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Abstract

Quantization has been applied to multiple domains in
Deep Neural Networks (DNNs). We propose Depthwise
Quantization (DQ) where quantization is applied to a de-
composed sub-tensor along the feature axis of weak statis-
tical dependence. The feature decomposition leads to an
exponential increase in representation capacity with a linear
increase in memory and parameter cost. In addition, DQ
can be directly applied to existing encoder-decoder frame-
works without modification of the DNN architecture. We
use DQ in the context of Hierarchical Auto-Encoders and
train end-to-end on an image feature representation. We
provide an analysis of the cross-correlation between spatial
and channel features and propose a decomposition of the
image feature representation along the channel axis. The
improved performance of the depthwise operator is due to
the increased representation capacity from implicit feature
decoupling. We evaluate DQ on the likelihood estimation
task, where it outperforms the previous state-of-the-art on
CIFAR-10, ImageNet-32 and ImageNet-64. We progressively
train with increasing image size a single hierarchical model
that uses 69% fewer parameters and has faster convergence
than the previous work.

1. Introduction

Quantization is an effective lossy compression process
that maps a continuous signal to a set of discrete values,
also called codes. Quantization is extended to vector feature
spaces with learning paradigms such as Vector Quantization
(VQ) and with a training objective identical to k-means.
Product Quantization (PQ) decomposes the feature vector
and assumes a weak statistical dependence between feature
sub-vectors. Additive Quantization (AQ) decomposes the
feature vector into a sum of quantized vectors as opposed to
the concatenated output in PQ.

Quantization is used in conjunction with Deep Neural Net-
works (DNNs) for tasks such as classification [46], incremen-
tal learning [46], zero-shot learning [28], generation [33],
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Figure 1. The original images (left) are reconstructed by DQ (mid-
dle) and VQ (right) with identical models and training setup. The
perceptual quality of DQ outperform VQ.

compression [29] and data retrieval [4]. The discrete quan-
tized feature representations can be used post-hoc [11,33,38]
or as a learning objective (i.e. classification) [28,46]. Our
work is motivated by the increasing number of quantization
applications to high dimensional feature tensors. We view
the quantizer as a density estimator and evaluate it on the
task of likelihood estimation for the visual domain.

Likelihood estimation models seek to minimize the diver-
gence between the data distribution and the model prior. Ex-
plicit likelihood estimation models, including Vector Quanti-
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Figure 2. DQ (left) apply C1 on the first slice of the sub-tensor and for all sub-vectors and concatenate the quantized vectors. VQ [33]
(middle) and PQ (right) quantize the same vector with different codebook and combine the two sub-vectors by addition or concatenation.

zation (VQ), Variational Auto-encoders (VAEs), and Auto-
Regressive (AR) models directly minimize a divergence. In
this work, we focus on explicit likelihood estimation.

AR models do well in likelihood estimation and are ap-
plied in multiple domains such as language, vision, and
audio. AR models have a recursive dependency on the input
during training and inference. Therefore, AR models are
computationally inefficient for domains with long sequences,
such as pixels of an image. Even with caching [34] during
sampling, AR models are still less efficient than VAEs.

The priors of VAEs provide a compressed feature repre-
sentation that can be used as a surrogate training objective
for the downstream task. In contrast to the discrete prior, a
continuous prior can lead to posterior collapse. The repre-
sentation is ignored by the downstream task model because it
is either too noisy or uninformative. This effect is amplified
when the data is discrete, as in the language domain [14].

To that end, we propose the Depthwise Quantization (DQ)
method that quantizes each decomposed feature sub-tensor
with a different quantizer. We use rate-distortion theory to
interpret a quantizer as an encoding function with limited ca-
pacity. We provide a theoretical upper bound on the capacity
in relation to the quantization cost when DQ is applied on a
decoupled feature tensor, as opposed to a coupled feature ten-

sor. We evaluate the performance of DQ on the feature space
of ImageNet for an image classification backbone. Lastly,
we apply DQ to a hierarchical Auto-Encoder with DQ as a
bottleneck for different hierarchies and train it end-to-end.
DQ outperforms explicit models in likelihood estimation. In
detail:

* We propose Depthwise Quantization (DQ) and decom-
pose a feature tensor along the axis of weak statistical
dependence.

* We provide a theoretical analysis on the improved quan-
tization performance and experimentally corroborate
our theoretical results.

* We introduce an improved hierarchical AutoEncoder
model Depth-Quantized Auto-Encoder where DQ is
applied to the feature representation at different hierar-
chies.

* We extend the parametric Mutual Information (MI)
quantization estimators for DNNs when the prior is
learned. We experimentally verify that the learned
prior is implicitly decoupled.

Our approach can be applied to previous works that use
quantization. We demonstrate with our experiments that DQ
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performs significantly better when the assumption on cross-
correlation is strong in both post-hoc analysis and end-to-
end training settings. When trained end-to-end, DQ reduces
the cross-correlation among the decomposed feature tensors
(“implicitly decouple”) and improves reconstruction loss and
likelihood estimation. Our code is publicly available'.

2. Related Work

Our work is closely related to previous studies on feature
decomposition and quantization optimization in visual tasks
using DNNG.

Feature decomposition approaches include Separable
Convolutions (SP) [31], which factorizes a convolutional
kernel to the spatial dimensions. SP reduces the number of
computations required to calculate the filter output. Incep-
tion [43], another approach to feature decomposition, fac-
torizes a feature representation implicitly with a “Network-
in-Network” (NiN) [27] branch of convolutions. Thus, In-
ception learns spatial cross-correlations and feature cross-
correlations independently. Depthwise Separable Convolu-
tion (DSC) [9,43] is a method of feature decomposition
that uses a single “spatial” convolution followed by multiple
vanilla convolutions on a decomposed “segment”. Xcep-
tion [9] is based on the “Inception Hypothesis” for a decou-
pled space where DSC is applied to an eXtreme. Our work is
based on a hypothesis similar to that of DSC and considers
modeling cross-channel correlations and spatial correlations
independently.

There are analyses on the decoupling of the feature space
implicitly in the context of DSC as well as on NiN architec-
tures. Blueprint Separable Convolutions (BSConv) [16] have
been proposed as an alternative to DSC based on the obser-
vation of intra-kernel correlations. They propose a pointwise
(1x1) convolution followed by a depthwise convolution. In
contrast, DSC enforces cross-kernel correlations implicitly.
Analysis on the variance of a convolution kernel shows that
a DNN can perform better when cross-kernel redundancies
decrease.

Other works explicitly factorize a convolutional filter.
There are methods that use a low-rank approximation [20]
or closed-form decomposition [ 5] on pre-trained networks
to speed up the computation process. Previous works on
speeding up networks [42] have used product quantization
to quantize convolutional filters and take advantage of the
redundancies. Previous analysis of the redundancy and cross-
correlation of the feature space in DNNs is complementary
to our work.

Improvements in quantization learning approaches in-
clude Optimized Product Quantization [ 3] that decomposes
the feature vector in a parametric manner. In addition, Ad-

Ihttps : // github . com/ fostiropoulos / Depthwise —
Quantization

ditive Quantization [2] improves on the computational effi-
ciency of PQ for high dimensional vector search by decom-
posing the vectors into a sum instead of a concatenation of
their sub-vectors. In contrast, our work can be applied to
feature tensors and the quantizer is trained end-to-end with a
DNN.

Kobayashi et al. [25] train a quantizer end-to-end with a
DNN. They use multiple codebooks and train each codebook
independently for a different supervised task. However, as
opposed to our method, the codebooks are decoupled in a
supervised manner. Moreover, the quantized representations
are used by different networks for different downstream
tasks as opposed to interacting for a single downstream task.
Lastly, vector decomposition is applied to feature vectors as
opposed to feature sub-tensors as in our work.

PQ-VAE [45] also decomposes the latent representations
to sub-vectors and uses different quantizers for each sub-
vector. Kaiser et al. [21] introduces “sliced quantization” that
is identical to PQ-VAE but uses the discrete representation
post-hoc with a latent variable model. By contrast, DQ
decomposes the feature space to sub-tensors as opposed to
sub-vectors and thus improves the reconstruction loss by
implicitly increasing the statistical dependence within the
sub-tensor.

The works most similar to ours are those of Razavi et
al. [38] and Dhariwal et al. [11]. VQ-VAE-2 [38] applies
quantization to the feature representation of multiple hier-
archies on a VAE. Similar to our method, they train VQ
end-to-end with a VAE. However, we apply DQ as opposed
to VQ for the quantization method. VQ-VAE-2 can suffer
from an uninformative top prior. Subsequent models such as
“Jukebox” [ 1] mitigate the issue by modeling each hierar-
chy with an independent encoder-decoder architecture. We
also avoid the issue of an uninformative top prior but do not
model each hierarchy with a different model. Instead, we
introduce a model architecture DQ-AE.

3. Background

Auto-Encoder (AE) is an unsupervised class of DNN
architectures that learns compressed feature representations
from high dimensional data. Work by Kingma et al. [22]
extends AE to Deep Latent Variable Models with variants
such as Variational Auto-Encoder (VAE). For some input x
and a latent space z, VAE is composed of a decoder p(x|z),
a prior p(2), and an encoder g(z|x). VAE is a probabilistic
model that implicitly learns underlying variables used to
generate the data and their latent factors by minimizing the
divergence between the encoded representation ¢(z|x) and
the true data manifold p(z). To evaluate AE, we can use
Mutual Information (MI) which is a statistical dependence
metric between two variables s.t. I(X;Y) = H(X) —
H(X|Y), where H(X) is the information entropy of X.
The optimization objective of a VAE [3, 18] is an upper
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Figure 3. Effects of implicit marginalization on the learned quantized features. The mean entropy (“informativeness”) of the quantization
vectors for each pixel for DQ (first) is higher when compared to VQ (second); higher is better. The mean MI (“redundancy”) scores between
each quantization codebook for DQ (third) is lower when compared to VQ(fourth); lower is better. The diagonal represent the entropy for

each quantization vector, lower half of the diagonal is empty.

bound to

max[l(z;p(x|z)) — BI(z; 2)] (1)
that maximizes the mutual information between latent repre-
sentation and decoded data, and discards information from x
that is not informative to decoding p(z|z). As such, maxi-
mizing Eq. (1) also maximizes the entropy of z or “informa-
tiveness” [19].

Our view on quantization is based on the interpretation
by Richardson et al. [39] and MacKay et al. [30]. For the
sake of brevity, we refer the reader to their work for a de-
tailed analysis and attach our own analysis and proofs in the
supplementary material.

Scalar Quantizer (SQ) with a vocabulary of size K is
an encoding function for an element X; from a sequence
X € RY of length N such that f(X) = {1...K}".
SQ quantizes every element of the sequence in a memory-
less fashion with the same encoding function. SQ cannot
place assumptions on cross-correlation between different
sequence elements. SQ performs optimally when the prob-
ability density function (pdf) of all data is known in ad-
vance. An encoding function that follows a uniform distri-
bution (i.e. floor function) will perform optimally when all
Xy, € Xy are also uniformly distributed and bounded such
that Xy7; € [a, b]. When X, has an unknown pdf, SQ will
assign probability mass on unlikely regions in [a, b].

Vector Quantization (VQ) “learns” a mapping between
X e RN, and K quantization vectors, or codes. A Code-
book is the set of codes ¢ € RN such that C = {¢; :
i € 1,...,K}. The VQ decoding function returns the
code ¢ with the lowest decoding error d between ¢ and
the vector X such that X = VQ(X) = ¢;,.,. where
Jmin = argmin{d(X,c) : ¢ € C}. The objective func-
tion is to minimize the error of the closest codebook vec-
tor c to the feature vector X and can be summarized as
ZVQ = Tcne’LCT} d(X, X)

Product Quantization (PQ) decomposes a one dimen-
sional vector X € R™ to sub-vectors {X; : j =1,..., M}
and optimizes for a unique pair of a VQ and the sub-vector
space. For M different Codebooks C; : j € 1,..., M there
is a one-to-one mapping with each X;. The PQ decod-
ing function is the concatenation or addition of all VQ de-
coding VQ; = Xj for codebook C; such that PQ(X) =
lvjerrV @;(X;). We adopt the feature decomposition from
PQ and extend it to high dimensional feature vectors to re-
duce the statistical independence among latent features.

Cost of a quantizer is the number of Codebook vectors s.t.
Ceost = K x M, for PQ. Representation Capacity (Cr) de-
fines an upper bound on the sample space from the number of
discrete latent factors that can be represented by the quantizer
for independent random variables X ;, such that S = K™
for K codes and M decomposed sub-vectors. For redundant
X, the sample space is reduced to S™" = (K — 1) and
thus the capacity is bounded by the sample space s.t.

Cr = —H(X) )

Note that for PQ, Cios grows linearly while C'r grows
exponentially, in contrast to a VQ which has linear growth
for both, and thus has an exponential cost with an identical
capacity to PQ. More detailed analysis and proofs can be
found in the Appendix.

Distribution of Prior can have an effect on the decoding
performance of the quantizer. For example, VQ with X¢r
from before can achieve identical decoding error as SQ but
at a significant cost of KV as compared to K for a memory-
less SQ. The assumption on the distribution of the prior
can determine the cost and the representation capacity of a
quantizer.

The difference between PQ and VQ is the assumption
of co-variance among features. Contrary to VQ, PQ takes
advantage of the low co-variance among feature sub-vectors.
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Figure 4. Original image (left) is reconstructed using only top level codes (middle) and only bottom level codes (right). Top level hierarchy
contains structural information, while bottom level hierarchy contains details.

4. Depthwise Quantization

Given an output feature tensor from encoder X € R with
rank r, Depthwise Quantization (DQ) applies M quantizers
V' Q; pair-wise on decomposed tensor slices X; = X{' along
an axis « with quantization dimension D = |X{'|.

Each V Q; optimizes Codebook C; and uses ly ¢ to define
the error between X; and closest quantization vector XZ— =
Q:(X;). The optimization objective is the joint optimization
over each codebook such that

1T?,%M[LDQ = Z lvo(Xi, Xi)] S

c -
VX X

We use the Lo norm as a similarity metric for ly-g between
each X; and the /ocal quantization vector Xi. The DQ loss
is then added to the reconstruction loss of the DNN and the
gradients are copied from the quantized vector X; to X using
auto-grad [37]. The loss function of DQ becomes

L= Lpnn+ Lpg(sg(X), X) + BLpq(X, sg(X)) (5)

where sg stands for stop-gradient operator that stops the
operand from updating during the training phase. Similar to
the setting in VQ-VAE, the first loss term is used to lower the
reconstruction error, the second term adjusts the codebook
corresponding to the encoder output, and the third term is
used to prevent the output of the encoder from growing
arbitrarily. Note that the KL divergence is a constant equal
to Mlog(K) as DQ assumes a uniform prior distribution of
latent embeddings. Therefore, the KL divergence term is

dropped from the optimization objective of our framework.

A detailed explanation is provided in Sec. 4.1
Note that for a feature tensor of rank one, DQ is identical

to SQ when a single codebook of dimensionality one is used.

When more than one codebook is used, DQ is identical to
PQ and Additive Quantization with addition as the decoding
function. The advantage of DQ over other quantization
methods comes from the decomposition of a tensor to sub-
tensors along the axis of weak statistical dependence.

For 2-D Convolutional Neural Networks (CNN), X is a
feature tensor of rank 3. Fig. 2 provides an illustration of
the DQ process for a 3-rank tensor. Different quantizers
are applied for each slice of the channel axis, but the same
quantizer is applied on the sub-vectors of a feature sub-tensor,
such as decomposing along the spatial dimension.

4.1. Decoupled Feature Space

Decoupled refers to the statistical independence between
features and Coupled refers to the statistical dependence
between features. We use Information Theory to analyze
quantization as an encoding function with an information
bottleneck on a signal.

Eq. (1) provides the basis of the VAE optimization objec-
tive that can be formulated as a lower bound to the channel
capacity as L > E,(.j,) log p(z]2) — BDscr(q(2])][p(2))
[3, 18] where B is the Lagrange multiplier. [-VAE as-
sumes a Gaussian prior p(z) ~ N(0, ), and DQ assumes
a uniform prior. Thus the KL-Divergence of the uniform
distribution and decoder is the capacity of the quantizer
D 1,(q(z]x)||p(z)) = Cr. The detailed proof can be found
in Appendix 1.

max[Eq .|z log p(z|z) — CR] (6)

Reducing the capacity of the information bottleneck in
VAE encourages disentangled representations in 5-VAE. In
a similar fashion, reducing C'r encourages disentangled rep-
resentations for each codebook, with the upper bound con-
trolled by K and M. By doing so, significantly compressed
representations can be learned for an improved downstream
training objective.
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Cr and by extension H(z) in the discrete case are not
differentiable with respect to the DNN parameters and can
not be explicitly minimized. We observe index collapse
and performance degradation on hierarchical deep quantiza-
tion variants. Index collapse causes the quantizer to utilize
only limited number of codes. We enforce a uniform prior
through an approximate solution and discuss the implications
in Sec. 4.2 and Sec. 6.

4.2. Implicit Decoupling

Implicit decoupling of the feature space is the surrogate
optimization objective derived by the explicit minimization
of the decoding error. There is a joint optimization objective
when DQ is applied to the intermediate feature representa-
tions in the context of DNN and trained end-to-end. DQ
minimizes the decoding error along the DNN objective func-
tion. DQ works as a bottleneck on intermediate feature
representations between subsequent layers of the network.
We use the result from work by 8-VAE on the interpretation
of AE as the information bottleneck.

B-VAE uses ¢(z|z) to learn a set of additive channels z;
where their capacity is maximized when all z; are indepen-
dent. This provides an implicit optimization objective by
optimizing Eq. (1), which is the equivalent in the quantized
case as optimizing Eq. (6). There is an equivalence between
each z; and the codebook as they both perform as additive
information channels that, when combined, reconstruct an
original signal. Lastly, both z; and the quantizer are para-
metric density estimators or smaller networks that can be
considered as part of a generic Network-in-Network (NiN)
family of models.

Feature independence improves downstream task perfor-
mance when learned implicitly in NiN models. Xception
uses Depthwise Seperable Convolution (DSC) to outperform
coupled variants on ablation studies on Mobile-Net [17].
Additional previous analysis on the intra-kernel correla-
tions [16] has demonstrated the benefits of a decoupled fea-
ture space along the channels of an image feature tensor.
We corroborate the analysis with MI estimation on a static
prior to determine the axis of weak statistical dependence
and apply DQ along the channel dimension (“depth-wise”)
and spatial dimension (“pixel-wise”) in the context of DNN.

Uniform Prior In contrast to the traditional Variational
Auto-Encoder, DQ relies on the assumption of uniform dis-
tribution of quantized vectors p(z). However, the assump-
tion of a uniform prior is not strong, which can potentially
lead to degrading performance and be sensitive to the ran-
dom initialization. A non-uniform prior will cause code-
book collapse where only few codes are utilized in a code-
book. To mitigate this issue, we follow previous work, and
use Exponential Moving Average (EMA) and random re-
initialization of codes. We re-initialize codes with low usage
frequency counts that are below a threshold.Although pre-

vious works [5, 2 1] discuss the equivalence of quantization
with EMA and the 3-VAE objective, there is no exact rela-
tionship between the two. VQ-VAE is an approximation to
the Varitional Information Bottleneck (VIB) when trained
with soft Expectation Maximization (EM). The E-step on
the update rule of DQ is approximated with EMA over mini-
batches of data [5, 6]. This is in contrast to hard - EM where
quantization is deterministic [40]. Soft - EM provides a
probabilistic discrete information bottleneck as discussed in
work by Roy et al. [41] and Wu et al. [44].

We use entropy of the quantization vectors to measure
their information density. A successful decoupling method
should generate feature vectors with high entropy. Entropy
Estimation on continuous distributions is intractable, but
a signal can be discretized by quantization with both para-
metric and non-parametric optimization on the quantization
interval. The entropy is then computed on the quantized
discrete distribution.

1Y) = 3 3 b oo log (22000 )

yey zeX PX(HC) PY(y)
(7N

We use the quantization regions of VQ as a density estima-
tor for entropy, and thus mutual information on a continuous
prior. When DQ is learned end-to-end, entropy can be cal-
culated directly by the frequency count of each code vector
over a sample set. Our approach in approximating MI is
similar to previous work that uses Kernel Density Estima-
tors [32] and is performed post-hoc on a trained network or
by training a different DQ. Quantization post-hoc is sensitive
to sample size but performs at par with other state-of-the-art
approaches [12,23,24,35].

4.3. Depth-Quantized AutoEncoder

Depthwise Quantized Auto-Encoder (DQ-AE) uses DQ
at different hierarchical feature representations. The full
algorithm that defines the training process is found in the
supplementary material. In summary, we decode each quan-
tized representation conditioned only on the quantized repre-
sentation of the previous level. We perform this operation
top-bottom and use Eq. (6) as the optimization objective of
each DQ. Through experiments, we find that lower capacity
bottom-level hierarchy enforces the utilization of top-level
hierarchies and that the problem of under-utilization of top
or bottom level hierarchies can also be a consequence of
over-fitting. During the early stages of training, both hier-
archies are used equivalently, but at later stages, fop-level
prior collapse. Our architecture leads to informative top and
bottom level hierarchies as can be seen in Fig. 4.
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Figure 5. Ablation study model comparison. For M=1, DQ is identical to VQ. We train models under the following settings K =
{32,128,512}, M = {1,3,5,10} and optimize for different reconstruction losses NLL (left) and Lo (right). We report the average of the
final convergence loss from multiple runs (10). The top bold line for each polygon corresponds to K = 32, the bottom line to K = 512

CIFAR-10 ImageNet-32 ImageNet-64
Model (Param.) bits/dim Param. bits/dim Param. bits/dim
S-Tr.! (59M) 2.80 Img-Tr.2 (-) 3.77 S-Tr.! (152M) 344
VDVAE? (39M) 2.80 119M 3.80 125M 3.52
(Ours) (22M) 2.52 22M 3.12 22M 2.89

Table 1. Baselines: 1Sparse Transformer [8] 2Image Transformer [36] *VD-VAE [7]. “Ours” is a 2 hierarchical DQ-AE with K set to 256
and 128 for top and bottom codebooks respectively.

5. Experiment Quant. K D Lpg | ~H(X) T

Pixel 32 74 0.192£0.002 1.98+0.01

In our experiment, we evaluate DQ in two settings: on Channel 32 74 0.184-+0.001 2.53+0.01

a static prior, and when trained end-to-end with a DNN, Pixel 1024 74  0.52340.003 3.64-0.01

on a learned prior. We first evaluate our theoretical claim Channel 1024 74 0.480+0.001 3.99--0.01

on a static prior and perform an ablation study on DQ and

DQ-AE. We report the details of the training and network Table 2. Density estimation on ImageNet feature space extracted
hyper-parameters in the supplementary material. from VGG-16. Results are from 10 train runs with random code
initialization. DQ applied along the channels (Channel Quantiza-
5.1. Density Estimation tion) as opposed to the spatial dimension (Pixel Quantization). D

is the size of the feature vector, K the discrete codes used, L the
reconstruction error, and H (X) is the mean entropy of the feature
tensor. Channel Quantization surpasses Pixel Quantization in all
respects.

We experimentally verify our claims on the decoupled
feature space from Sec. 4.1. The penultimate feature rep-
resentation from pre-trained VGG-16 model® is used on
ImageNet [10]. DQ decomposes the feature representation
“channel-wise” (DQ¢) and “pixel-wise” (DQs). The penul-
timate feature tensor with shape [512 x 7 x 7] is sliced
along the channel axis into 7 segments and zero padded with
D = 74 and M = 7. The quantizers for both networks in-
dependently quantize each row for D¢ in contrast to each
slice for DQ.

We train DQ as a quantizer for multiple random runs (10)
and we report the mean Lo norm between X and the recon-
struction X. For each quantization method, we approximate
the entropy of the codes to determine their respective infor-
mation density using Eq. (7). The results of our experiments
can be found in Tab. 2.

We find that DQ can achieve better density estimation
along the channel dimension as opposed to the spatial di-
mension. The lower entropy H (X) of the feature tensor is
due to a higher redundancy among feature sub-tensor and
corresponds to a higher reconstruction error. DQ can per-
form better when decomposing on the channel axis and our
results agree with previous analyses on intra-kernel correla-
Zhttps://pytorch.org/vision/stable/models.html tions [16].
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5.2. Implicit Decoupling

We train a DQ-AE and a VQ-VAE [33] for M = 10 and
K = 512 with an identical network configuration, method-
ology and hyper-parameters. The difference between archi-
tectures is highlighted in Fig. 2. We measure the likelihood
estimation of the two approaches on CIFAR-10 [26] and
quantize each image to 8 x 8 x 10 codes. VQ-VAE NLL
is 4.36 bits/dim as compared to 3.14 bits/dim for single
hierarchy DQ-AE, a 28% decrease.

High Entropy We show that the learned features of DQ
have high entropy which indicates low statistical dependence
among them. In contrast, VQ appears to have few very
informative features and many uninformative ones. The
mean entropy of the prior is H(z) = 6.03 nats/pixel for DQ
as compared to H(z) = 5.86 nats/pixel for VQ. The entropy
distribution among spatial features of the prior can be found
in the left two sub-figures in Fig. 3.

Low MI We estimate the pairwise MI of the quantization
vectors along the depth of the feature tensor with mean score
of 1.93 and 2.36 nats/vector respectively. A comparison
matrix can be found in the right two sub-figures in Fig. 3.
For DQ the MI between quantization vectors is significantly
lower as visualized by the mostly empty upper triangular ma-
trix. In contrast, for VQ there seems to be higher redundancy
among quantization vectors. The diagonal of the matrix
represents the entropy of each quantization vector. The MI
estimate on the quantization vector shows that the redundan-
cies are significantly higher in the learned representation for
VQ.

5.3. Ablation study

We study the effect of K and D on the model perfor-
mance. The model is more sensitive to the dimensionality D
of the sub-vector and less sensitive to . DQ outperforms
coupled variants on likelihood estimation and reconstruc-
tion loss in all settings. C'r grows exponentially with M
as opposed to K. Fewer code vectors can be used to quan-
tize without performance degradation. For example, when
M = 3, DQ outperforms a VQ variant by 35% and uses
25% fewer code vectors. Fig. 5 shows a summary of the loss
for different K and M values. A detailed table of the results
can be found in the Appendix.

5.4. Likelihood Estimation

For likelihood estimation, we compare DQ-AE with other
likelihood estimator models and report the numbers from
their work. We use Very Deep VAE (“VD-VAE”) [7] as a
continuous AutoEncoder baseline and Sparse Transformer
(“S-Tr”) [8] as an Auto-Regressive baseline.

For experiments on ImageNet, we add a number on the
image resolution at which we train the model at the end
of the dataset name. For our model, we use an identical
architecture and number of hierarchies for all resolution of

the dataset. The detailed results are in Tab. 1. We outperform
all previous state-of-the-art models when measuring the loss
in bits/dim, we also report C' separately. The estimate for
Cr ~ 0.2 nats. Visual inspection of both top and bottom
hierarchies confirm that they encode different granularity of
features and are utilized (Fig. 4), and perceptual quality is
improved (Fig. 1). Additional high resolution images are
attached in the supplementary materials.

When compared to the hierarchical model by Razavi et
al. [38], DQ-AE also outperforms in reconstruction error
for Ly on ImageNet-256. On CIFAR-10, the DQ-AE loss is
0.019 compared to 0.044 for VQ-VAE. For ImageNet-256,
DQ-AE loss is 0.0032 compared to 0.005 for VQ-VAE-2.

6. Discussion

We thoroughly evaluate the theoretical claims of our work
and empirically verify our method in likelihood estimation.
Evaluation of the discrete representation on a downstream
task such as latent interpolations is domain specific. Sam-
pling from the multi-resolution and high dimensional dis-
crete codebooks requires training additional models post-hoc.
As such, there are multiple open problems in how to design
such a model. We leave this for future work.

The direct evaluation and comparison on NLL between
explicit likelihood models can be non-equivalent. Our model
makes different assumptions on the prior distribution and as
such the direct comparison can be flawed. Previous work
[1] has suggested that the ELBO might be a poor metric
to evaluate deep latent variable models. We mitigated the
issue and followed the theoretical result and experimental
methodology to previous work [7]. We consider the proper
evaluation of the discrete prior with other model variants as
an open problem.

7. Conclusion

We analyze the effects of decomposing an image feature
tensor along an axis of statistical independence. Decom-
position and quantization among independent features out-
performs coupled feature variants. Our theoretical insights
focus on feature decoupling for decomposed image feature
tensors along the channel axis. Our results corroborate previ-
ous analyses and explain the advantage of NiN applications
which can be interpreted as an information bottleneck.

Based on our theoretical insight, we propose Depthwise
Quantization (DQ) that provides significantly more efficient
bottleneck capacity by eliminating redundancies implicitly in
the feature axis. DQ is trained end-to-end with a Hierarchical
Auto-Encoder (DQ-AE) and learns improved hierarchical
discrete representations. Our method is domain agnostic,
and we consider the evaluation on a specific task for future
work.
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