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Abstract
In this paper, we propose Neural Points, a novel point

cloud representation and apply it to the arbitrary-factored
upsampling task. Different from traditional point cloud
representation where each point only represents a posi-
tion or a local plane in the 3D space, each point in Neu-
ral Points represents a local continuous geometric shape
via neural fields. Therefore, Neural Points contain more
shape information and thus have a stronger representa-
tion ability. Neural Points is trained with surface con-
taining rich geometric details, such that the trained model
has enough expression ability for various shapes. Specifi-
cally, we extract deep local features on the points and con-
struct neural fields through the local isomorphism between
the 2D parametric domain and the 3D local patch. In the
final, local neural fields are integrated together to form
the global surface. Experimental results show that Neu-
ral Points has powerful representation ability and demon-
strate excellent robustness and generalization ability. With
Neural Points, we can resample point cloud with arbi-
trary resolutions, and it outperforms the state-of-the-art
point cloud upsampling methods. Code is available at
https://github.com/WanquanF/NeuralPoints.

1. Introduction
Point cloud, which is the most fundamental and popu-

lar representation of 3D scenes, has been widely used in
many applications like 3D reconstruction [11, 14, 24, 33],
virtual/augmented reality [10, 34] and autonomous driv-
ing [16,36]. In the traditional representation of point cloud,
each point only represents a position in the 3D space, and it
can be further extended to represent a local plane if its nor-
mal vector is assigned. Therefore, the representation ability
of point cloud is still limited by its resolution. Although
point cloud upsampling methods [17, 18, 38, 43] have been
proposed to improve its representation ability, their strategy
is still a “discrete-to-discrete” manner and can not overcome
the limitation of current point cloud representation.

In this work, we propose Neural Points, a novel point
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cloud representation, which significantly improves the rep-
resentation ability and can be naturally applied to the up-
sampling task. Different from traditional representation,
each point of Neural Points encodes a local surface patch
represented via neural fields. Specifically, each point-wise
surface patch is represented as a local isomorphism between
the 2D parametric domain and the 3D local surface patch,
and the isomorphism is implicitly represented via neural
fields. Thanks to its continuous nature, free of the limita-
tion of finite resolution, powerful representation ability to
involve more shape information, neural fields enable Neu-
ral Points several advantages over traditional discrete point
cloud representation. Meanwhile, the trained model of neu-
ral fields is shared for all local patches, and thus the storage
overhead of Neural Points is quite small.

Unlike some existing methods which represent the whole
surface model via one neural field [26, 41], both the neural
fields and the point features passed into Neural Points are
all local. With this design, our Neural Points representation
shows several advantages including excellent ability to ex-
press details, strong generalization ability, and low need for
training data. Specifically, we employ local neural fields to
construct the continuous bijective mapping between the 2D
parametric domain and the 3D local surface patch, based on
the fact that 3D local patch on the 2D manifold is isomor-
phic to a 2D simply connected disk. With the neural field,
each 3D local patch can be viewed as a parametric surface
defined in a 2D parametric domain. To this end, we employ
an encoder to extract point-wise local features and take the
local feature as a part of the input passed into the neural field
network. With the local shape information, the neural field
can represent the surface patch well, and the trained net-
work model is shared by all local patches of all 3D models.
In the final, we design an integration strategy to integrate
all the local neural fields together to form the final global
shape. The model of Neural Points is trained with geomet-
ric surface in high resolution with rich geometric details,
such that the trained Neural Points model can represent rich
geometric shapes.
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As for the point cloud upsampling task, its target is
to predict the upsampled point cloud with higher reso-
lution from the given low-resolution input such that it
can better capture the geometric features of the underly-
ing continuous surface. Existing point upsampling meth-
ods [17,18,21,32,38,42–44] usually employ a “discrete-to-
discrete” manner. Dissimilarly, we convert the input point
cloud representation to continuous Neural Points, and then
apply arbitrary-factored sampling.

The experimental results show that Neural Points can
produce high-quality continuous surfaces and overcome the
limitation of point resolution well. For the upsampling task,
our strategy outperforms the state-of-the-art methods. In
summary, the contributions of this work include:

• We propose Neural Points, a novel point cloud repre-
sentation that can be naturally applied to the upsam-
pling task, with low storage overhead.

• We employ the neural implicit functions along with the
deep local features of surface patches to represent the
local neural fields, and design an integration strategy
to form the final global shape.

• Evaluation results demonstrate that the Neural Points
representation has excellent robustness and generaliza-
tion ability for various inputs on the upsampling task.

2. Related Works
Neural Implicit Function. Neural implicit representation
has recently shown promising advantages in some appli-
cations over discrete scene representations, such as point
clouds, meshes and voxel grids, owing to its continuous na-
ture and free of the limitation of finite resolution. It has
also achieved great performance in many applications in-
cluding 3D shape representation [4,22,26], novel view syn-
thesis [23, 35] and multi-view reconstruction [25, 41].

For 3D shape representation, DeepSDF [26] and
ONet [22] proposed to use neural implicit function to pre-
dict the signed distance and occupancy probability, respec-
tively. However, these conventional frameworks are weak
in representing complex shapes. To alleviate this issue,
some recent works focus on geometric detail preservation
and local shape reduction. IF-Nets [5] extracted learnable
multi-scale features, which encodes local and global prop-
erties of 3D shape. LGCL [40] represented 3D shape as
zero-surfaces with local latent codes, leading each local
SDF responsible for a part of the shape. Due to local fea-
ture learning, these methods represent higher-quality details
than common methods which use a single vector to encode
a shape. In our method, we also devise a novel and effective
strategy to extract deep local features from point cloud.

Neural implicit functions have also been used to repre-
sent 2D images. LIIF [3] took a pixel coordinate and its
surrounding feature as input to predict the corresponding

RGB value. It demonstrates excellent super-resolution ef-
fect, building a bridge between discrete and continuous rep-
resentation in the 2D domain. Different from regular 2D
image, irregular point cloud is a discrete representation of
3D surface embedded in 2D manifold. To handle the irreg-
ular representation, we construct the mapping between the
irregular local surface patch and the regular 2D domain.
Optimization Based Point Upsampling. In optimization
based point upsampling methods, shape priors like global
structures and local smoothness are formulated as objec-
tive energy to constrain the results. Alexa et al. [2] em-
ployed Voronoi diagram and interpolated points at vertices
of the Voronoi diagram in local tangent space as upsam-
pled points. Then Lipman et al. [20] proposed a parameter-
free method based on the locally optimal projection op-
erator (LOP) for point sampling and surface reconstruc-
tion. Later, weighted LOP [12] conducted an iterative nor-
mal estimation process to consolidate the upsampled point.
EAR [13] sampled points away from edges and progres-
sively approaching edges and corners. Then a point-set con-
solidation method [39] proposed to fill large holes.
Learning Based Point Upsampling. Considering that the
point upsampling task is an ill-posed problem, learning pri-
ors from dataset is a natural way to tackle it. In recent
years, point-based network structures [7, 15, 19, 28, 29, 37]
have been successfully employed to solve point cloud re-
lated tasks and achieved state-of-the-art performance. PU-
Net [43] was the first point upsampling network. MPU [38]
was a progressive upsampling method that achieved great
performance for large upsampling factors. PU-GAN [17]
was the first the GAN [9] based structure to synthesize
uniformly distributed points. While the above mentioned
works are mainly focused on the network design, PUGeo-
Net [31] and MAFU [32] utilized local differential geom-
etry constraints to improve the upsampling results. Meta-
PU [42] firstly upsampled to a large resolution and then
downsampled to a target resolution. PU-GCN [30] im-
proved the performance by proposing a novel NodeShuffle
module. Dis-PU [18] employed a global refinement module
at the end of the pipeline instead of using a single upsam-
pling module. However, all the above methods adopt the
strategy to directly predict a denser point cloud from the in-
put sparse point cloud. Unlike all these methods, we utilize
neural fields to represent the high-resolution surface, which
has a more powerful representation ability and can then be
sampled in arbitrary resolutions.

3. Neural Points
3.1. Overview: Point based Representation

Point cloud X = {xi ∈ R3}Ii=1 is the discrete represen-
tation of its underlying continuous surface S. For the tra-
ditional point cloud representation, where each point only
represents a 3D position, its representation ability totally
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Input Point Cloud Local Neural Fields Arbitrary-factored Resampling Point Clouds Neural Points

Figure 1. Algorithm pipeline. For the input point cloud, a discrete point-wise local patch is represented via local continuous neural fields,
and the global continuous Neural Points surface is constructed by integrating all the local neural fields. Arbitrary resolutions of point cloud
can be generated by sampling on the constructed continuous Neural Points surface.

Figure 2. Local neural field and the bijective mapping function
between isomorphic 3D and 2D domain. Pi is the 3D local sur-
face patch around the center point xi, and D is the 2D parametric
domain. ϕi and ψi are the mappings that constructs the correspon-
dence between (ur, vr) ∈ D and xr

i ∈ Pi.

depends on its resolution. Therefore, one direct strategy to
improve its representation ability is to do upsampling:

S Discretize−−−−−→ {xi}Ii=1

Upsample−−−−−→ {xri }
I,R
i,r=1 ⊂ S, (1)

which was studied in the point cloud upsampling works [18,
43]. However, the upsampling manner in Eq. (1) is discrete-
to-discrete, where the upsampled result is still discrete and
limited by the resolution.

In this work, we propose Neural Points, a novel
point cloud representation for arbitrary upsampling, which
has better representation ability than the traditional point
cloud. Neural Points representation employs the discrete-
to-continuous strategy, which is totally different from the
form of Eq. (1). Given the input point cloud X = {xi}Ii=1,
we describe the underlying continuous surface

S Discretize−−−−−→ {xi}Ii=1
Neural Points−−−−−−−→ S

′
≈ S, (2)

where S ′
is a continuous surface represented by Neural

Points. With the form in Eq. (2), our proposed framework
can overcome the limitation of point cloud resolution and
achieve arbitrary-factored point cloud sampling on S ′

. In
the following, we will describe the algorithm details of our
Neural Points representation.

3.2. Pipeline

The whole pipeline is given in Fig. 1. (1) Given the input
point cloud, we first construct local neural fields for each lo-
cal patch, which is based on local parameterization; (2) The
local neural fields are integrated together to form the global

shape; (3) With the constructed continuous neural represen-
tation, we can resample an arbitrary number of points. In
the following, we introduce the details of each component.
Local Neural Fields. We employ local neural fields to de-
scribe the underlying continuous surface. The input point
cloud is still denoted as X = {xi}Ii=1. Like in [31], we
take {xi}Ii=1 as the center points to divide the surface into
overlapping local patches {Pi}Ii=1 ⊂ R3. At each point xi,
the 3D local patch Pi is isomorphic to the 2D parametric
domain D ⊂ R2 (we use D = [−1, 1]2 in our work), which
means that we can construct a bijective mapping between
them:

ϕi : D → Pi, ψi : R3 → D,
where ψi|Pi

= ϕ−1
i . The illustration of the neural field is

shown in Fig. 2. Given any 2D sampling point (ur, vr) ∈
D, we can compute xri = ϕi(ur, vr) ∈ Pi as its corre-
sponding 3D sampling point. Similarly, for any 3D point
xri ∈ Pi, we can compute its corresponding 2D coordinate
(ur, vr) = ψi(x

r
i ) ∈ D. Furthermore, we can compute the

point normal nxr
i

at point xri via:

nxr
i
= ∇uϕi ×∇vϕi,

and then normalize it to unit length.
Neural Fields Integration. Although the local neural fields
{ϕi}Ii=1 can construct correspondence between 2D para-
metric domain and 3D local patches, different local neural
fields are defined in different local coordinate systems. As a
result, we need to integrate them together to obtain a glob-
ally continuous neural field based surface.

For ∀x ∈ R3, we aim to pull x onto the neural fields
based surface. We find the nearest center points in {xi}Ii=1

to x and denote the set of indexes of the neighbour points as
N (x). For ∀k ∈ N (x), a combination weight is computed
according to the distance from x to xk:

wk = e−α1∥x−xk∥2
2 ,∀k ∈ N (x). (3)

With wk, the point on the neural fields based surface can be
computed by:

ρ(x) = (
∑

k∈N (x)

wk · ϕk ◦ ψk(x))/(
∑

k∈N (x)

wk),∀x ∈ R3.

(4)
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Specifically, the input point x is mapped to 2D parametric
domain through the neighbour neural fields as ψk(x) ∈ D,
and then map the 2D point back to 3D coordinate as ϕk ◦
ψk(x) ∈ Pk. In this way, a neural fields based continuous
surface is constructed.

The normal at point ρ(x) is computed as:

nρ(x) = (
∑

k∈N (x)

wk · nϕk◦ψk(x))/(
∑

k∈N (x)

wk),∀x ∈ R3,

(5)

and the combination vector is normalized to unit length.
Note that the orientations of {nϕk◦ψk(x)}k∈N (x) are ad-
justed to be along the same direction before computing the
weighted sum.
Point Cloud Sampling. We can also resample the point
cloud from the neural fields represented continuous surface.
Considering that the point cloud sampling process is essen-
tially applied on the 2D manifold, we start the sampling
operation in the 2D parametric domain D.

We sample points uniformly in the 2D parametric do-
main D, and the 2D sampled points are mapped onto the 3D
local patch. Specifically, for center point xi, we uniformly
sample R points {(ur, vr) ∈ D}Rr=1 and then map them to
3D as {xri ∈ Pi}Rr=1. For the whole input point cloud, we
obtain the union of sampled points from all patches:

XR =

I⋃
i=1

({xri ∈ Pi}Rr=1) = {xri ∈ Pi}I,Ri,r=1.

Then we can uniformly sample J points from XR:

Y∗ = {y∗
j ∈

I⋃
i=1

Pi}Jj=1,

where the value of J is arbitrary in the training and inferring
stages. Then we pull y∗

j onto the Neural Points surface with
Eq. (4) as:

Y = {yj = ρ(y∗
j )}Jj=1.

3.3. Network Structure

In this part, we introduce the network structures, includ-
ing the local feature extraction and the local neural fields.
Local Feature Extraction. As discussed above, for each
center point xi, we extract a local feature as a part of the
input into the neural field ϕi, which we denote as fi. For
each xi, we first extract its neighbour points {xk}k∈N (xi)

and decentralize to {xk − xi}k∈N (xi). Then we apply the
DGCNN [37] backbone to extract feature on the point set
with |N (xi)| points. Specifically, we employ several Edge-
Conv layers with dynamic graph update. The features of
each layer are concatenated and then passed into another
EdgeConv layer and max-pooling layer to get f∗i . For each

i, we concatenate f∗i with the local pooling of its neighbors
to get the final local feature:

fi = f∗i ⊕MaxPool{f∗k}k∈N (xi),

where ⊕ denotes the concatenation operation.
Structure of Neural Fields. We employ the MLP-based
network equipped with the ReLU activation layers to repre-
sent ϕi. The implicit functions are shared by all patches of
all 3D models, and they are denoted as Φ. As we mentioned
above, the input of Φ should contain the local shape infor-
mation involved in fi and the 2D parametric coordinates as
the querying point.

For the 2D querying coordinates passed into ϕi, we ap-
ply position encoding as the design in [23] and denote the
position encoding function as γ. The position code is con-
catenated with the local feature as the input of the neural
implicit function. Specifically, we can formulate Φ as:

Φ((ur, vr), fi,xi) = xi + θΦ(γ(ur, vr)⊕ fi),

where θΦ is the MLP in Φ. Naturally, for each i, we can
formulate ϕi(·) = Φ(·, fi,xi).

Another key function is ψi, who is the extension of ϕ−1
i .

In our implementation, ψi is defined as:

ψi(x) = ϕ−1
i (Proj(x, ϕi(D))),∀x ∈ R3, (6)

where we use Proj(x, ϕi(D)) to denote the nearest point
in ϕi(D) to x. The advantage of this definition is that we
can formulate ϕi ◦ ψi as:

ϕi ◦ ψi(x) = Proj(x, ϕi(D)),∀x ∈ R3, (7)

which is used in Eq. (4).
At last, we explain our projection process in Eq. (6) and

Eq. (7). In our implementation, we use the approximation
for ϕi(D) as:

ϕi(D) ≈ {xri }Rr=1.

Then, the projection operation should be formulated from a
3D point and a point set. For the convenience of description,
we consider a 3D point denoted as p and a point set denoted
as Q = {qt}Tt=1. We find the index set of neighbor points
of p in Q and denote it as N (p;Q). The projection from q
to Q is formulated as:

Proj(p,Q) = (
∑

k∈N (p;Q)

wk · qk)/(
∑

k∈N (p;Q)

wk), (8)

where wk is computed as:

wk = e−α2∥p−qk∥2
2 ,∀k ∈ N (p;Q). (9)

Similar to Eq. (5), its normal nProj(p,Q) can be obtained.
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3.4. Loss Function

In this part, we introduce the loss terms, including the
constraints on surface shape, point normal, and the integra-
tion quality. The total loss is:

L = Lshape + ω1 · Lnor + ω2 · Lint.

Point clouds with higher resolution are used as ground truth
in our current implementation, and other shape representa-
tions can also be used accordingly. We denote the ground
truth point cloud as Z = {zj}Ll=1 and denote the normal
of zl as nzl

. As described in Sec. 3.2, the output of the
framework can be summarized as XR = {xri ;nxr

i
}I,Ri,r=1

and Y = {yj ;nyj
}Jj=1.

The supervision is discrete, but XR and Y should be
viewed as arbitrary sampling from continuous surface. To
supervise a continuous surface with the discrete supervi-
sion, we do not employ the Chamfer loss which is based
on closest point searching, though it was widely used in the
previous point upsampling works [18, 30]. Instead, we em-
ploy the projection strategy described in Eq. (8). Generally,
for two point clouds P = {ps}Ss=1 and Q = {qt}Tt=1, we
define their distance as:

d(P,Q) =
1

S

S∑
s=1

∥ps − Proj(ps,Q)∥22.

We also define their difference of point-wise normal as:

dn(P,Q) =
1

S

S∑
s=1

∥nps
− nProj(ps,Q)∥22.

To constrain XR and Y to be close to Z , the loss term is:

Lshape = d(XR,Z) + d(Z,XR) + d(Y,Z) + d(Z,Y).

To supervise the point-wise normal, the loss term is:

Lnor = dn(XR,Z) + dn(Z,XR) + dn(Y,Z) + dn(Z,Y).

Furthermore, we also employ a loss term for the integra-
tion quality. The overlap shape from neighbour neural fields
should be identical, and the constructed global neural points
surface should cover the input surface. Based on these re-
quirements, we design the loss term as:

Lint =

J∑
j=1

∑
k∈N (yj ;X )

∥yj − Proj(yj , {xrk}Rr=1)∥22.

4. Experiments
In this section, we give the implementation details, ab-

lation studies, results, comparisons and the test on general-
ization and robustness.

4.1. Implementation Details

Dataset. We train and test our model on Sketchfab [1]
dataset collected by PUGeo-Net [31], which contains 90
training and 13 testing models with rich geometry features.
We train all the comparison methods with the same dataset
for fair comparison. Similar to other point cloud upsam-
pling methods, we employ Poisson disk sampling [6] algo-
rithm to extract points on the models to obtain the input and
ground truth of the upsampling algorithm. Specifically, we
extract 10, 000 points as the whole input point cloud and ex-
tract 40, 000 and 160, 000 points as the whole ground truth
point cloud for 4× and 16× experiments. We also follow
the previous point upsampling works to extract some anchor
points and the neighboring local parts (subsets of the whole
point cloud) as the input of the network instead of pass-
ing the whole model into the network. For all, we choose
1, 000 anchors on each training model and 114 anchors on
each testing model. During training, the point number of
the input point clouds is set as 256.

To test the effectiveness of our trained model, we not
only test on the testing set of Sketchfab, but also test on
more unseen datasets without retraining our network. We
test all the methods on dataset collected by PU-GAN [17],
where the number of testing models is 27. The shape of
the testing models in this dataset is relatively simple, and
thus we extract 2, 000 points on each model as the whole
input point cloud. In addition to the synthetic data men-
tioned above, we further test on real captured data. We also
evaluate our method on point clouds captured by depth sen-
sor on iPhone X and LiDAR data from KITTI [8].
Experimental Setting. All the inputs passed into the net-
work are normalized into the 3D unit ball. In all our experi-
ments, we set R = ⌊4 · J/I⌋. In the local feature extracting
network, the number of neighboring point set is 10. For all
the Proj(., .) operations, we set the number of neighboring
points as 4. For the loss terms, ω1 and ω2 are set as 0.01
and 0.3, respectively. α1 in Eq. (3) and α2 in Eq. (9) are
set as 102 and 103 respectively to compute the exponential
weights. We employ 5 convolution layers in the DGCNN
backbone and 3 linear layers in the MLP of Φ. We set the
batch size as 8 and train the network with 25, 000 iterations
for all. The learning rate starts as 0.01, and is multiplied by
0.5 every 1, 250 iterations. For all the comparison methods,
we train them with the same settings as our own method.
The model is trained with PyTorch [27]. All the training and
testing is conducted on a workstation with four 32G V100
GPUs, 32 Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz,
and 128GB of RAM. Our trained network model can be ap-
plied to all point clouds. The storage overhead of Neural
Points is to store the pre-trained model, whose total size is
only 2.53MB (1.35MB for the local feature extracting net-
work and 1.18MB for the Neural field MLP network.).
Evaluation Metric. Similar to recent point cloud upsam-
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Ablation Settings CD HD P2F
w/o input local KNN 2.49 9.54 3.03
w/o Lnor 0.70 3.46 0.75
w/o Lint 0.77 4.09 0.81
w/o integration 0.83 5.64 0.88
full model 0.66 3.32 0.69

Table 1. Results of the ablation study, with metrics CD(×10−5),
HD(×10−3), and P2F(×10−3).

Factor Method
Sketchfab PU-GAN

CD HD P2F CD HD P2F

4x

PU-Net 5.93 4.98 4.51 23.61 13.91 10.02
PU-GAN 3.30 3.45 3.61 16.79 9.36 7.04
PU-GCN 2.85 3.21 2.79 14.74 11.97 6.36
Dis-PU 2.61 3.25 2.67 13.79 11.83 7.14

PUGeo-Net 2.28 2.10 1.04 11.26 3.54 2.14
MAFU 2.26 2.31 0.99 11.18 3.74 2.09
Ours 2.17 2.46 0.93 8.17 3.08 1.59

16x

PU-Net 5.25 5.82 5.99 20.70 15.49 12.16
PU-GAN 2.97 3.99 3.76 11.89 10.81 7.48
PU-GCN 2.35 3.84 3.02 11.37 12.69 6.95
Dis-PU 2.36 3.79 3.31 12.75 13.65 8.09

PUGeo-Net 0.83 3.50 0.97 3.58 7.14 1.94
MAFU 0.80 3.57 0.95 3.51 7.20 1.90
Ours 0.66 3.32 0.69 3.35 6.52 1.49

Table 2. Results and comparisons for 4× and 16× upsampling,
with metrics CD(×10−5), HD(×10−3), and P2F(×10−3).

pling works [18, 30], we employ Chamfer Distance (CD),
Hausdorff Distance (HD), and Point-to-Surface (P2F) as the
metrics. For all the metrics, the smaller the metric, the bet-
ter the quality of the results.

4.2. Ablation Study

We conduct ablation studies to show how each compo-
nent influences the final result. Specifically, we use the
Sketchfab dataset as our benchmark. We mainly design the
ablation study for the local feature extractor structure, the
loss terms and the integration process. The quantitative re-
sults of the ablation study experiment are shown in Tab. 1.
In the experiment of the 1-st row, we apply a DGCNN back-
bone for the whole input point cloud instead of the local
KNN point set. We can see the quantitative result is quite
poor, which verifies that it is necessary to utilize a shared
backbone for KNN point sets and limit the size of the re-
ceptive field in the feature extractor. The 2-3-th rows show
different loss term settings, where we remove the Lnor and
Lint terms, respectively. We can see that removing any of
the two terms would make the result to be not as good as
the full model. Among them, removing the Lint loss term
will greatly reduce the algorithm performance. At last, we
remove the integration process and all related algorithm set-
tings, and show the results in the 4-th row. We can see
that the result without the integration process is much worse
than the full model.

Method Net GAN GCN Dis PUGeo MAFU Ours

4× Size (Mb) 9.4 7.1 1.8 13.2 27.1 4.7 2.5
Time (s) 0.011 0.011 0.012 0.047 0.014 0.014 0.015

16× Size (Mb) 23.0 11.5 3.0 13.2 27.1 4.7 2.5
Time (s) 0.120 0.046 0.039 0.085 0.017 0.018 0.017

Table 3. Inference time (forward once with batch size 1) and net-
work size of methods (from left to right): PU-Net, PU-GAN, PU-
GCN, Dis-PU, PUGeo-Net, MAFU, and ours.

4.3. Results and Comparisons

We compare our method with: PU-Net [43], PU-
GAN [17], PU-GCN [30], Dis-PU [18], PUGeo-Net [31]
and MAFU [32]. All the comparison methods are in a
discrete-to-discrete manner, and are trained with the same
training set with our method. For all methods, we train with
4× and 16×, respectively, with ground truth in the related
resolution. For fairness, we share the same settings (batch
size, iterations, learning rate, etc) among all methods.

The results and comparisons of 4× and 16× are given in
Tab. 2, Fig. 3 and Fig. 5. Our method achieves the best per-
formance both quantitatively and qualitatively. The results
of PU-Net are messy overall. PU-GAN performs better than
PU-Net but also generates strange noise and outliers. PU-
GCN performs better than the above two methods and can
preserve flat regions, but still produce some noise points in
the feature-rich regions. We tried our best to finetune the
training settings for Dis-PU [18]. On flat regions, Dis-PU
performs quite well which benefits from its disentangled re-
finement scheme. However, in high-curvature regions, Dis-
PU can not produce high-quality result. PUGeo-Net and
MAFU achieves better result than all the other comparison
methods. However, from the zoom-in view, we can find that
the distribution of their upsampled points is not as smooth
as our results. This is because they upsample each patch in a
discrete and independent way. From the results, we can ob-
serve that our method generates results which are globally
smooth and contain rich local geometric details. We list the
inference time and network size of all methods in Tab. 3.

4.4. Generalization and Robustness

Generalization to Unseen Data. We test on another dataset
which was commonly used in previous dataset, the dataset
collected by PU-GAN [17]. Without retraining, we apply
the trained models on the PU-GAN dataset again and show
the visual and quantitative results. The results and compar-
isons are in Tab. 2 and Fig. 4. We can see that our model
still achieves the best performance on both of quantitative
results and visualization results, proving the good general-
ization ability of the Neural Points representation.
Robustness to Noise. We add Gaussian noise to the input,
and show the results in Fig. 5. For the same inputs, our
result keeps a good shape while the result of MAFU looks
wrinkled. Our quantitative result is also better than MAFU.
Robustness to Large Upsampling Factor. We explore the
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Input                  PU-Net                PU-GAN             PU-GCN                Dis-PU             PUGeo-Net               Ours              Ground Truth

4.11 2.56 2.22 1.80 0.49

4.34 2.84 2.27 2.32 0.42

0.45

0.37

Figure 3. Results and comparison on the Sketchfab [1] dataset. The error metric CD (×10−5) is also given in the bottom. For better
visualization, we zoom-in some local parts of the results and choose the appropriate views to show the details.

upsampling effect of different methods with very large up-
sampling factors. Notice that all the testing methods in-
cluding our own method are trained with a 16× supervision
signal. We adjust the N in our method as 256 · I to obtain
the 256× result. For other methods, we apply the trained
16× model for two times to obtain the 256× results. The
results are shown in Fig. 6. The visualization results of 16×
upsampling by different methods do not have too much dif-
ference, while the results of 256× upsampling are quite dif-

ferent. After applying the model for two times, the results of
PU-GAN, PU-GCN, Dis-PU and PUGeo-Net contain some
flaws that are easy to observe. At the same time, our result
still keeps in a good quality. Since Neural Points represents
the surface in a continuous and resolution-free way, our re-
sult will not be affected by large sampling factors.

Robustness to Real Captured Data. We further compare
our method with two most representative methods (Dis-
PU [18] and PUGeo-Net [31]) on real captured data. Specif-
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Figure 4. Results and comparison on the PU-GAN [17] dataset. The error metric CD (×10−5) is also given in the bottom. Some local
parts are displayed for better comparison.

Input MAFU Ours Ground Truth

Noise Level = 0

Noise Level = 1%

CD = 0.77

CD = 1.20

CD = 0.69

CD = 0.88

Figure 5. Comparison with MAFU & robustness test on noise.

Input       PU-Net   PU-GAN  PU-GCN   Dis-PU  PUGeo-Net  Ours                 

16×

256×

Figure 6. Results of upsampling with very large factors.

Ours RGB Image (unused)Input Point Cloud Dis-PU PUGeo-Net

Figure 7. Comparisons on point cloud captured by depth camera.
The RGB images are displayed for better visualization, which are
not used in our method.

ically, we capture depth images of human face with the
depth sensor equipped on iPhone X. Taking the point cloud
converted from the depth image as input, we apply upsam-
pling to the point clouds with different methods. As shown
in Fig. 7, our method performs quite well, even the scanned
point clouds contain lots of noise and bumpy local regions.
In contrast, the results generated by Dis-PU [18] fail to pre-
serve the geometry features and contain some artifacts. The

results of PUGeo-Net [31] preserve some geometric fea-
tures of the input point cloud, but we can still observe some
artifacts in their results. This test verifies the robustness and
effectiveness of Neural Points to real captured data.

Input Ours

Figure 8. Result on LiDAR data from KITTI dataset.

Robustness to LiDAR-scanned Data. We show the test
result on LiDAR data from KITTI [8] in Fig. 8, and we can
also achieve reasonable upsampling result.

5. Conclusion&Limitation
We proposed Neural Points, a novel point cloud repre-

sentation for arbitrary upsampling, where each point repre-
sents a local continuous geometric shape via neural fields
instead of only a position or a local plane in the 3D space.
Neural Points can involve more shape information and thus
have a stronger representation ability than the traditional
point cloud. We trained Neural Points with surface contain-
ing rich geometric details, such that the trained model has
enough expression ability for various shapes. Specifically,
we extracted deep local features and constructed neural
fields through the local isomorphism between the 2D para-
metric domain and the 3D local patch. The final global con-
tinuous surface is obtained by integrating the neural fields.
The powerful representation ability, robustness and general-
ization ability of Neural Points have been verified by exten-
sive experiments. The great performance on the upsampling
task further verified its nice properties.

Currently, we only utilize the local geometry shape to
train Neural Points, which might limit its applications to
more broad areas. In the future, we plan to utilize other
modalities like corresponding color images and textures, or
global semantic structure to further improve its representa-
tion ability.
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