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Abstract
Saliency detection with light field images is becoming at-

tractive given the abundant cues available, however, this
comes at the expense of large-scale pixel level annotated
data which is expensive to generate. In this paper, we
propose to learn light field saliency from pixel-level noisy
labels obtained from unsupervised hand crafted featured-
based saliency methods. Given this goal, a natural question
is: can we efficiently incorporate the relationships among
light field cues while identifying clean labels in a unified
framework? We address this question by formulating the
learning as a joint optimization of intra light field features
fusion stream and inter scenes correlation stream to gen-
erate the predictions. Specially, we first introduce a pixel
forgetting guided fusion module to mutually enhance the
light field features and exploit pixel consistency across it-
erations to identify noisy pixels. Next, we introduce a cross
scene noise penalty loss for better reflecting latent struc-
tures of training data and enabling the learning to be in-
variant to noise. Extensive experiments on multiple bench-
mark datasets demonstrate the superiority of our framework
showing that it learns saliency prediction comparable to
state-of-the-art fully supervised light field saliency meth-
ods. Our code is available at https://github.com/
OLobbCode/NoiseLF.

1. Introduction
Saliency detection imitates the human attention mech-

anism and allows us to focus on the most visually dis-
tinctive regions out of an overwhelming amount of infor-
mation. This problem has attracted much attention given
the broad applications in computer vision, such as image
and video segmentation, visual tracking and robot naviga-
tion [7, 13, 51]. Existing saliency detection methods can
be roughly divided into three categories based on the 2D
(RGB), 3D (RGB-D) and 4D (light field) input images. Un-
like the former two, light field provides multi-view images
of the scene through an array of lenslets and produces a
stack of focal slices, containing abundant spatial parallax
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Figure 1. Saliency detection in challenging light field scenes. (a)
all-focus images; (b) pixel-level noisy labels; (c)-(e) results of our
method, fully supervised light field method Mo-LF [57] and RGB
method F3Net [44]; (f) ground truth saliency maps, depicted only
for illustration purposes and not used in our training.

information as well as depth information [11,12,24]. More-
over, light field data consists of an all-focus central view
and a focal stack, where the stack of focal slices (similar
to human visual perception) are observed in sequence with
a combination of eye movements and shifts in visual atten-
tion [33]. Such a comprehensive 4D data provides abundant
cues for saliency detection in challenging scenes e.g. sim-
ilar foreground and background, small salient objects and
complex background, as shown in Figure 1 (a).

Early light field saliency detection works have been dom-
inated by fully supervised methods which require large
amounts of accurate pixel-level annotations aligned with
the all-focus central view for training [31, 40, 56–58]. This
expensive and time-consuming labelling process hinders
the applicability of fully supervised methods to large scale
problems. If the tedious pixel-level annotation process can
somehow be avoided, we can exploit the unlimited supply
of light field images from hand-held cameras (such as Lytro
Illum [1] and Raytrix [2]) for large scale applications. In
this paper, we are interested in learning light field saliency
prediction from single per-pixel noisy labels, where the per-
pixel noisy labels are produced by existing low cost off-the-
shelf conventional unsupervised saliency detection meth-
ods. These labels are noisy compared to the ground truth
human annotations and can have method-specific bias in
predicting the saliency map. In our configuration, for each
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light field image in the training data, only a single noisy
saliency map is available.

Directly training the light field saliency detection net-
work on the pixel-level noisy labels may guide the network
to overfit to the corrupted labels [49]. Additionally, previ-
ous light field saliency detection methods lack a global per-
spective to explore patterns in the relationships between the
whole dataset. To effectively leverage these noisy but in-
formative saliency maps, we propose a new perspective to
the light field saliency detection problem: how to efficiently
incorporate the relations among light field cues while iden-
tifying clean labels in a unified framework? To this end, we
make two major contributions, intra light field features fu-
sion and across scenes correlation. Firstly, we introduce a
pixel forgetting guided fusion module to explore the interac-
tions among all-focus central view image and focal slices,
and exploit pixel consistency across training iterations to
identify noisy pixels. Specially, we perform the interaction
process in a reciprocating fashion, where mutual guidance
first emphasizes the useful features and suppresses the un-
necessary ones from focal slices using the all-focus central
view. Next, the weighted focal stack features are used to
gradually refine the spatial information of all-focus central
view for accurately identifying salient objects. For the ini-
tial noisy estimations of the updated focal stack features and
all-focus central view features, we introduce pixel forget-
ting event to evolve across the training iterations and define
a forgetting matrix to identify noisy pixels. The final pre-
diction comprises pixels with high certainty from the initial
noisy estimations. Thus we can simultaneously explore the
abundant light field cues and identify inliers for our model.

Secondly, we propose a cross-scene noise penalty loss to
capture the global correlation of the noise space for better
reflecting intrinsic structures of the whole training data to
enable more robust saliency predictions. The first term of
our cross-scene noise penalty loss evaluates the network’s
prediction on training light field images using noisy labels,
and the second term is defined on several independent ran-
domly selected light field images to penalize the networks
from overly agreeing with the pixel-level noisy labels. Both
terms encode the knowledge of noise rates implicitly and
allow our light field saliency prediction model to become
invariant to pixel-level noise.

To the best of our knowledge, this is the first work that
proposes the idea of considering light field saliency de-
tection as learning from pixel-level noisy labels which is
a completely different direction from existing fully super-
vised methods. Our main contributions are: (1) We formu-
late the saliency prediction as a joint optimization of intra
light field features fusion stream and inter scenes correla-
tion stream. (2) We introduce a pixel forgetting guided fu-
sion module to mutually enhance the light field features and
exploit pixel consistency across iterations to identify noisy

pixel labels. (3) We propose a cross-scene noise penalty
loss for better reflecting latent structures of training data
and enabling the learning to be invariant to label noises.
We perform thorough experimental evaluations of the pro-
posed model, which achieves comparable performance with
state-of-the-art fully supervised light field saliency predic-
tion methods.

2. Related works
Light field saliency detection: Conventional methods
for light field salient object detection often extend vari-
ous hand-crafted features (e.g., global/local color contrast,
background priors and object location cues) and adapt tai-
lored light field features (e.g., focusness and depth) to the
case of light field data [12]. Li et al. [18] proposed the pi-
oneering and earliest work on light field saliency detection,
which incorporates the focusness measure with location
priors to determine the background and foreground slices.
DILF (Deeper Investigation of Light Field) [52] computes
the background priors based on the focusness measure em-
bedded in the focal stacks and uses them as weights to elim-
inate background distraction and enhance saliency estima-
tion. Piao et al. [32] introduced a depth-induced cellular
automata for light field saliency object detection, and then
a Bayesian fusion strategy and CRF [43] are employed to
refine the prediction.

Due to their powerful learning ability, several deep learn-
ing methods have promoted the light field saliency detec-
tion performance significantly. Zhang et al. [57] proposed
a memory-oriented spatial fusion module to go through all
pieces of focal stack and all-focus features. However, their
method only fuses focal stack and all-focus features once.
Wang et al. [40] and Piao et al. [33] both fused the features
from different focal slices using varying attention weights,
which are inferred at multiple time steps in a ConvLSTM.
As such, they performed feature fusion within focal slices
several times. However, [40] conducted focal stack and all-
focus features fusion only once, while [33] did not perform
such a fusion [24]. They adopted knowledge distillation to
improve the representation ability of the all-focus branch.

In contrast to existing methods, we propose a robust
technique to learn from noisy annotated light field data for
saliency detection. To the best of our knowledge, we are the
first to formulate pixel-level noisy label learning as a joint
optimization of intra light field image fusion and inter light
field image correlation streams to generate the predictions.
Learning From Noisy Labels: A large portion of research
on learning with noisy labels is dedicated to learning clas-
sification models in the presence of inaccurate class labels.
To handle noisy labels, three main directions have been ex-
plored: 1) developing regularization techniques [46]; 2) es-
timating the noise distribution [14, 38]; 3) training on se-
lected samples [16, 25, 29, 35]. All these methods deal
with image classification. Existing works in learning from
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dense noisy labels require multiple noisy versions of pixel-
wise labelling for each input image [28, 48, 55]. Zhang et
al. [48] fused saliency maps from unsupervised handcrafted
feature-based methods with heuristics within a deep learn-
ing framework. The recursive optimization in [55] depends
on a two-stage mechanism for refinement of pseudo-labels
and saliency detection network.

Nguyen et al. [28] defined image-level loss function to
train with noisy labels for generating a coarse saliency map,
and then iteratively refined it with moving average and fully
connected CRF. Unlike [28, 48, 55], [49, 54] deals with
learning from a single noisy labelling in a much more ef-
ficient way. [49] learns saliency prediction and robust fit-
ting models to identify inliers. [54] proposes to learn a clean
saliency predictor from a single noisy label by latent vari-
able model called noise-aware encoder-decoder. We take a
completely new approach and propose a principled method
for dealing with the dense prediction task of saliency de-
tection in challenging 4D light field scenes. Our method
efficiently incorporates the relationships among light field
cues to correct pixel-level noisy labels.

3. Proposed Approach
In this paper, we focus on learning light field saliency

from a single pixel-level noisy map. Specifically, we aim
to learn an accurate saliency map of a light field image xi

given its pixel-level noisy saliency map ŷi produced by an
off-the-shelf low cost handcrafted features based method.
A trivial and direct solution would be to use the noisy
saliency map as ‘proxy’ human annotations for training a
deep model. However, such an approach does not suffice
since network learning is highly prone to noise in the su-
pervision labels [47]. We propose a unified framework to
incorporate the relationships among light field cues while
identifying clean labels during training in a unified frame-
work. Our complete pipeline is shown in Fig. 2 and the
technical details of each component are elaborated below.

We start with a training set T = {(xi, ŷi)}Ni=1, where
each xi is a light field image with spatial size u × v and
ŷi ∈ [0, 1]u×v is its noisy binary saliency map. We use ŷi
(instead of yi) to differentiate is from clean labels as in the
human annotated labelling setting. For each xi, we have an
all-focus central view image Ir and its corresponding fo-
cal stack If with k focal slices {If1 , If2 , . . . Ifk}, which
have different focused regions. A deep model for light
field saliency learns a mapping function fΘ : {Ir, If} →
[0, 1]u×v, where Θ is a set of network parameters. There-
fore, fΘ(xi) = si denotes the predicted saliency map.

3.1. Pixel Forgetting Guided Fusion Module

Mutual feature fusion: We adopt VGG-19 [37] as the
backbone architecture to generate all-focus central view im-
age features Rm and light field focal stack features Fm =
{f i

m}ki=1 with abundant spacial information [57], where

m = 2, 3, 4, 5 represent index of the high-level features
from the last 4 convolution blocks of VGG-19. Instead of
processing the two types of features separately, we build a
mutual fusion strategy between the all-focus central view
image features and the focal stack features. In each step,
the former is first used to guide the update of the latter, and
then the refined feature is used to update the former.

We start from fusing the focal stack features Fm by prop-
agating contexts within the focal slices and also under the
guidance from the all-focus features Rm, which provides
external guidance for the feature update of Fm. We use an
attention mechanism to emphasize the useful features and
suppress the unnecessary ones from focused and blurred in-
formation. This procedure can be defined as:

Attm = σ(wm ∗Avg(C[Rm; f1
m, f2

m, · · · , fk
m]) + bm),

(1)
f̄m

i
= f i

m ⊙Attim, (2)

where C[·] means concatenation operation, and i =
1, 2, · · · , k. ∗, wm and bm represent the convolution op-
erator and convolution parameters in m-th layers. Avg(·)
means global average pooling operation and σ(·) means
softmax function. Attm ∈ R1×1×(k+1) means the channel-
wise attention map in the m-th layer and ⊙ denotes feature-
wise multiplication.

The weighted light field features F̄m = {f̄m
i}ki=1 are re-

garded as a sequence of inputs corresponding to consecutive
time steps. They are fed into a ConvLSTM [45] structure
to gradually refine their spatial information for accurately
identifying the salient objects. The refined focal slices fea-
tures are represented by F ′

m.
To allow the focal slices features F ′

m to guide the updat-
ing of all-focus central view image features Rm, we employ
an attention mechanism to emphasize or suppress each pixel
in Rm. AttF ′

m
= σ(w ∗ F ′

m + b) (3)

R′
m = Rm ⊗AttF ′

m
+Rm (4)

where σ(·) is softmax function, ∗, w and b represent convo-
lution operator and convolution parameters in m-th layers.
AttF ′

m
∈ Ru×v means the pixel-wise attention map in m-th

layer and ⊗ denotes pixel-wise multiplication.
Furthermore, efficient integration of all the m hierarchi-

cal updated features can improve discriminability and is sig-
nificant for the saliency prediction task. The updated feature
F ′
m and R′

m are separately fed into ConvLSTM cells to fur-
ther summarize the spatial information. The output of the
ConvLSTM is followed by a transition convolutional layer
and an up-sampling operation to get the initial noisy predic-
tions sf and sr for the focal slices and the all-focus central
view image branch respectively.
Pixel consistency: We gain insights into the optimization
process by analyzing dynamic pixels of the initial noisy
predictions sf and sr during learning and their influence
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Figure 2. Overview of the complete architecture of our proposed network, which formulates the learning as a joint optimization of intra
light field features fusion stream and inter scenes correlation stream to generate the prediction.

on the final prediction in the saliency map. We observe
that the noisy pixels exhibit characteristics different from
clean pixels. We would expect that noisy-labeled pixels
will learn constantly due to the inconsistency with domi-
nant decision across iterations, which is validated later in
experiments. These atypical characteristics of noisy pix-
els support the identification of clean pixels in the initial
noisy predictions sf and sr. Inspired by [39], we further
define forgetting events to have occurred for pixels of sf
or sr when they transition from being recognized correctly
(salient object) to incorrectly (background) over the course
of learning. These events occur when pixels that have been
learnt at the t-th iteration are subsequently mistakenly rec-
ognized at the (t + 1)-th iteration. We firstly define two
transformation matrices Tf and Tr to describe the learning
transform of pixels across the training phase, which exploit
pixel consistency across iterations of initial noisy predic-
tions sf and sr.

Tf (u, v) =

{
0, |s(u,v)f − ŷ(u,v)| > δ

1, |s(u,v)f − ŷ(u,v)| ⩽ δ
(5)

Tr(u, v) =

{
0, |s(u,v)r − ŷ(u,v)| > δ

1, |s(u,v)r − ŷ(u,v)| ⩽ δ
(6)

where ŷ(u,v) represents the noisy label of pixel (u, v). The
margin δ is defined as the bias between the logit of the ini-
tial noisy predictions and the noisy labels, which is further
discussed in the experiments. These two transformation ma-
trices are binary, indicating whether the pixels are correctly
recognized at each epoch, and updated across iterations by
a bias between the initial predictions and supervision infor-
mation.

Next, we introduce the forgetting matrix G to compute
forgetting event statistics for each pixel of the initial pre-
dicted noisy saliency maps sf and sr.

Gf (u, v) =

{
Gf (u, v) + 1, Tf (u, v)

t+1 < Tf (u, v)
t

Gf (u, v), Tf (u, v)
t+1 ⩾ Tf (u, v)

t

(7)

Gr(u, v) =

{
Gr(u, v) + 1, Tr(u, v)

t+1 < Tr(u, v)
t

Gr(u, v), Tr(u, v)
t+1 ⩾ Tr(u, v)

t

(8)
where we initialize G as an all-zero matrix. Pixel (u, v)
in an image experiences a forgetting event when the cor-
responding element in the transform matrix decreases be-
tween two consecutive updates. In other words, pixel (u, v)
is recognized incorrectly at (t + 1)-th iteration after hav-
ing been correctly recognized at (t)-th iteration. When one
pixel has frequent forgetting events during the training pro-
cess, the value of its corresponding element in G will in-
crease cumulatively, indicating that the pixel is dynamic and
noisy.

Equipped with the forgetting matrix G, we further use a
confidence re-weighting strategy to assign a soft weight to
the initial predicted noisy saliency maps sf and sr.

Mf (u, v) =
2

1 + ea·G
2
f (u,v)

(9)

Mr(u, v) =
2

1 + ea·G
2
r(u,v)

(10)

where a is used to control the descent degree of the confi-
dence weights according to the number of forgetting events.
We set a = 0.04 in our experiments. The soft weight matrix
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M encourages pixels with consistent behavior to contribute
more than those with dynamic behavior.

The final predicted saliency map si can be obtained by
the fusion of the initial predicted noisy saliency maps sf
and sr under the guidance of pixel forgetting:

si = Up(w ∗ C[Mf ⊗ sf ;Mr ⊗ sr] + b) (11)

where C[·] means concatenation operation, and i =
1, 2, · · · , N . ∗, w and b represent convolution operator and
convolution parameters. Up denotes the up-sample opera-
tion to get the final saliency map si.

3.2. Cross-scene Noise Penalty Loss

Previous light field saliency detection methods lack a
global perspective to explore patterns in the relationships
between the whole dataset. Modern approaches typically
formulate saliency detection as a per-pixel classification
task. Specially, fΘ(xi) = si denotes the predicted saliency
map from the pixel forgetting guided fusion module, and
the empirical risk when learning directly from noisy label
can be defined as follows:

L(si, ŷi) =
∑
(u,v)

l(s
(u,v)
i , ŷ

(u,v)
i ), (12)

where X = {xi}Ni=1, Ŷ = {ŷi}Ni=1, and (u, v) denotes
the pixel spatial coordinates in a light field image, and l :
[0, 1]× [0, 1] → R is the cross entropy loss defined as:

l(s, ŷ) = −(ŷ log(s) + (1− ŷ) log(1− s)), (13)

For a pixel wise prediction task, the network is trained by
minimizing the per-pixel defined loss function. The optimal
network model is obtained by minimizing Eq. (12) using
stochastic gradient descent. However, directly training the
network with single noisy labelling will not work as it is
well-known that network training is highly prone to noise
in the supervision labels which may guide the network to
overfit to the corrupted labels [47].

Inspired from the correlation agreement (CA) mecha-
nism [36] [8], to guarantee the efficient learning of network
training by noisy labels, we elicit information from predic-
tions performed over other samples of the data and score
the current predictions against those. We seek to exploit
correlations between current predictions with other scenes
to align incentives with correct information, which we name
as cross-scene evaluation in our method.

Definition 1 ∆ ∈ R2×2 is a square matrix with entries de-
fined between the predicted saliency map si and the noisy
label ŷi, and characterizes the marginal correlations be-
tween them:

∆a,b = p(s
(u,v)
i = Ja, ŷ

(u,v)
i = Jb)

− p(s
(u,v)
i = Ja) · p(ŷ(u,v)i = Jb), (14)

where ∀a, b = {1, 2} denote the entries of ∆, J1 =
+1, J2 = −1 represent the salient object and background
class labels for pixel (u, v) and p(·) represents the distribu-
tion.

∆a,b in the Definition 1 captures the stochastic correla-
tion between the pixel in the initial predicted saliency maps
and noisy labels, which can be regarded as a loss criterion.
Furthermore, we describe a binary scoring matrix Ω to in-
dicate the specific correlation between pixels in the initial
predicted saliency maps and noisy labels.

Definition 2 The scoring matrix Ω is computed as:

Ω(s
(u,v)
i , ŷ

(u,v)
i ) = Sgn(∆a,b), (15)

where Sgn(∆a,b) = 1 when ∆a,b > 0 and Sgn(∆a,b) = 0,
otherwise.

CA requires each pixel in the predicted map to perform
multiple tasks: compute the correlation with its correspond-
ing noisy label and exploit the correlation between pre-
dictions of other scenes and unpaired noisy labels as the
penalty to current scene. Ultimately the scoring function
for each task, is defined as follows:

S(s
(u,v)
i , ŷ

(u,v)
i ) = Ω(s

(u,v)
i , ŷ

(u,v)
i )− Ω(s

(u,v)
i1

, ŷ
(u,v)
i2

),
(16)

For each sample (s
(u,v)
i , ŷ

(u,v)
i ), randomly draw another

two samples (s(u,v)i1
, ŷ

(u,v)
i1

), (s(u,v)i2
, ŷ

(u,v)
i2

) such that i1 ̸=
i2. We will name (s

(u,v)
i1

, ŷ
(u,v)
i1

) and (s
(u,v)
i2

, ŷ
(u,v)
i2

) as i’s

correlation samples. After pairing s
(u,v)
i1

with ŷ
(u,v)
i2

(two
independent scenes i1 and i2), we define the scoring func-
tion S(·) for each sampled scene s

(u,v)
i . The first term in

the scoring function above evaluates the saliency prediction
s
(u,v)
i using noisy labels ŷ(u,v)i , the second term defined on

two independent scenes i1, i2 punishes the predictor from
overly agreeing with the noisy labels, which is a penalty
score of the current pixel.

We know that noises in each label is asymmetric. Hence,
we use a new scoring function to adjust the degree of
penalty:

Ψ(s
(u,v)
i , ŷ

(u,v)
i ) = Ω(s

(u,v)
i , ŷ

(u,v)
i )− αΩ(s

(u,v)
i1

, ŷ
(u,v)
i2

),
(17)

Moreover, following [26], we compute the correlation
between saliency maps and noisy labels by cross entropy
loss to replace the scoring function Ω in Eq.(12), due to its
adaptability in salient object detection.

According to the characteristics of pixel-level tasks, the
number of pixels in each light field image is huge, so the
saliency prediction result needs more detailed evaluations.
However, evaluating the random correlation based only on a
pair of cross-scene samples will cause large variance and is
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not stable enough. Therefore, we eliminate the variance as
much as possible based on ml pairs of cross-scene samples
to stabilize the training process:

Lt(s
(u,v)
i , ŷ

(u,v)
i ) = L(s(u,v)i , ŷ

(u,v)
i )

− α

ml − 1

ml∑
n,n′=2

(l(s
(u,v)
in

, ŷ
(u,v)
in′ )),

(18)

Where we set α = 0.2 and ml = 4 in our experiment.
The first term of our cross-scene noise penalty loss Lt eval-
uates the network’s prediction on training data using noisy
labels, and the second term is defined on several indepen-
dent randomly selected light field images to penalize the
networks from overly agreeing with the pixel-level noisy
labels. Both terms encode the knowledge of noise rates im-
plicitly and allow our light field saliency prediction model
to become invariant to pixel-level noise.

4. Experimental Results
Our experiment are conducted on three public light field

benchmark datasets: DUT-LF [42], HFUT [53] and LFSD
[20]. DUT-LF is proposed for fully supervised saliency de-
tection containing 1462 challenging scenes with high sim-
ilarity between the salient object and background, small-
scale salient objects and various lighting conditions. DUT-
LF is split into 1000 training and 462 test samples. HFUT
and LFSD are relatively small, containing only 255 and 100
samples respectively. HFUT, LFSD and the test partition
of DUT-LF are used to evaluate the performance of our
method. All three datasets are captured with the Lytro cam-
era [1] and include an all-focus central view image, a stack
of focal slices and the corresponding pixel-level annotated
ground truth (GT) saliency map. Note that GT maps are
depicted only for illustration purposes in this paper and not
used in our training process.

4.1. Implementation Details
Our model is implemented in PyTorch and trained for a

maximum of 30 epochs using a single GeForce GTX TI-
TAN X GPU. We train the model in an end-to-end manner
using 0.9 momentum and a learning rate of 1.0× 10−5. We
use the Adam [17] optimizer with the ’Inverse’ decay pol-
icy. We initialize the RGB and focal stack streams using
VGG-19 [37] trained for image classification, and adapt it
to our task. We also augment the training data with ran-
dom flipping, cropping and rotation. For the handcrafted
methods, we generate pixel-level noisy saliency maps using
the RBD method [59], due to its high efficiency. Similar
to prior works, we use F-measure [3] and Mean Absolute
Error (MAE) as the evaluation metrics for comprehensive
bench-marking of our algorithm.

4.2. Comparison with Start-of-the-art Methods
For a comprehensive evaluation, we compare our method

with 23 state-of-the-art saliency detection models, includ-
ing 5 fully supervised RGB methods (PoolNet [22], Pi-
CANet [23], R3Net [9], NLDF [27], F3Net [44]), 7 super-
vised RGB-D methods (TANet [5], PCA [4], MMCI [6],
UCNet [50], DF [34], DMRA [30], D3Net [10]),
2 supervised light field methods (DLLF [41], Mo-
LF [57]), 4 conventional unsupervised methods (RBD [59],
LFS [19],DSR [21], MC [15]), 4 multi noisy labels su-
pervised methods (SBF [48], DUSPS [28], MNL [55],
NAED [54]) and 1 single noisy label supervised method
SNL [49].Results of competing methods are generated by
authorized codes or directly provided by authors.
Quantitative Results are shown in Table 1. Compared with
most fully supervised RGB saliency detection methods, our
model consistently achieves higher scores on all datasets
across two evaluation metrics. One important observation
should be noted: although our model is supervised by pixel-
level noisy labels, it still achieves significant advantage in-
dicating that light field data are significant and promising
due to its abundant spatial information. The effectiveness
of light field data is further supported by the superior im-
provement compared with some fully supervised RGB-D
methods. Compared with the coarse depth maps in RGB-D
data, light field contains more accurate depth cues. More
encouragingly, when compared with a number of fully su-
pervised light field methods, our method still achieves com-
petitive performance. These performances are reasonable
since the effective forgetting pixel guided features fusion
and the proper handling of correlations across scenes.

Moreover, we can see that our method outperforms the
conventional RGB method RBD [59] with a significant mar-
gin of 0.18 in the F-measure on the DUT-LF dataset, which
is used to generate the noisy labels for our model. This
is mainly because our method explore the intra light field
features fusion and inter scenes correlation to generate the
robust predictions. We also compare our method with the
state-of-the-art noisy label supervised RGB models, we can
see that our method leads to an improvement of up to 0.23
in the F-measure metric on DUT-LF dataset, demonstrating
the superiority of the abundant light field cues, as well as
our proposed features fusion and noise penalty strategies.
Qualitative Comparison is given in Figure 3 where we vi-
sualize three representative saliency map comparison cases.
We see that our method is able to handle a wide range of
challenging scenes, including similar foreground and back-
ground (first row), clutter background (second row) and
small object (third row). Our method can predict the salient
objects with relatively complete boundary information even
the provided noisy labels are incomplete in salient objects,
which is an exciting breakthrough. Compared with the
noisy label supervised RGB saliency method DUSPS [28],
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Dataset Metrics

Fully supervised Models Conventional Models Multi noisy labels Models Single noisy label Models
RGB RGB-D Light field RGB Light field RGB RGB Light filed

PoolNet PiCANet R3Net NLDF TANet PCA MMCI UCNet DLLF Mo-LF RBD LFS SBF DUSPS MNL NAED SNL Ours
[22] [23] [9] [27] [5] [4] [6] [50] [41] [57] [59] [19] [48] [28] [55] [54] [49]

DUT-LF F↑ 0.868 0.821 0.783 0.778 0.771 0.762 0.750 0.819 0.868 0.843 0.631 0.484 0.583 0.736 0.716 0.701 0.679 0.813
M↓ 0.051 0.083 0.113 0.103 0.096 0.100 0.116 0.087 0.070 0.052 0.212 0.240 0.135 0.062 0.086 0.070 0.072 0.091

HFUT F↑ 0.683 0.618 0.625 0.636 0.605 0.619 0.645 0.724 0.863 0.627 0.601 0.430 - 0.705 - - 0.633 0.652
M↓ 0.092 0.115 0.151 0.091 0.111 0.104 0.104 0.105 0.093 0.095 0.241 0.205 - 0.087 - - 0.165 0.108

LFSD F↑ 0.769 0.671 0.781 0.748 0.804 0.801 0.796 0.835 - 0.819 0.711 0.715 - 0.795 - - 0.714 0.804
M↓ 0.118 0.158 0.128 0.138 0.112 0.112 0.128 0.108 - 0.089 0.182 0.147 - 0.105 - - 0.097 0.111

Table 1. Quantitative comparisons on three light field datasets. ↑ & ↓ denote larger and smaller is better respectively

Figure 3. Visual comparison of the saliency maps with competing methods, where the saliency maps in the blue box are predicted from
noisy labels supervised RGB methods, the saliency maps in the red box are predicted from fully supervised light field, RGB-D and RGB
saliency method respectively and the saliency maps in the green box are predicted from conventional models.

Settings Metrics DUT-LF HUFT LFSD

Baseline
F ↑ 0.641 0.553 0.683
M ↓ 0.279 0.253 0.191

+ MFFO
F ↑ 0.689 0.611 0.737
M ↓ 0.214 0.195 0.165

+ PFM
F ↑ 0.741 0.634 0.760
M ↓ 0.181 0.163 0.179

+ Ploss
F ↑ 0.730 0.620 0.749
M ↓ 0.147 0.151 0.132

Ours F ↑ 0.813 0.652 0.804
M ↓ 0.091 0.108 0.111

Table 2. Results on extensive ablation studies analyzing the sig-
nificance of different components on our pipeline.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F ↑ 0.744 0.786 0.813 0.801 0.792 0.761 0.771
M ↓ 0.221 0.183 0.091 0.091 0.163 0.155 0.160

Table 3. Comparing the affect of varying number of δ in Eq.(6) on
saliency detection performance keeping the other settings of our
framework unchanged.

our model not only more accurately localizes the salient ob-
jects, but also more precisely recovers the object details,
which are positively influenced by the light field data and
our proposed modules. Our method also achieves compet-
itive detection results compared with the fully supervised
light field method Mo-LF [57]. More qualitative compar-
isons can be found in the supplementary material.
4.3. Ablation Studies

We conduct ablation experiments on DUT-LF [42]
dataset to thoroughly analyze the effectiveness of our pro-
posed modules. To simplify the experiments and get more
intuitive results, we build a concise baseline that only con-
tains separate features extraction branches for focal slices

Figure 4. Visualization of the saliency maps at different steps.(a)-
(b) represent the results from the refined focal slices and all focus
features respectively, (c)-(d) represent the results from pixel for-
getting guided features fusion and cross-scene noise penalty loss.

and all-focus central view image. The saliency map is pre-
dicted by directly concatenating the two kinds of features.
1) Multual Feature Fusion Operation (MFFO): As
shown in Table 2, the proposed mutual feature fusion op-
eration results in improved performance which means that
the interactions among all-focus central view image and fo-
cal slices explore the abundant spatial information of light
field data, which are necessary to predict the salient object.
2) Pixel Forgetting Matrix (PFM): To evaluate the pixel
consistency of the initial predicted noisy saliency maps
from all-focus central view image and focal slices during
training iterations, we propose the pixel forgetting matrix
and analyse whether there exist noisy pixels that are con-
sistently forgotten across subsequent training presentation
and, conversely, pixels that are rarely forgotten. From Table
2 we can see that the pixel forgetting matrix improves the
accuracy of saliency detection. Moreover, we define δ as a
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Figure 5. The distributions of forgetting events and first learning.

Figure 6. Characteristic correlations among noisy pixels in labels
across the DUT-LF dataset [42].

threshold to identify the pixel is learned or forgotten. To ex-
plore the optimal threshold, we conduct experiments with δ
in a range of (0,1) and report performances in Table 3. Our
evaluation achieves highest scores when δ = 0.3.
3) Cross-scene Noise Penalty loss (Ploss). As shown in
Table 2, we demonstrate the effect of the proposed cross-
scene noise penalty loss. Compared with the baseline, we
observe that it can boost our performance by a large mar-
gin (30% improvement in MAE metric), which further illus-
trates that the loss effectively penalizes the networks from
overly agreeing with the pixel-level noisy labels.
4) Visualization of Intermediate Results. In Figure 4, we
show an example saliency detection result to illustrate the
performances with respect to our proposed modules. Start-
ing with the noisy label supervision, our method consis-
tently improves the performance of saliency detection with
the cumulative updating of proposed modules.

4.4. Further Analysis
Pixel forgetting: To validate our assumption that noisy pix-
els experience frequently forgetting events compared with
consistent pixels, we train our model once using pixel-level
noisy labels and again using ground truth labels. The distri-
bution of forgetting events across the fraction of the noisy
pixels and consistent pixels are shown in Fig. 5(a). Specif-
ically, we sample the pixels from the dataset and describe
the relative fraction of pixels which experience over 3 for-
getting events during training. We further sample pixels in
the coarse bounding box of the salient object and report re-
sults in Fig. 5(b). We observe a relatively higher degree of

forgetting in noisy supervision with more obvious forget-
ting of noise within the salient object region.

We also investigate the occurrence time of first learning
events of noisy labels and ground truth. The distribution of
average occurrence time at which the first learning events
occur across sampled pixels (over 5 seeds) of noisy labels
and ground truth are shown in Fig. 5(c). Notice that most
pixels of noisy labels and ground truth are both learned dur-
ing the first 4 epochs, while the noisy pixels contain a larger
number of pixels learned during later part of the training.
Noisy pixels exhibit characteristics different from consis-
tent pixels during training, which is important for our model
to identify noise.
Across-scene Latent Noise correlation: We investigate
whether noisy label characteristics are distributed regularly
cross different scenes. Each point in Fig. 6 represents one
noisy label in the dataset i.e., average pixel value versus av-
erage distance. The intensity values of noisy pixels and their
distance from the center of salient object are characteristics
implicitly related in different scenes. The effectiveness of
our cross scene penalty loss is reasonable given the latent
noise correlation in the noisy dataset.

5. Conclusion
In this paper, we represent, for the first time, light field

saliency detection as a learning from pixel-level noisy la-
bels problem. This allows us to use efficient conventional
unsupervised saliency detection methods. To leverage the
relationships among light field cues while identifying clean
labels in a unified framework, we proposed pixel forget-
ting guided fusion to mutually enhance the light field fea-
tures and exploit pixel consistency across iterations to iden-
tify noisy pixel labels. We also proposed cross scene noise
penalty loss to better reflect latent structures of training data
enabling the learning to be invariant to noise. Extended ex-
periments show the superiority of our method, which not
only outperforms most RGB and RGB-D saliency methods
but also achieves comparable performance to state-of-the-
art fully supervised light field saliency detection methods.
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