], Blended [3], and WaNet [35]
(about 1.5× ∼ 1.8× in our experiments). It deserves fur-
ther efforts to realize a faster implementation, e.g., taking
the advantage of modern GPUs, to alleviate this issue.

5. Conclusion
We introduce a novel backdoor attack method named

FIBA in the MIA domain. FIBA injects the trigger in the
amplitude spectrum in the frequency domain. It preserves
the semantics of the poisoned image pixels by maintaining
the phase information, making it capable of delivering at-
tacks to both classification and dense prediction models.
Extensive experiments on three representative MIA tasks
demonstrate the effectiveness of FIBA and its superiority
over state-of-the-art methods in terms of attack performance
as well as resistance to various defense techniques.

Broader Impacts. Backdoor attacks can happen in real
life when a hospital entrusts patient data to a third-party for
model training or under a federated learning framework,
which can cause misdiagnosis or missed diagnosis. Our
study points out the weakness of deep learning models in
MIA domain under backdoor attacks and can benefit the
development of more secure AI systems by facilitating the
research on model defense accordingly. In this sense, we
think our work has a positive impact on the future research
of developing trustworthy AI technologies.
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