
Plenoxels: Radiance Fields without Neural Networks

Sara Fridovich-Keil⇤ Alex Yu⇤ Matthew Tancik Qinhong Chen
Benjamin Recht Angjoo Kanazawa

UC Berkeley

Abstract

We introduce Plenoxels (plenoptic voxels), a system for
photorealistic view synthesis. Plenoxels represent a scene as
a sparse 3D grid with spherical harmonics. This representa-
tion can be optimized from calibrated images via gradient
methods and regularization without any neural components.
On standard, benchmark tasks, Plenoxels are optimized two
orders of magnitude faster than Neural Radiance Fields with
no loss in visual quality. For video and code, please see
https://alexyu.net/plenoxels.

1. Introduction
A recent body of research has capitalized on implicit,

coordinate-based neural networks as the 3D representation
to optimize 3D volumes from calibrated 2D image super-
vision. In particular, Neural Radiance Fields (NeRF) [28]
demonstrated photorealistic novel viewpoint synthesis, cap-
turing scene geometry as well as view-dependent effects.
This impressive quality, however, requires extensive com-
putation time for both training and rendering, with training
lasting more than a day and rendering requiring 30 sec-
onds per frame, on a single GPU. Multiple subsequent pa-
pers [9, 10, 21, 37, 38, 59] reduced this computational cost
for rendering, but single GPU training still requires multiple
hours, a bottleneck that limits the practical application of
photorealistic volumetric reconstruction.

In this paper, we show that we can train a radiance field
from scratch, without neural networks, while maintaining
NeRF quality and reducing optimization time by two orders
of magnitude. We provide a custom CUDA [31] implemen-
tation that capitalizes on the model simplicity to achieve
substantial speedups. Our typical optimization time on a
single Titan RTX GPU is 11 minutes on bounded scenes
(compared to roughly 1 day for NeRF, more than a 100⇥
speedup) and 27 minutes on unbounded scenes (compared

* Authors contributed equally to this work.

N
eR

F
Pl

en
ox

el

Training Time (minutes)

PS
N

R

NeRF
Plenoxel

10 min5 min1 min

20

25

30

35

6050403020100

100x Faster Convergence

Figure 1. Plenoxel: Plenoptic Volume Elements for fast optimiza-
tion of radiance fields. We show that direct optimization of a fully
explicit 3D model can match the rendering quality of modern neural
based approaches such as NeRF while optimizing over two orders
of magnitude faster.

to roughly 4 days for NeRF++ [60], again more than a 100⇥
speedup). Although our implementation is not optimized for
fast rendering, we can render novel viewpoints at interactive
rates (15 fps). If faster rendering is desired, our optimized
Plenoxel model can be converted into a PlenOctree [59].

Specifically, we propose an explicit volumetric represen-
tation, based on a view-dependent sparse voxel grid without
any neural networks. Our model can render photorealistic
novel viewpoints and be optimized end-to-end from cali-
brated 2D photographs, using the differentiable rendering
loss on training views along with a total variation regularizer.

5501

We call our model Plenoxel for plenoptic volume elements,
as it consists of a sparse voxel grid in which each voxel
stores density and spherical harmonic coefficients, which
model view dependence [1]. By interpolating these coeffi-
cients, Plenoxels achieve a continuous model of the plenoptic
function [1]: the light at every position and in every direc-
tion inside a volume. To achieve high resolution on a single
GPU, we prune empty voxels and follow a coarse to fine
optimization strategy. Although our core model is a bounded
voxel grid, we show that unbounded scenes can be modeled
by using normalized device coordinates (for forward-facing
scenes) or by surrounding our grid with multisphere images
to encode the background (for 360� scenes).

Our method reveals that photorealistic volumetric recon-
struction can be approached using standard tools from in-
verse problems: a data representation, a forward model, a
regularization function, and an optimizer. Our method shows
that each of these components can be simple and state of
the art results can still be achieved. Our experiments suggest
the key element of Neural Radiance Fields is not the neural
network but the differentiable volumetric renderer.

2. Related Work
Classical Volume Reconstruction. We begin with a brief
overview of classical methods for volume reconstruction,
focusing on those which find application in our work. The
most common classical methods for volume rendering are
voxel grids [7, 14, 19, 22, 43–45, 53, 54] and multi-plane im-
ages (MPIs) [27,34,48,49,58,62]. Voxel grids are capable of
representing arbitrary topologies but can be memory limited
at high resolution. One approach for reducing the memory
requirement for voxel grids is to encode hierarchical struc-
ture, for instance using octrees [12, 40, 52, 55] (see [17] for
a survey); we use an even simpler sparse array structure.
Using these grid-based representations combined with some
form of interpolation [54] produces a continuous represen-
tation that can be arbitrarily resized using standard signal
processing methods (see [32] for reference). We combine
this classical sampling and interpolation paradigm with the
forward volume rendering formula introduced by Max [24]
(based on work from Kajiya and Von Herzen [13] and used
in NeRF) to directly optimize a 3D grid from indirect 2D
observations. We further extend these classical approaches
by modeling view dependence, which we accomplish by
optimizing spherical harmonic coefficients for each color
channel at each voxel. Spherical harmonics are a standard
basis for functions over the sphere, and have been used pre-
viously to represent view dependence [4, 36, 47, 58, 59].

Neural Volume Reconstruction. Recently, dramatic im-
provements in neural volume reconstruction have renewed
interest in this direction. Neural representations were first
used to model occupancy [6, 23, 26] and signed distance to

an object’s surface [33, 50], and perform novel view syn-
thesis from 3D point clouds [2, 18, 42, 57]. Several papers
extended this idea to model a 3D scene using only calibrated
2D image supervision via a differentiable volume rendering
formulation [22,28,45,46]. NeRF [28] in particular produces
impressive results but requires more than a day for full train-
ing, and about half an minute to render a full 800 ⇥ 800
image, because every rendered pixel requires evaluating a
coordinate-based MLP at hundreds of sample locations along
the corresponding ray. Many papers have since extended the
capabilities of NeRF, including modeling the background
in 360� views [60] and incorporating anti-aliasing for mul-
tiscale rendering [3]. We extend our Plenoxel method to
unbounded 360� scenes using a background model inspired
by NeRF++ [60].

Of these methods, Neural Volumes [22] is the most simi-
lar to ours in that it uses a voxel grid with interpolation, but
optimizes this grid through a convolutional neural network
and applies a learned warping function to improve the ef-
fective resolution (of a 1283 grid). We show that the voxel
grid can be optimized directly and high resolution can be
achieved by pruning and coarse to fine optimization, without
any neural networks or warping functions.

Accelerating NeRF. In light of the substantial computa-
tional requirements of NeRF for both training and rendering,
many recent papers have proposed methods to improve effi-
ciency, particularly for rendering. Among these methods are
some that achieve speedup by subdividing the 3D volume
into regions that can be processed more efficiently [21, 37].
Other speedup approaches have focused on a range of com-
putational and pre- or post-processing methods to remove
bottlenecks in the original NeRF formulation. JAXNeRF [8],
a JAX [5] reimplementation of NeRF, offers a speedup for
both training and rendering via parallelization across many
GPUs or TPUs. AutoInt [20] restructures the coordinate-
based MLP to compute ray integrals exactly, for more than
10⇥ faster rendering with a small loss in quality. Learned
Initializations [51] employs meta-learning on many scenes to
start from a better MLP initialization, for both > 10⇥ faster
training and better priors when per-scene data is limited.
Other methods [15, 29, 35] achieve speedup by predicting a
surface or sampling near the surface, reducing the number
of samples necessary for rendering each ray.

Another approach is to pretrain a NeRF (or similar model)
and then extract it into a different data structure that can
support fast inference [9, 10, 38, 59]. In particular, PlenOc-
trees [59] extracts a NeRF variant into a sparse voxel grid
in which each voxel represents view-dependent color us-
ing spherical harmonic coefficients. Because the extracted
PlenOctree can be further optimized, this method can speed
up training by roughly 3⇥, and because it uses an efficient
GPU octree implementation without any MLP evaluations,

5502

Spherical
Harmonics

b) Trilinear Interpolationa) Sparse Voxel Grid

ı

Ray Distance

Training
Image d) Optimization

c) Volumetric Rendering

minimize
ı�

Predicted
Color

Figure 2. Overview of our sparse Plenoxel model. Given a set of images of an object or a scene, we optimize a (a) sparse voxel (“Plenoxel”)
grid with density and spherical harmonic coefficients at each voxel. To render a ray, we (b) compute the color and opacity of each sample point
via trilinear interpolation of the neighboring voxel coefficients. We integrate the color and opacity of these samples using (c) differentiable
volume rendering, following the recent success of NeRF [28]. The voxel coefficients can then be (d) optimized using the standard MSE
reconstruction loss relative to the training images, along with a total variation regularizer.

it achieves > 3000⇥ rendering speedup. Our method ex-
tends PlenOctrees to perform end-to-end optimization of a
sparse voxel representation with spherical harmonics, offer-
ing much faster training (two orders of magnitude speedup
compared to NeRF). Our Plenoxel model is a generalization
of PlenOctrees to support sparse plenoptic voxel grids of
arbitrary resolution (not necessary powers of two) with the
ability to perform trilinear interpolation, which is easier to
implement with this sparse voxel structure.

3. Method
Our model is a sparse voxel grid in which each occupied

voxel corner stores a scalar density � and a vector of spheri-
cal harmonic (SH) coefficients for each color channel. From
here on we refer to this representation as Plenoxels. The
density and color at an arbitrary position and viewing direc-
tion are determined by trilinearly interpolating the values
stored at the neighboring voxels and evaluating the spherical
harmonics at the appropriate viewing direction. Given a set
of calibrated images, we optimize our model directly using
the rendering loss on training rays. Our model is illustrated
in Fig. 2 and described in detail below.

3.1. Volume Rendering
We use the same differentiable model for volume render-

ing as in NeRF, where the color of a ray is approximated by
integrating over samples taken along the ray:

Ĉ(r) =
NX

i=1

Ti

�
1� exp(��i�i)

�
ci (1)

where Ti = exp

0

@�
i�1X

j=1

�j�j

1

A (2)

Ti represents how much light is transmitted through ray r
to sample i, (1� exp(��i�i)) denotes how much light is
contributed by sample i, �i denotes the density of sample
i, and ci denotes the color of sample i, with distance �i
to the next sample. Although this formula is not exact (it
assumes single-scattering [13] and constant values between
samples [24]), it is differentiable and enables updating the
3D model based on the error of each training ray.

3.2. Voxel Grid with Spherical Harmonics
Similar to PlenOctrees [59], we use a sparse voxel grid

for our geometry model. However, for simplicity and ease
of implementing trilinear interpolation, we do not use an
octree for our data structure. Instead, we store a dense 3D
index array with pointers into a separate data array con-
taining values for occupied voxels only. Like PlenOctrees,
each occupied voxel stores a scalar density � and a vector
of spherical harmonic coefficients for each color channel.
Spherical harmonics form an orthogonal basis for functions
defined over the sphere, with low degree harmonics encoding
smooth (more Lambertian) changes in color and higher de-
gree harmonics encoding higher-frequency (more specular)
effects. The color of a sample ci is simply the sum of these
harmonic basis functions for each color channel, weighted
by the corresponding optimized coefficients and evaluated
at the appropriate viewing direction. We use spherical har-
monics of degree 2, which requires 9 coefficients per color
channel for a total of 27 harmonic coefficients per voxel.
We use degree 2 harmonics because PlenOctrees found that
higher order harmonics confer only minimal benefit.

Plenoxel grid uses trilinear interpolation to define a con-
tinuous plenoptic function throughout the volume. This is
in contrast to PlenOctrees, which assumes that the density
and spherical harmonic coefficients remain constant inside

5503

each voxel. This difference turns out to be an important fac-
tor in successfully optimizing the volume, as we discuss
below. All coefficients (for density and spherical harmonics)
are optimized directly, without any special initialization or
pretraining with a neural network.

3.3. Interpolation
The density and color at each sample point along each

ray are computed by trilinear interpolation of density and
harmonic coefficients stored at the nearest 8 voxels. We find
that trilinear interpolation significantly outperforms a sim-
pler nearest neighbor interpolation; see Tab. 1. The benefits
of interpolation are twofold: interpolation increases the effec-
tive resolution by representing sub-voxel variations in color
and density, and interpolation produces a continuous func-
tion approximation that is critical for successful optimization.
Both of these effects are evident in Tab. 1: doubling the res-
olution of a nearest-neighbor-interpolating Plenoxel closes
much of the gap between nearest neighbor and trilinear inter-
polation at a fixed resolution, yet some gap remains due to
the difficulty of optimizing a discontinuous model. Indeed,
we find that trilinear interpolation is more stable with respect
to variations in learning rate compared to nearest neighbor
interpolation (we tuned the learning rates separately for each
interpolation method in Tab. 1, to provide close to the best
number possible for each setup).

PSNR " SSIM " LPIPS #
Trilinear, 2563 30.57 0.950 0.065
Trilinear, 1283 28.46 0.926 0.100
Nearest Neighbor, 2563 27.17 0.914 0.119
Nearest Neighbor, 1283 23.73 0.866 0.176

Table 1. Ablation over interpolation method. Results are averaged
over the 8 NeRF synthetic scenes. We find that trilinear interpola-
tion provides dual benefits of improving effective resolution and
improving optimization, such that trilinear interpolation at resolu-
tion 1283 outperforms nearest neighbor interpolation at 2563.

3.4. Coarse to Fine
We achieve high resolution via a coarse-to-fine strategy

that begins with a dense grid at lower resolution, optimizes,
prunes unnecessary voxels, refines the remaining voxels by
subdividing each in half in each dimension, and continues
optimizing. For example, in the synthetic case, we begin
with 2563 resolution and upsample to 5123. We use trilinear
interpolation to initialize the grid values after each voxel
subdivision step. In fact, we can resize between arbitrary
resolutions using trilinear interpolation. Voxel pruning is per-
formed using the method from PlenOctrees [59], which ap-
plies a threshold to the maximum weight Ti(1�exp(��i�i))
of each voxel over all training rays (or, alternatively, to the

density value in each voxel). Due to trilinear interpolation,
naively pruning can adversely impact the the color and den-
sity near surfaces since values at these points interpolate with
the voxels in the immediate exterior. To solve this issue, we
perform a dilation operation so that a voxel is only pruned if
both itself and its neighbors are deemed unoccupied.

3.5. Optimization
We optimize voxel densities and spherical harmonic coef-

ficients with respect to the mean squared error (MSE) over
rendered pixel colors, with total variation (TV) regulariza-
tion [41]. Specifically, our base loss function is:

L = Lrecon + �TV LTV (3)

Where the MSE reconstruction loss Lrecon and the total
variation regularizer LTV are:

Lrecon =
1

|R|
X

r2R
kC(r)� Ĉ(r)k22

LTV =
1

|V|
X

v2V
d2[D]

q
�2

x(v, d) +�2
y(v, d) +�2

z(v, d)

with �2
x(v, d) shorthand for the squared difference between

the dth value in voxel v := (i, j, k) and the dth value in voxel
(i+ 1, j, k) normalized by the resolution, and analogously
for �2

y(v, d) and �2
z(v, d), where D is the total number

of density and spherical harmonic (SH) coefficients stored
at each voxel. In practice we use different weights for SH
coefficients and � values. These weights are fixed for each
scene type (bounded, forward-facing, and 360�).

For faster iteration, we use a stochastic sample of the rays
R to evaluate the MSE term and a stochastic sample of the
voxels V to evaluate the TV term in each optimization step.
We use the same learning rate schedule as JAXNeRF and
Mip-NeRF [3, 8], but tune the initial learning rate separately
for density and harmonic coefficients. The learning rate is
fixed for all scenes in all datasets in the main experiments.

Directly optimizing voxel coefficients is a challenging
problem for several reasons: there are many values to op-
timize (the problem is high-dimensional), the optimization
objective is nonconvex due to the rendering formula, and
the objective is poorly conditioned. Poor conditioning is
typically best resolved by using a second order optimiza-
tion algorithm (e.g. as recommended in [30]), but this is
practically challenging to implement for a high-dimensional
optimization problem because the Hessian is too large to
easily compute and invert in each step. Instead, we use RM-
SProp [11] to ease the ill-conditioning problem without the
full computational complexity of a second-order method.

3.6. Unbounded Scenes
With minor modifications, Plenoxels extend to real, un-

bounded scenes, both forward-facing and 360�. For forward-

5504

Full No SH TV No � TV No TV

Figure 3. Ablation over TV regularization. Clear artifacts are
visible in the forward-facing scenes without TV on both � and SH
coefficients, although PSNR does not always reflect this.

facing scenes, we use normalized device coordinates, as
defined in the original NeRF paper [28].

Background model. For 360� scenes, we augment our
sparse voxel grid foreground representation with a multi-
sphere image (MSI) background model, which also uses
learned voxel colors and densities with trilinear interpola-
tion within and between spheres. Note that this is effectively
the same as our foreground model, except the voxels are
warped into spheres using the simple equirectangular projec-
tion (voxels index over sphere angles ✓ and �). We place 64
spheres linearly in inverse radius from 1 to 1 (we pre-scale
the inner scene to be approximately contained in the unit
sphere). To conserve memory, we store only rgb channels for
the colors (only zero-order SH) and store all layers sparsely
by using density thresholding as in our main model. This is
similar to the background model in NeRF++ [60].

3.7. Regularization

We illustrate the importance of TV regularization in Fig. 3.
In addition to TV regularization, which encourages smooth-
ness and is used on all scenes, for certain types of scenes we
also use additional regularizers.

On the real, forward-facing and 360� scenes, we use a
sparsity prior based on the Cauchy loss from SNeRG [10]:

Ls = �s

X

i,k

log
�
1 + 2�(ri(tk))

2
�

(4)

where �(ri(tk)) denotes the density of sample k along train-
ing ray i. In each minibatch of optimization on forward-
facing scenes, we evaluate this loss term at each sample
on each active ray. This is also similar to the sparsity loss
used in PlenOctrees [59] and encourages voxels to be empty,
which helps to save memory.

On the real, 360� scenes, we also use a beta distribution
regularizer on the accumulated foreground transmittance of
each ray in each minibatch. This loss term, following Neu-
ral Volumes [22], promotes a clear foreground-background
decomposition by encouraging the foreground to be either

Iteration (Batch #)

G
ra

di
en

t S
pa

rs
ity

 (%
 V

ox
el

s)

0

10

20

30

100 101 102 103 104

Real 360°
Real Forward-facing
Synthetic

Figure 4. Gradient sparsity. The gradient becomes very sparse
spatially within the first 12800 batches (one epoch for the synthetic
scenes), with as few as 1% of the voxels updating per batch in the
synthetic case. This enables efficient training via sparse parameter
updates. The solid lines show the mean and the shaded regions
show the full range of values among all scenes of each type.

fully opaque or empty. This beta loss is:

L� = ��

X

r

(log(TFG(r)) + log(1� TFG(r))) (5)

where r are the training rays and TFG(r) is the accumulated
foreground transmittance (between 0 and 1) of ray r.

3.8. Implementation
Since sparse voxel volume rendering is not well-

supported in modern autodiff libraries, we created a cus-
tom PyTorch CUDA [31] extension library to achieve fast
differentiable volume rendering. We also provide a slower,
higher-level JAX [5] implementation. The speed of our im-
plementation is possible in large part because the gradient
of our Plenoxel model becomes very sparse very quickly, as
shown in Fig. 4. Within the first 1-2 minutes of optimization,
fewer than 10% of the voxels have nonzero gradients.

4. Results
We present results on synthetic, bounded scenes; real, un-

bounded, forward-facing scenes; and real, unbounded, 360�
scenes. We include time trial comparisons with prior work,
showing dramatic speedup in training compared to all prior
methods (alongside real-time rendering). Quantitative com-
parisons are presented in Tab. 2, and visual comparisons
are shown in Fig. 1, Fig. 6, Fig. 7, and Fig. 8. Our method
achieves quality results after even the first epoch of optimiza-
tion, less than 1.5 minutes, as shown in Fig. 5.

We also present the results from various ablation studies
of our method. In the main text we present average results
(PSNR, SSIM [56], and VGG LPIPS [61]) over all scenes
of each type; full quantitative and visual results on each

5505

Figure 5. 1 minute, 20 seconds. Results on the synthetic scenes after 1 epoch of optimization, an average of 1 minute and 20 seconds.

PSNR " SSIM " LPIPS # Train Time

Ours 31.71 0.958 0.049 11 mins
NV [22] 26.05 0.893 0.160 >1 day
JAXNeRF [8, 28] 31.85 0.954 0.072 1.45 days

Ours 26.29 0.839 0.210 24 mins
LLFF [27] 24.13 0.798 0.212 —*
JAXNeRF [8, 28] 26.71 0.820 0.235 1.62 days

Ours 20.40 0.696 0.420 27 mins
NeRF++ [60] 20.49 0.648 0.478 ⇠4 days

Table 2. Results. Top: average over the 8 synthetic scenes from
NeRF; Middle: the 8 real, forward-facing scenes from NeRF; Bot-
tom: the 4 real, 360� scenes from Tanks and Temples [16]. 4 of the
synthetic scenes train in under 10 minutes. *LLFF requires pretrain-
ing a network to predict MPIs for each view, and then can render
novel scenes without further training; this pretraining is amortized
across all scenes so we do not include it in the table.

scene, and full experimental details (hyperparameters, etc.)
are included in the supplement.

4.1. Synthetic Scenes
Our synthetic experiments use the 8 scenes from NeRF:

chair, drums, ficus, hotdog, lego, materials, mic, and ship.
Each scene includes 100 ground truth training views with
800 ⇥ 800 resolution, from known camera positions dis-
tributed randomly in the upper hemisphere facing the object.
Each scene is evaluated on 200 test views, also with resolu-
tion 800 ⇥ 800 and known inward-facing camera positions in
the upper hemisphere. We provide quantitative comparisons
in Tab. 2 and visual comparisons in Fig. 6.

We compare our method to Neural Volumes (NV) [22], a
prior grid-based method with a 3D convolutional network,
and JAXNeRF [8, 28]. For Neural Volumes we use values
reported in [28]; for JAXNeRF we report results from our
own rerunning, fixing its centered pixel bug [3]. Our method
achieves comparable quality compared to the best baseline,
while training in an average of 11 minutes per scene on a
single GPU and supporting interactive rendering.

4.2. Real Forward-Facing Scenes
We extend our method to unbounded, forward-facing

scenes by using normalized device coordinates (NDC), as

Ground Truth JAXNeRF [8, 28] Plenoxels

Figure 6. Synthetic, bounded scenes. Example results on the lego
and ship synthetic scenes from NeRF [28].

derived in NeRF [28]. Our method is otherwise identical to
the version we use on bounded, synthetic scenes, except that
we use TV regularization (with a stronger weight) throughout
the optimization. This change is likely necessary because of
the reduced number of training views for these scenes, as
described in Sec. 4.4.

Our forward-facing experiments use the same 8 scenes
as in NeRF, 5 of which are originally from LLFF [27]. Each
scene consists of 20 to 60 forward-facing images captured
by a handheld cell phone with resolution 1008 ⇥ 756, with
7
8 of the images used for training and the remaining 1

8 of the
images reserved as a test set.

We compare our method to Local Light Field Fusion
(LLFF) [27], a prior method that uses a 3D convolutional
network to predict a grid for each input view, and JAXNeRF.
We provide quantitative comparisons in Tab. 2 and visual
comparisons in Fig. 7.

4.3. Real 360� Scenes

We extend our method to real, unbounded 360� scenes by
surrounding our sparse voxel grid with an multi-sphere im-
age (MSI, based on multi-plane images introduced by [62])
background model, in which each background sphere is also
a simple voxel grid with trilinear interpolation (both within
each sphere and between adjacent layers).

Our 360� experiments use 4 scenes from the Tanks and
Temples dataset [16]: M60, playground, train, and truck. For

5506

Ground Truth JAXNeRF [8, 28] Plenoxels

Figure 7. Real, forward-facing scenes. Example results on the
fern and orchid forward-facing scenes from NeRF.

each scene, we use the same train/test split as [39].
We compare our method to NeRF++ [60], which aug-

ments NeRF with a background model to represent un-
bounded scenes. We present quantitative comparisons in
Tab. 2 and visual comparisons in Fig. 8.

4.4. Ablation Studies
In this section, we perform extensive ablation studies

of our method to understand which features are core to its
success, with such a simple model. In Tab. 1, we show that
continuous (in our case, trilinear) interpolation is responsible
for dramatic improvement in fidelity compared to nearest
neighbor interpolation (i.e. constant within each voxel) [59].

In Tab. 3, we consider how our method handles a dramatic
reduction in training data, from 100 views to 25 views, on the
8 synthetic scenes. We compare our method to NeRF and find
that, despite its lack of complex neural priors, by increasing
TV regularization our method can outperform NeRF even
in this limited data regime. This ablation also sheds light on
why our model performs better with higher TV regularization
on the real forward-facing scenes compared to the synthetic
scenes: the real scenes have many fewer training images,
and the stronger regularizer helps our optimization extend
smoothly to sparsely-supervised regions.

We also ablate over the resolution of our Plenoxel grid
in Tab. 4 and the rendering formula in Tab. 5. The rendering
formula from Max [24] yields a substantial improvement
compared to that of Neural Volumes [22], perhaps because it
is more physically accurate (as discussed further in the sup-
plement). The supplement also includes ablations over the
learning rate schedule and optimizer demonstrating Plenoxel
optimization to be robust to these hyperparameters.

5. Discussion
We present a method for photorealistic scene modeling

and novel viewpoint rendering that produces results with
comparable fidelity to the state-of-the-art, while taking or-
ders of magnitude less time to train. Our method is also

PSNR " SSIM " LPIPS #
Ours: 100 images (low TV) 31.71 0.958 0.050
NeRF: 100 images [28] 31.01 0.947 0.081

Ours: 25 images (low TV) 26.88 0.911 0.099
Ours: 25 images (high TV) 28.25 0.932 0.078
NeRF: 25 images [28] 27.78 0.925 0.108

Table 3. Ablation over the number of views. By increasing our
TV regularization, we exceed NeRF fidelity even when the number
of training views is only a quarter of the full dataset. Results are
averaged over the 8 synthetic scenes from NeRF.

Resolution PSNR " SSIM " LPIPS #
5123 31.71 0.958 0.050
2563 30.57 0.950 0.065
1283 28.46 0.926 0.100
643 26.11 0.892 0.139
323 23.49 0.859 0.174

Table 4. Ablation over the Plenoxel grid resolution. Results are
averaged over the 8 synthetic scenes from NeRF.

Rendering Formula PSNR " SSIM " LPIPS #
Max [24], used in NeRF [28] 30.57 0.950 0.065
Neural Volumes [22] 27.54 0.906 0.201

Table 5. Comparison of different rendering formulas. We com-
pare the rendering formula from Max [24] (used in NeRF and our
main method) to the one used in Neural Volumes [22], which uses
absolute instead of relative transmittance. Results are averaged over
the 8 synthetic scenes from NeRF.

strikingly straightforward, shedding light on the core ele-
ments that are necessary for solving 3D inverse problems: a
differentiable forward model, a continuous representation (in
our case, via trilinear interpolation), and appropriate regular-
ization. We acknowledge that the ingredients for this method
have been available for a long time, however nonlinear opti-
mization with tens of millions of variables has only recently
become accessible to the computer vision practitioner.

Limitations and Future Work. As with any underdeter-
mined inverse problem, our method is susceptible to artifacts.
Our method exhibits different artifacts than neural methods,
as shown in Fig. 9, but both methods achieve similar quality
in terms of standard metrics (as presented in Sec. 4). Future
work may be able to adjust or mitigate these remaining arti-
facts by studying different regularization priors and/or more
physically accurate differentiable rendering functions.

Although we report all of our results for each dataset with
a fixed set of hyperparameters, there is no optimal a priori

5507

Ground Truth NeRF++ [60] Plenoxels

Figure 8. Real, 360� scenes. Example results on the playground and truck 360� scenes from Tanks and Temples [16].

Ground Truth JAXNeRF [8, 28] Plenoxels

Figure 9. Artifacts. JAXNeRF and Plenoxel exhibit slightly dif-
ferent artifacts, as shown here in the specularities in the synthetic
drums scene. Note that some artifacts are unavoidable for any
underdetermined inverse problem, but the specific artifacts vary
depending on the priors induced by the model and regularizer.

setting of the TV weight �TV . Better results may be obtained
by tuning this parameter on a scene-by-scene basis, which
is possible due to our fast training time. This is expected
because the scale, smoothness, and number of training views
varies between scenes.

Our method should extend naturally to support multi-
scale rendering with proper anti-aliasing through voxel cone-
tracing, similar to the modifications in Mip-NeRF [3]. An-
other easy addition is tone-mapping to account for white
balance and exposure changes [42], which we expect would
help especially in the real 360� scenes. A hierarchical data

structure (such as an octree) may provide additional speedup
compared to our sparse array implementation, provided that
differentiable interpolation is preserved.

Since our method is two orders of magnitude faster than
NeRF, we believe that it may enable downstream applica-
tions currently bottlenecked by the performance of NeRF–for
example, multi-bounce lighting and 3D generative models
across large databases of scenes. By combining our method
with additional components such as camera optimization and
large-scale voxel hashing, it may enable a practical pipeline
for end-to-end photorealistic 3D reconstruction.

Acknowledgements

We note that Utkarsh Singhal and Sara Fridovich-Keil pre-
viously tried a related idea with point clouds. Additionally,
we would like to thank Ren Ng for helpful suggestions and
Hang Gao for reviewing the paper draft. The project is gener-
ously supported in part by the CONIX Research Center, spon-
sored by DARPA; Google research faculty award to Angjoo
Kanazawa; Benjamin Recht’s ONR awards N00014-20-1-
2497 and N00014-18-1-2833, NSF CPS award 1931853,
and the DARPA Assured Autonomy program (FA8750-18-
C-0101). SFK and MT are supported by the NSF GRFP.

5508

References
[1] Edward H. Adelson and James R. Bergen. The plenoptic

function and the elements of early vision. In Computational
Models of Visual Processing, pages 3–20. MIT Press, 1991. 2

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor Lempitsky. Neural point-based graphics.
In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII
16, pages 696–712. Springer, 2020. 2

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields, 2021. 2, 4, 6, 8, 1

[4] R. Basri and D.W. Jacobs. Lambertian reflectance and lin-
ear subspaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(2):218–233, 2003. 2

[5] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 2, 5

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling, 2019. 2

[7] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction, 2016. 2

[8] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020.
2, 4, 6, 7, 8, 5, 9, 10

[9] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps, 2021. 1, 2

[10] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis, 2021. 1, 2, 5

[11] Geoffrey Hinton. RMSProp. 4, 1, 2
[12] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hier-

archical surface prediction for 3d object reconstruction, 2017.
2

[13] James T. Kajiya and Brian P Von Herzen. Ray tracing volume
densities. In Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH
’84, page 165–174, New York, NY, USA, 1984. Association
for Computing Machinery. 2, 3

[14] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine, 2017. 2

[15] Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari
Pulli, and Gordon Wetzstein. Neural lumigraph rendering,
2021. 2

[16] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Trans. Graph., 36(4), July 2017. 6, 8, 4

[17] Aaron Knoll. A survey of octree volume rendering methods,
2006. 2

[18] Christoph Lassner and Michael Zollhöfer. Pulsar: Efficient
sphere-based neural rendering. In IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), June 2021.
2

[19] M. Levoy. Display of surfaces from volume data. IEEE
Computer Graphics and Applications, 8(3):29–37, 1988. 2

[20] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume render-
ing, 2021. 2

[21] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields, 2021. 1, 2

[22] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes. ACM Transactions on Graphics, 38(4):1–14, Jul
2019. 2, 5, 6, 7, 3

[23] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R.
Chan, Marco Monteiro, and Gordon Wetzstein. Acorn: Adap-
tive coordinate networks for neural scene representation, 2021.
2

[24] N. Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995. 2, 3, 7

[25] Duane Merrill and NVIDIA Corporation. CUB: Cooperative
primitives for CUDA C++, 2021. 1

[26] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space, 2019. 2

[27] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines, 2019. 2, 6, 8

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision, pages
405–421. Springer, 2020. 1, 2, 3, 5, 6, 7, 8, 9, 10

[29] T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller,
C. R. A. Chaitanya, A. Kaplanyan, and M. Steinberger. Don-
erf: Towards real-time rendering of compact neural radiance
fields using depth oracle networks. Computer Graphics Fo-
rum, 40(4):45–59, Jul 2021. 2

[30] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-
tion. Springer, New York, NY, USA, second edition, 2006.
4

[31] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda,
release: 10.2.89, 2020. 1, 5

[32] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time
Signal Processing. Prentice Hall Press, USA, 3rd edition,
2009. 2

[33] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning continu-
ous signed distance functions for shape representation, 2019.
2

[34] Eric Penner and Li Zhang. Soft 3d reconstruction for view
synthesis. ACM Transactions on Graphics (TOG), 36:1 – 11,
2017. 2

[35] Martin Piala and Ronald Clark. TermiNeRF: Ray termination
prediction for efficient neural rendering, 2021. 2

5509

[36] Ravi Ramamoorthi and Pat Hanrahan. On the relationship
between radiance and irradiance: determining the illumina-
tion from images of a convex lambertian object. JOSA A,
18(10):2448–2459, 2001. 2

[37] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decomposed
radiance fields, 2020. 1, 2

[38] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny mlps, 2021. 1, 2

[39] Gernot Riegler and Vladlen Koltun. Free view synthesis,
2020. 7

[40] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Oct-
net: Learning deep 3d representations at high resolutions,
2017. 2

[41] Leonid I Rudin and Stanley Osher. Total variation based im-
age restoration with free local constraints. In Proceedings of
1st International Conference on Image Processing, volume 1,
pages 31–35. IEEE, 1994. 4

[42] Darius Rückert, Linus Franke, and Marc Stamminger. Adop:
Approximate differentiable one-pixel point rendering, 2021.
2, 8

[43] Seitz, Steven, Kutulakos, and Kiriakos. A theory of shape by
space carving. 01 2000. 2

[44] S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction
by voxel coloring. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
pages 1067–1073, 1997. 2

[45] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deepvox-
els: Learning persistent 3d feature embeddings, 2019. 2

[46] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations, 2020. 2

[47] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precom-
puted radiance transfer for real-time rendering in dynamic,
low-frequency lighting environments. ACM Trans. Graph.,
21(3):527–536, July 2002. 2

[48] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing
the boundaries of view extrapolation with multiplane images,
2019. 2

[49] Richard Szeliski and Polina Golland. Stereo matching with
transparency and matting. International Journal of Computer
Vision, 32:45–61, 2004. 2

[50] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis,
Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Mor-
gan McGuire, and Sanja Fidler. Neural geometric level of
detail: Real-time rendering with implicit 3d shapes, 2021. 2

[51] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations, 2021. 2

[52] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional architec-
tures for high-resolution 3d outputs, 2017. 2

[53] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jiten-
dra Malik. Multi-view supervision for single-view reconstruc-
tion via differentiable ray consistency, 2017. 2

[54] Craig Upson and Michael Keeler. V-buffer: Visible volume
rendering. SIGGRAPH Comput. Graph., 22(4):59–64, jun
1988. 2

[55] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn. ACM Transactions on Graphics,
36(4):1–11, Jul 2017. 2

[56] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 5

[57] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a single
image, 2020. 2

[58] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion, 2021. 2

[59] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 2, 3, 4, 5, 7

[60] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. NeRF++: Analyzing and improving neural radiance
fields, 2020. 1, 2, 5, 6, 7, 8, 4, 11

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

[62] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images, 2018. 2, 6

5510

