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Abstract

Ensemble methods based on decision trees, such as Ran-

dom Forests or boosted forests, have long been established

as some of the most powerful, off-the-shelf machine learn-

ing models, and have been widely used in computer vision

and other areas. In recent years, a specific form of boost-

ing, gradient boosting (GB), has gained prominence. This

is partly because of highly optimized implementations such

as XGBoost or LightGBM, which incorporate many clever

modifications and heuristics. However, one gaping hole

remains unexplored in GB: the construction of individual

trees. To date, all successful GB versions use axis-aligned

trees trained in a suboptimal way via greedy recursive parti-

tioning. We address this gap by using a more powerful type

of trees (having hyperplane splits) and an algorithm that

can optimize, globally over all the tree parameters, the ob-

jective function that GB dictates. We show, in several bench-

marks of image and other data types, that GB forests of

these stronger, well-optimized trees consistently exceed the

test accuracy of axis-aligned forests from XGBoost, Light-

GBM and other strong baselines. Further, this happens us-

ing many fewer trees and sometimes even fewer parameters

overall.

The last 30 years have established ensemble methods

as some of the most accurate models for classification, re-

gression and other ML tasks. The most successful of these

are based on decision trees, ensembled using bagging (such

as Random Forests [5]) or boosting. Many types of boost-

ing exist, such as AdaBoost and its variations [33], but one

that has gained much attention in recent years is gradient

boosting (GB). This is partly due to GB’s performance, em-

pirically demonstrated in many works, and to the develop-

ment of extremely efficient implementations such as XG-

Boost [12], LightGBM [23] or CatBoost [28]. These toolk-

its, continuously refined by a large team of academic and

industrial researchers and developers, provide a convenient

user interface and train forests of thousands of trees very

efficiently—not an easy task given that GB requires trees to

be constructed sequentially. The success of these forests is

evident in their widespread use in applications in computer

vision and other areas, and their many victories in data sci-

ence challenges such as those organized by Kaggle.

Another advantage of forests is that a user can typically

get a highly accurate model with little hyperparameter ex-

ploration, usually just the number of trees, tree size (depth

or number of leaves) and learning rate (weight of each tree).

This is far simpler than selecting the architecture and SGD

hyperparameters of a deep net, hence Random Forests and

GB forests are often considered “off-the-shelf” models. In

reality, they do depend on a larger set of hyperparameters

(many of them controlling the training of the individual

trees), but it is fair to say that these have secondary impor-

tance. Finally, GB forests are also much faster to train than

neural nets. On the negative side, forests can be very big,

using thousands of trees or more and comprising many pa-

rameters.

Many variations of GB forests have been researched,

which has resulted in the very powerful GB toolkits men-

tioned above. These involve modifications to the GB ensem-

bling mechanism (e.g. choice of loss function) and the tree

optimization (e.g. choice of purity function). Many of them

are algorithmically heuristic or guided by system-level op-

timizations; this makes XGBoost very different from Light-

GBM, for example. Given this, how can we further improve

GB forests? We observe that all popular GB forest vari-

ants are consistently based on the same type of trees (axis-

aligned, where each decision node tests a single input fea-

ture), and on the same type of training algorithm (greedy

recursive partitioning as in CART [6], C4.5 [30] or varia-

tions of it [12, 23]). On the one hand, such trees are very

unstable learners, and this introduces diversity in the ensem-

ble, which is necessary for its success. On the other hand,

axis-aligned trees impose restrictive modeling assumptions

and have low individual accuracy. Yet, while more complex

types of trees (such as oblique trees) have been proposed for

use in forests, they have not been able to compete robustly

with axis-aligned trees in either accuracy or model size. Are

axis-aligned forests then the best option?
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We convincingly show that oblique trees, when properly

trained to optimize the loss that GB dictates, do result in

more accurate forests and use very few, shallow trees. The

key to this is twofold. First, in section 2 we argue that axis-

aligned forests have an intrinsically restricted model ability

when many-feature interactions are present in the data (of-

ten the case in computer vision), and that oblique forests

improve this. Second, in section 4 we show that optimiz-

ing the GB loss over an oblique tree—a very difficult prob-

lem so far unresolved—can be effectively achieved using

a variation of the tree alternating optimization (TAO) algo-

rithm [9, 10]. Finally, in section 5 we demonstrate over

a range of classification and regression datasets that our

resulting oblique forests achieve better accuracy than any

competing GB forest. As additional advantages, the result-

ing forests use fewer, shallower trees, often having fewer

parameters overall; and many of the heuristics involved in

training axis-aligned trees (such as controlling for the split

or pruning criterion, the minimum number of instances per

node, etc.) become unnecessary.

1. Related work

The literature on boosted decision trees is huge [18, 33].

We review some of the notable works on GB and then on

decision tree learning.

Friedman [15] introduced the GB framework as a generic

mechanism to learn greedily an additive model for any dif-

ferentiable loss function. Given the flexibility of its formu-

lation, it applies to problems in regression, binary and multi-

class classification [15], ranking [8], and density estimation

[32], [7]. While the original GB formulation [15] uses only

the functional gradient information, one can also incorpo-

rate second order information, and derive LogitBoost [14]

for classification. The use of this functional Newton step

seems to have prevailed, as all the modern popular toolkits

implement it. One can also incorporate various forms of

regularization into the GB forest construction such as penal-

izing a tree structure or the value of a leaf prediction [20].

Empirically, this appears to help, and these forms of regu-

larization terms can be found as some (among the many) of

the hyperparameters of the modern GB software. Finally,

XGBoost [12], LightGBM [23] and CatBoost [28] are some

of the popular, quite recent and highly optimized implemen-

tations of GB forests. At a more fundamental algorithmic

level, they implement the same core GB procedure, but they

differ in specific practical implementation details such as us-

age of histograms, clever subsampling, special handling of

categorical features, etc.

The de facto choice to optimize individual base learners

in GB are axis-aligned decision trees with a greedy algo-

rithm. This widely established paradigm of learning trees

dates back to the 1980s and its core idea is based on the pro-

cess of greedy top-down induction: one starts with a root

node, and continues to split the nodes until a predefined

stopping criteria is met. Axis-aligned splits evaluate every

feature-threshold pair, and chooses the one that optimizes

some splitting criteria. The exact form of this splitting crite-

ria can be a proxy of the objective function (e.g. Gini index

or cross entropy [18]), though in the GB setting, the tree ob-

jective function is usually directly used to find the optimal

split. Once the tree is fully grown, an optional pruning step

based on some cost function can be performed, but this step

is rarely implemented in the GB framework. Traditional

algorithms on decision tree learning, such as CART [6],

C5.0 [30], ID3 [29], and base learner trees in XGBoost and

others, all fall onto this paradigm of tree learning.

Oblique trees, which use a linear combination of fea-

tures at a decision node, are a much more powerful class

of models, but they have found little practical use. This

is due to the fact that learning such models is more diffi-

cult [18]. Works based on greedy recursive partitioning for

oblique trees in isolation [6,26] or in a bagged forest [21,37]

produce little improvement and considerably increase the

model size. Axis-aligned trees with linear models at the

leaves have been used in GB [35], but such trees are still

learned greedily. GB regression forests have been used for

a face alignment problem [22], where the decision nodes

threshold the difference of two pixels; this is a limited form

of oblique forest where the location of these two pixels is

chosen suboptimally.

Our work is based on TAO [9,10], a recent algorithm for

learning oblique decision trees, which has been shown to

exceed the state-of-the-art both in single trees [41] and in

forests using bagging [11, 38] or AdaBoost [39, 40]. In this

paper, we adapt TAO to the GB setting. We describe TAO

in section 4.

2. Modeling high-order feature interactions:

axis-aligned vs oblique trees and forests

Our fundamental hypothesis is that 1) forests of oblique

trees are intrinsically more powerful than forests of axis-

aligned trees, and 2) realizing this requires being able to do

a good optimization of the GB loss over each individual tree.

Here we give intuitive evidence for this and demonstrate it

in a specially constructed experiment.

High-order feature interactions A critical advantage

that oblique trees offer over axis-aligned trees is their abil-

ity to model high-order feature interactions effectively. For

simplicity, here we consider binary trees where each leaf i

outputs a constant value θi ∈ R. Consider an axis-aligned

tree of depth ∆ and call ∆i ≤ ∆ the depth of leaf i. The

tree predictive function for an input instance x ∈ R
D can

be written as a linear combination (l.c.) of basis functions

(BFs) τ(x) =
∑

i∈leaves θiλi(x), where the BF λi(x) is 1

if x reaches leaf i and 0 otherwise (“routing function” of
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Figure 1. Synthetic MNIST classification problem. Top: ex-

act oblique tree. Bottom: results of forests of different depth

∆ and number of trees T with axis-aligned XGBoost trees (left)

and oblique SPORF trees (right). The result of a single, depth-2

oblique tree trained with TAO is shown in both plots.

leaf i). Each λi(x) involves the AND of ∆i conditions of

the form “xd ≥ sd” (i.e., a split on feature d with threshold

sd). Hence, λi is a function of at most ∆i features (it can

be fewer if some features appear more than once in the root-

leaf path). From this point of view, an axis-aligned tree is a

generalized additive model (GAM) [17] with member func-

tions of up to ∆ variables. In contrast, an oblique tree uses

all features in each decision node, so each λi is an AND

of ∆ conditions of the form “wT
j x ≥ bj”, where (wj , bj)

determine a hyperplane split at node j. Hence, from a repre-

sentation point of view, axis-aligned trees can include inter-

actions of up to ∆ features, while oblique trees include in-

teractions of all D features1. When the number of features

D is large, an axis-aligned tree will have to be very deep

to be able to handle high-order interactions. However, this

would result in leaves receiving very few training instances

and hence in severe overfitting (this is a reason why trees are

usually pruned in CART, C4.5 and other tree induction algo-

rithms). Conversely, if the tree is not deep (e.g. XGBoost’s

default maximum depth is 6), then it will miss many possi-

bly important higher-order interactions. It will also impose

a drastic feature selection (per leaf i): it will use at most

∆i features of the total D. The clearly superior accuracy of

oblique trees (trained with TAO) over axis-aligned trees has

been demonstrated empirically [10, 41].

Consider now a forest of T axis-aligned trees of depth ∆.

Its predictive function is F (x) =
∑T

t=1 ηtτt(x), i.e., a l.c.

of the individual tree predictive functions, and hence a l.c.

of the {λti(x)} BFs. Even though each BF is limited to at

most order-∆ interactions, some higher-order interactions

arise in the forest (contrarily to the statement in [18, p. 362]).

For example, a function f(x1, x2)+ g(x2, x3) is an order-3

interaction (not order-2), because of the shared variable x2

1The form of the interaction function is also restricted by the functional

form of λi(x) and by the number of leaves (and, in a forest, by the number

of trees and by how different leaf regions intersect). However, our focus is

on the maximum interaction order that can be represented.

(while a function f(x1, x2) + g(x3, x4) remains at order 2).

However, this is still quite a restricted type of order-3 inter-

action. In contrast, with oblique trees each λti(x) BF is of

order D and their addition is a much more complex order-

D interaction. This suggests that, if we are modeling a com-

plex classification or regression function, a forest of oblique

trees should achieve higher accuracy and require fewer and

shallower trees. Our experiments in section 5 convincingly

confirm this with various real-world datasets, but here we

demonstrate it with a carefully constructed synthetic (but

not unrealistic) example. We consider a binary classifica-

tion of MNIST digit images where class 1 satisfies that

(Q1+Q4)−(Q2+Q3) ≥ P or (Q2+Q3)−(Q1+Q4) ≥ P ,

where the 28×28 pixel image is split into 4 quadrants 1 2
3 4

and Qi is the sum of the [0, 1] pixel intensities in quadrant

i, and P = 30. That is, class 1 is an “(anti)diagonally

dominant” image like or , and it contains 28% of

the training instances. Class 2 contains the 72% remain-

ing instances. Obviously, the true classifier involves inter-

actions between all D = 784 features (pixels), as is com-

mon with image data, and can be exactly represented by a

depth-2 oblique tree (see fig. 1). Indeed, a single depth-2

tree trained with TAO achieves a near-perfect training/test

error of 0.0%/0.96% (the test error is nonzero because the

training set does not uniquely determine the tree in fig. 1).

However, an XGBoost forest does much worse even using

1000 trees of depth up to 40 (fig. 1 left). This is in stark con-

trast to the suggestion in [18, p. 363] that trees with more

than 10 leaves would be rarely required in boosting.

A good oblique tree optimization is essential To hold in

practice, the theoretically stronger power of oblique trees

requires an effective learning algorithm. While the desire to

learn oblique trees has long existed [6, p. 132, 173], until re-

cently the algorithms proposed resulted in oblique trees that

were more complex and with more parameters than axis-

aligned trees, and yet were typically no more accurate [3,

p. 233]. As a result, all widespread forest models use axis-

aligned trees [2,5,12,16,23,27,28]. This is primarily due to

the difficulty of the optimization: trees define a nondifferen-

tiable function, so gradient methods are not applicable, and

the tree learning problem is NP-hard [19]. Besides, while

for axis-aligned trees each individual split can be learned by

enumeration (over all features and thresholds), this is not

possible with oblique trees. Fig. 1 (right) illustrates this:

a recent algorithm to train oblique forests (SPORF [37])

performs far worse than the XGBoost axis-aligned trees,

whether for a single tree or a forest, and whether in accu-

racy or number of parameters.

In summary, we conclude that well-optimized oblique

trees and forests provide a much more effective way to

learn high-order feature interactions. Our experiments in

section 5 confirm that this translates to real-world datasets

consistently and often by a large margin.
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3. Overview of Gradient Boosting (GB)

The goal of the GB framework is to learn a model of the

following additive form:

F(x) =
∑M

m=1 τm(x) (1)

where τ (x) can in general be any base learner, but in this

work we focus on decision trees. Given a training set

{(xn,yn)}
N
n=1 ⊂ R

D×R
K and a per instance loss function

L(y, ŷ), the global objective function is:

minτ1,...,τM

∑N
n=1 L

(

yn,
∑M

m=1 τm(xn)
)

. (2)

Because this is a difficult optimization problem with non-

differentiable base learners τ (x), one resorts to greedy for-

ward stagewise modeling. Starting with some initial predic-

tion F0(x), at each step m we want to add a new tree to

minimize the global loss:

minτm

∑N

n=1 L(yn,Fm−1(xn) + τm(xn)) (3)

Following the established approach in [12, 14], we perform

a second order Taylor approximation:

min
τm

∑N

n=1 L(yn,Fm−1(xn)) + gT
n ŷn + 1

2 ŷ
T
nHnŷn (4)

where ŷn = τm(xn), and g ∈ R
K ,H ∈ R

K×K are the gra-

dient and Hessian of the loss function L(y, ŷ) (see fig. 2).

Ignoring the constant term in eq. (4), we obtain the follow-

ing objective function of a base learner at boosting step m:

minτm

∑N

n=1 g
T
nτm(xn) +

1
2τm(xn)

THnτm(xn) (5)

Though this is an unusual loss function and might look com-

plicated to optimize, in practice a full Hessian matrix H

is seldom used, and in regression problems with squared

error loss L(y, ŷ), the Hessian H vanishes. Once a base

learner τm(x) is trained at boosting step m, its contribution

is shrunk by the learning rate η and then added to the ensem-

ble. This shrinkage step has been found to be essential for

the generalization performance of boosting. The algorithm

then proceeds for some number of predefined boosting steps

M or one might early stop based on the validation metric.

The pseudocode in fig. 2 summarizes the GB algorithm.

input training set; twice diff. loss function L(y, ŷ);
number of boosting steps M ; learning rate η

F0(x) = argminρ

∑N

n=1 L(yn,ρ)
for m = 1 to M

gn = ∂L(yn,ŷ)
∂ŷ

∣

∣

∣

ŷ=Fm−1(xn)
, n = 1, . . . , N

Hn = ∂2L(yn,ŷ)
∂ŷ2

∣

∣

∣

ŷ=Fm−1(xn)
, n = 1, . . . , N

Train a base learner τm to minimize eq. (5)

Fm(xn) = Fm−1(xn) + ητm(xn), n = 1, . . . , N

return F(·) = F0(·) +
∑M

m=1 ητm(·)

Figure 2. Pseudocode of Gradient Boosting (GB).

4. Learning each GB oblique tree using tree al-

ternating optimization

As just described, GB prescribes a specific, if rather un-

usual, loss to optimize for each new tree that is added to the

forest, eq. (5). To do this with oblique trees, we build on a

recent algorithm, tree alternating optimization (TAO) [9,10],

originally proposed to optimize the 0/1 loss for oblique clas-

sification trees. We choose TAO because it can be extended

to handle the GB loss while preserving the advantages of

the original 0/1 loss TAO algorithm: globally updating all

parameters of an oblique tree while monotonically decreas-

ing the objective function; automatically learning the tree

structure as a subproduct of an ℓ1 penalty on the decision

node weights; and scaling to large trees and datasets. We

are not aware of any other algorithm that can do all that. We

give a brief description of TAO (see more details in [9, 10])

and indicate how we can modify it to suit our needs.

The basic idea in TAO is that we optimize a paramet-

ric tree of fixed structure (here, complete of depth ∆) by

optimizing in turn over the parameters of a single node (de-

cision node or leaf) given all other nodes’ parameters are

fixed. This succeeds because of two theorems mentioned be-

low. This is very different from how CART [6] or C4.5 [30]

work. The latter grow the tree structure on the fly by greed-

ily and recursively partitioning the input space, and pruning

the resulting tree to reduce overfitting. TAO works much

more like a regular ML optimization algorithm, say for a

neural net, but instead of gradients (which do not apply) it

uses alternating optimization on a fixed tree structure. This

results in iteratively updating all the parameters in the tree

(decision node hyperplanes and leaf output values), with a

monotonic decrease of the objective function at each itera-

tion over all nodes and convergence to a local optimum.

Unlike in [10], 1) we consider an oblique tree where each

leaf i outputs a constant real vector, since this is what GB

requires for either classification or regression; and 2) we

seek to optimize the following objective function:

min
Θ

N
∑

n=1

l(gn,Hn, τ (xn;Θ)) + α
∑

i∈D

‖wi‖1

where l(g,H,γ) = gTγ + 1
2γ

THγ. (6)

Here, τ (x;Θ) is a binary decision tree of some predeter-

mined structure with parameters Θ = {(wi, wi0)}i∈D ∪
{θi}i∈L, decision nodes in set D and leaves in set L. The

prediction of τ (x;Θ) is obtained by routing x from the

root to exactly one leaf and outputting its vector θi ∈ R
K

(more generally, this could be a, say, linear predictor, but

here we focus on a constant output). At a decision node

i we apply a decision function fi(x;wi, wi0): R
D →

{lefti, righti} ⊂ D ∪ L denoting “go to the right child

if wT
i x+ wi0 ≥ 0, else go to the left child”. The objective

function (6) is the sum of the GB loss (5) plus an ℓ1 penalty
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on each of the decision node weights with hyperparameter

α ≥ 0. The latter encourages sparsifying the hyperplanes.

This reduces the number of nonzero weights and can make

decision nodes redundant (when wi = 0) so they can be

pruned at the end. Thus, we automatically learn a tree struc-

ture that is a subset of the initial tree. The hyperparameters

of the oblique tree are its (maximum) depth ∆ and α.

TAO is based on two theorems. First, eq. (6) separates

over any subset of non-descendant nodes (e.g. all the nodes

at the same depth); this follows from the fact that the tree

makes hard decisions. All such nodes may be optimized

in parallel. Second, optimizing over the parameters of a

single node i simplifies to a well-defined reduced problem

over the instances that currently reach node i (the reduced

set Ri ⊂ {1, . . . , N}). The form of the reduced problem

depends on the type of node:

Decision node It is a weighted 0/1 loss binary classifica-

tion problem, where the two classes correspond to the

left and right child, which are the only possible out-

comes for an instance. Child lefti (righti) incurs

a loss (weight) given by the prediction of the leaf

reached from the left (right) child’s subtree. Thus,

each instance is assigned as pseudolabel the child

with lower loss. The reduced problem takes the form

(where L is the said loss):

min
wi,wi0

∑

n∈Ri

L̄(gn,Hn, fi(x;wi, wi0)) + α ‖wi‖1. (7)

This is as in [10] except that the loss is the GB loss

of the corresponding leaf. This problem is NP-hard

but can be well approximated with a convex surrogate;

we use ℓ1-regularized logistic regression where each

instance is weighted by the loss difference between

the winner child and the other child, and solve it us-

ing LIBLINEAR [13]. We can guarantee a monotonic

decrease in the objective by only accepting this update

if it improves over the previous step.

Leaf The reduced problem consists of optimizing the orig-

inal loss but over the leaf classifier on its reduced set:

min
θi

∑

n∈Ri

gT
nθi +

1

2
θT
i Hnθi. (8)

If
∑

n∈Ri
Hn is positive definite, the exact solution is

θi = −
(
∑

n∈Ri
Hn

)

−1
∑

n∈Ri
gn. In practice either

θi is scalar (e.g. binary classification) or one uses a

diagonal approximation to the Hessian.

Given an initial tree structure with initial parameter values,

the resulting algorithm repeatedly visits nodes in reverse

breadth-first search order. Each iteration trains all nodes at

the same depth (in parallel) from the leaves to the root, by

solving either an ℓ1-regularized logistic regression at each

decision node, or the above exact solution as each leaf.

Computational complexity With a diagonal Hessian, the

training time is dominated by the decision node reduced

problem (logistic regression). Assuming this is linear on

the sample size, training all the decision nodes at the same

depth is approximately constant and equal to training one

logistic regression on the whole training set. Thus, the to-

tal sequential cost of one iteration is approximately equal

to that of ∆ logistic regressions on the whole dataset. As

noted above, all the nodes at the same depth can be trained

in parallel.

5. Experiments

Experiment settings We compare GB oblique trees

trained with TAO against established state-of-the-art imple-

mentations of GB: XGBoost [12] and LightGBM [23]. For

reference, we also compare with a scikit-learn [27] imple-

mentation of GB, which closely follows the original formu-

lation [15]. We could not find any existing implementation

of GB oblique trees, but we include SPORF [37] which uses

bagging to construct an ensemble of sparse oblique trees.

We additionally cite the published results of other forest

based methods: GBDT-PL [35], ADF [34], sNDF [24] and

rRF [31].

In order to compare models of different size, for each

comparison baseline we choose and fix some number of

boosting steps M (or number of trees T in SPORF), and

for the given M or T we tune the important hyperparame-

ters such as tree depth ∆, number of leaves and the learning

rate η. For GB-TAO we only tune the tree depth ∆. We

find the optimal ℓ1 penalty parameter α for a single TAO

tree, and then use it for the whole GB ensemble. Because

of the slower training time, we do not tune the learning rate

η in GB-TAO. Unless otherwise stated, the number of TAO

iterations is set to I = 30. Extended results including diver-

sity of the trees and comparison with more methods can be

found in the suppl. mat.

5.1. Classification tasks

Image classification Table 1 reports the results on stan-

dard image classification datasets. For CIFAR100 we ex-

tract the convolutional features of a pretrained VGG16 net-

work, and use it as input for forests.

Let us first observe the result of a single TAO tree ob-

tained from one GB step M=1. While axis-aligned trees

produced from a single GB step in general perform quite

poorly, this is not a case with properly optimized oblique

trees. For MNIST the accuracy of a single TAO tree

matches the performance of 100 XGBoost trees, and for

pendigits and CIFAR100 it achieves considerably better per-

formance than any other axis-aligned GB forest. This re-

sult clearly supports the discussion in section 2 and demon-

strates the superiority of an oblique tree over an axis-aligned

one for these image datasets.
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Forest Etest (%) #pars. M k ∆ #leav.

XGBoost 4.38±0.00 70k 10 10 10 237
GB-TAO 4.17±0.08 21k 1 1 12 203
LightGBM 3.73±0.00 149k 10 10 35 498
sNDF [24] 2.80±0.12 - 80 1 10 -
SPORF 2.89±0.04 - 1k 1 50 5k
ADF [34] 2.71±0.10 - 100 1 25 -
GB-TAO 2.33±0.00 200k 10 1 10 209
XGBoost 2.20±0.00 107k 100 10 6 36

M
N

IS
T

(6
0
k
,7

8
4
,1

0
)

rRF [31] 2.05±0.02 - 100 1 25 -
LightGBM 2.02±0.00 121k 100 10 10 41
GB-sklearn 1.96±0.03 1.2M 100 10 6 42
GB-TAO 1.94±0.00 671k 30 1 10 252
XGBoost 1.91±0.00 505k 1k 10 6 17
GB-TAO 1.65±0.02 3M 50 10 7 37
LightGBM 1.62±0.00 642k 1k 10 21 22
GB-TAO 1.55±0.02 7.2M 140 10 7 34

GB-sklearn 4.19±0.01 169k 100 10 6 57
SPORF 4.00±0.02 - 10 1 19 332
LightGBM 3.49±0.00 90k 100 10 11 31
XGBoost 3.46±0.00 18k 100 10 4 7

p
en

d
ig

it
s

(7
.5

K
,1

6
,1

0
)

XGBoost 3.46±0.00 137k 1k 10 4 5
LightGBM 3.31±0.00 895k 1k 10 4 31
GB-TAO 3.15±0.25 1.3k 1 1 8 60
SPORF 2.91±0.09 - 1k 1 20 330
SPORF 2.87±0.01 - 100 1 20 212
GB-TAO 2.17±0.02 13k 10 1 7 65
GB-TAO 2.00±0.04 44k 30 1 7 83

GB-sklearn 32.64±0.03 502k 100 100 6 17
XGBoost 31.20±0.00 133k 100 100 4 5
LightGBM 31.47±0.00 460k 100 100 14 16
LightGBM 30.32±0.00 1.0M 143 100 18 25
XGBoost 30.15±0.00 174k 1k 100 6 1.2

C
IF

A
R

1
0
0

(5
0
k
,5

1
2
,1

0
0
)

GB-TAO 29.38±0.04 39k 1 1 12 178
SPORF 28.63±0.07 - 10 1 20 262
SPORF 27.07±0.20 - 100 1 10 107
GB-TAO 26.98±0.04 1.2M 150 5 8 33
GB-TAO 26.86±0.02 2.0M 250 5 8 33
SPORF 26.71±0.05 - 500 1 10 107
GB-TAO 26.64±0.02 3.3M 200 2 6 46

Table 1. Comparison of different forest-based models for classi-

fication, sorted by decreasing test error. We report 0-1 test error

Etest (mean±std over 5 repeats), the number of parameters in the

model, and the average number of tree leaves in the forest. Dataset

name is followed by the training set sizeN , feature dimension D

and the number of classes K. M refers to the number of boosting

steps, k is the number of trees used at each boosting step. The total

number of trees T = Mk. ∆ is the max depth of the forest.

Now observing the performance of the overall ensem-

ble of TAO trees for these classification problems, we can

clearly see that oblique trees do indeed help to produce

more accurate GB forests. The gap between GB TAO and

the best performing axis-aligned GB forest is quite signif-

icant, and it is quite unlikely that by tuning many of the

hyperparameters in XGBoost and LightGBM packages for

longer one can cover such a significant gap. Another forest

of oblique trees, SPORF, whose trees are induced greedily,

produces quite accurate performance on CIFAR100, but for

others, especially for MNIST, the results are quite worse.

Sparse high dimensional datasets A particular well-

documented weakness of traditional GB trees is in handling

inputs with sparse high dimensional features [25, 36]. To

analyze how GB oblique trees perform with these types of

Forest Etest (%) #pars. M k ∆ #leav.

GB-TAO 27.75±0.03 19k 1 1 6 61
GB-sklearn 23.42±0.03 156k 100 20 6 27
SPORF 22.51±0.09 (1.3M) 100 1 569 4.4k
GB-sklearn 21.71±0.02 347k 300 20 6 20
XGBoost 21.39±0.00 705k 1k 20 6 12

n
ew

s2
0

(1
6
k
,6

2
k
,2

0
)

XGBoost 21.34±0.00 188k 300 20 6 11
LightGBM 20.69±0.00 1.8M 1k 20 27 31
GB-TAO 19.84±0.02 534k 30 1 6 61
LightGBM 19.78±0.00 546k 300 20 28 31
GB-TAO 18.13±0.01 479k 20 20 4 8
GB-TAO 18.76±0.01 746k 50 1 6 52
GB-TAO 16.65±0.04 1.6M 40 20 4 8

GB-sklearn 5.65±0.05 150k 100 1 14 502
GB-sklearn 4.25±0.02 422k 1k 1 14 141
SPORF 4.14±0.05 (1.3M) 100 1 687 4.3k
SPORF 4.06±0.03 (3.9M) 300 1 690 4.3k
GB-TAO 3.44±0.24 18k 1 1 6 42

re
al

-s
im

(5
1
k
,2

1
k
,2

)

XGBoost 3.41±0.00 23k 300 1 10 26
LightGBM 3.31±0.00 27k 300 1 29 31
XGBoost 3.31±0.00 101k 1k 1 14 34
GB-TAO 3.12±0.00 53k 5 1 4 15
LightGBM 3.05±0.00 101k 1k 1 30 31
GB-TAO 2.77±0.02 113k 10 1 4 15
GB-TAO 2.12±0.02 1.3M 20 1 6 54

Table 2. Similar to Table 1, but for sparse high-dimensional docu-

ment classification datasets

problems, in Table 2 we compare its performance on two

standard document classification benchmarks. The features

are normalized word counts, and on average only 0.1-0.2%

of them are nonzero. Consistent with the results on im-

age classification, a single sparse oblique tree trained with

TAO already matches the accuracy of 100 axis-aligned XG-

Boost trees, and with more GB steps the performance im-

proves significantly. A notable result is the best performing

GB-TAO on News20 dataset, which is 3.2% more accurate

than the best performing LightGBM. The use of hyperplane

splits might be attributable for the effectiveness of GB TAO

for these high dimensional problems, but, SPORF forests,

which also use oblique splits, produce much higher test er-

ror. This advocates for the value of the optimization per-

formed by TAO in learning oblique trees as was discussed

in section 2.

5.2. Regression tasks

Table 3 reports the results on regression benchmarks.

With squared error loss, a tree produced from the first GB

step with no shrinkage step (η = 1) is just equivalent to

a tree trained with that same original loss. Unlike classifi-

cation, however, we do not observe a consistent match in

performance between a single TAO oblique tree and hun-

dreds of axis-aligned GB trees. Regression problems are

in general difficult to model for piecewise constant models,

and especially for a single tree. However, for one particular

dataset, Computer Tomography (CT) slices, the accuracy of

a single TAO tree of depth 8 is on par with 1000 axis-aligned

XGBoost trees with depth up to 10, which certainly demon-

strate a case for the importance of modeling higher order

variable interaction in certain regression problems.
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Forest Etest #pars. T ∆ #leav.

GB-TAO 2.67±0.03 440 1 6 34
XGBoost 2.60±0.00 60k 100 10 201
XGBoost 2.51±0.00 42k 1k 4 15
GB-sklearn 2.51±0.06 14k 100 6 49

cp
u
ac

t
(5

k
,2

1
)

GB-sklearn 2.41±0.04 43k 1k 4 15
GB-TAO 2.42±0.02 17k 30 6 46
LightGBM 2.27±0.00 19k 100 34 64
LightGBM 2.25±0.00 91k 1k 21 31
GB-TAO 2.23±0.02 31k 50 6 48

LightGBM 1.53±0.00 153k 100 107 512
LightGBM 1.52±0.00 91k 1k 23 31
GB-sklearn 1.43±0.02 192k 100 10 641
XGBoost 1.50±0.00 107k 100 10 357

C
T

-s
li

ce
(4

3
k
,3

8
4
)

GB-TAO 1.28±0.02 28k 1 8 223
GB-sklearn 1.26±0.03 900k 1k 10 301
XGBoost 1.26±0.00 767k 1k 10 256
GBDT-PL [35] 1.24±0.00 - - - -
GB-TAO 0.90±0.02 81k 30 4 16
GB-TAO 0.45±0.01 1.2M 100 6 64

GB-TAO 4.38±0.03 4k 1 12 430
XGBoost 3.66±0.00 119k 100 10 397
GB-sklearn 3.65±0.02 727k 100 14 2424
XGBoost 3.58±0.00 793k 1k 10 265
GB-sklearn 3.58±0.01 854k 1k 10 285

ca
sp

(4
5
k
,9

)

LightGBM 3.54±0.00 153k 100 114 512
GB-TAO 3.49±0.01 256k 50 12 645
LightGBM 3.48±0.00 766k 1k 109 256
GBDT-PL [35] 3.46±0.00 - - - -
GB-TAO 3.43±0.00 481k 100 12 603
GB-TAO 3.39±0.01 887k 200 12 552

GB-TAO 11.02±0.10 8k 1 19 466
GB-sklearn 9.38±0.01 139k 1k 6 47
XGBoost 9.20±0.00 130k 1k 6 44
GB-sklearn 9.14±0.03 128k 100 10 430

su
p
er

co
n
d
u
ct

(1
7
k
,8

1
)

XGBoost 8.98±0.00 132k 100 10 441
GBDT-PL [35] 8.80±0.00 - - - -
LightGBM 8.77±0.00 38k 100 45 128
GB-TAO 8.76±0.02 573k 50 6 216
LightGBM 8.73±0.00 190k 1k 39 64
GB-TAO 8.68±0.02 1M 100 6 218

GB-TAO 9.17±0.01 19k 1 8 252
XGBoost 9.05±0.00 153k 100 10 511
LightGBM 9.03±0.00 153k 100 37 512
GB-sklearn 9.03±0.02 248k 100 10 827

y
ea

r
(4

5
0
k
,9

0
)

GB-sklearn 8.96±0.02 171k 1k 6 58
LightGBM 8.92±0.00 1.5M 1k 43 512
XGBoost 8.91±0.00 1.8M 1k 10 608
GB-TAO 8.88±0.02 78k 20 6 62
GB-TAO 8.73±0.01 402k 100 6 63

Table 3. Similar to Table 1, but for regression datasets. Etest is a

root mean squared error. The output in all datasets is one dimen-

sional, so one tree is used at each boosting step.

Examining the overall performance of forests in Table 3,

we can observe a consistent improvement (often by a large

margin) of GB TAO trees over other methods. LightGBM

tend to perform as well on couple of datasets, but it usu-

ally produces deep and imbalanced trees. In one compet-

ing method, GBDT-PL [35], the trees use linear models at

the leaves, but are still axis-aligned and greedily induced.

Though linear leaves can model variables of higher order

interaction, it is still important optimize such trees properly.

We believe that oblique trees with linear leaf models opti-

mized by TAO can further boost the performance of GB

forests.

Etest (%) Etest (%)
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Figure 3. Comparison of different GB forests as a function of the

number of boosting steps M (left column) and time (right column).

All methods except GB-sklearn are trained using parallel process-

ing on a shared memory system with 8 threads.

5.3. Training time and the number of boosting steps

In analogy with numerical optimization, steps of GB

have been motivated as following functional gradient (or

Newton) steps, where the steps are represented by paramet-

ric models, such as decision trees. Further expanding this

analogy, one would expect that if these step directions are

more accurate representations of the true gradient (or New-

ton), then it should lead to faster convergence and possibly,

to a better optima for a given number of boosting steps M .

In the left column of fig. 3 we compare how the test error

changes for classification datasets as a function GB steps M .

The plots clearly show that stronger TAO oblique trees re-

quire fewer steps M to converge, and to converge to a better

test error than greedily induced axis-aligned trees.

One notable disadvantage of TAO over greedy tree induc-

tion algorithms is slower training time. TAO performs an

iterative optimization over the nodes, and at each iteration

it must solve multiple logistic regressions. However, it is

possible to accelerate GB TAO in multiple ways. At the al-

gorithmic level, we do not usually need to train GB-TAO for

many steps M as is commonly done with traditional axis-

aligned trees. Also, we can apply approximations, such as

solving the reduced problem at a decision node inexactly.

In the right column of fig. 3, we show that by limiting the

number of TAO iterations to I=3, we can obtain accurate

GB-TAO forests in a comparable time. In suppl. mat. we

further explore the interplay between runtime, TAO itera-

tions I and test error.
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Figure 4. Test error as a function of the number of parameters

5.4. Test error vs model size

Forests of oblique trees can be potentially huge in terms

of the number of parameters. For a given number of trees T

of depth ∆ and feature dimension D, the number of parame-

ters can be up to TD2∆. This might especially be problem-

atic with high dimensional data. Luckily, ℓ1 penalty used

by TAO helps to produce forests of comparable number of

parameters. Fig. 4 shows that, for the selected datasets, GB-

TAO consistently obtains more accurate forests than GB

with axis-aligned trees for a given number of parameters.

In suppl. mat. we explore how the number of trees at each

boosting step affects the model size and accuracy.

6. Discussion and limitations of our work

Off-the-shelf models Our GB oblique forests can be

considered off-the-shelf models even more so than axis-

aligned forests. This is because, once the optimization

of an individual tree is well defined, many heuristics be-

come unnecessary. For example, besides max depth,

learning rate and the number of trees, XGBoost

includes hyperparameters such as max delta step,

min split loss, min child weight, the lambda

and alpha regularization hyperparameters, etc. (refer to

the XGBoost manual for details). These control whether to

split or prune a node based on the number of training in-

stances it receives, the gain in split purity, an ℓ2 penalty in

the leaves, which thresholds to check in the splits, etc. In

TAO, the tree structure and parameters automatically result

from optimizing a well-defined objective function.

Runtime In terms of training runtime, our oblique forests

are quite slower than XGBoost or LightGBM at present, but

our implementation is far from optimized compared to these

heavily developed toolkits. Training a single oblique tree

of depth ∆ with TAO has a cost per iteration comparable

to training ∆ logistic regressions on the entire dataset (for

which efficient code such as LIBLINEAR exists). While

this is much slower than training a single axis-aligned tree

with CART, the total number of trees is also much smaller

in the oblique forests. All things considered, the oblique

forests will probably be slower than the axis-aligned ones,

but the gain in accuracy and possibly smaller model size

compensates for that.

In terms of inference time, the oblique forests may be

faster than axis-aligned ones in that 1) they may make a

better use of GPUs because they use vector products, and

2) they have a more regular memory access pattern because

the trees are shallower. The number of trees is also much

smaller, while still providing ample room for parallelization.

At present it is hard to do an apples-to-apples comparison

because of the lack of an optimized implementation.

Limitations We have argued and empirically confirmed

that oblique forests are a less restrictive model for feature

interactions than axis-aligned forests. That said, oblique

forests still take a particular functional form (inductive bias),

and there may be even better types of trees. Also, our results

hold within the GB framework, although we expect them to

apply to some extent to other frameworks.

Although we have provided a reasonable intuition behind

the success of oblique GB forests, we have no rigorous the-

ory to explain it. The theoretical basis of (gradient) boosting

itself remains hotly debated. One leading theory [14] that

seems consistent with our results states that AdaBoost.M1

performs forward stagewise additive modeling using the ex-

ponential loss. This suggests that, if base learners at each

stage are well optimized (as we do with TAO), this should

result in a faster minimization of the exponential loss.

In any case, the accuracy and forest size performance is

in the end an empirical question. While our paper is nec-

essarily limited to a small set of specific experiments, the

strong baselines we compare with on several popular bench-

marks and the consistent improvement shown by our GB

forests gives us confidence that our results hold robustly.

7. Conclusion

While GB forests are among the most accurate ML

models for classification and regression, until now all

widespread implementations of them use axis-aligned trees,

which are a restricted type of base learner. We have mo-

tivated the use of a significantly more powerful tree type

having hyperplane splits, which are able to learn many-

feature interactions effectively. Key to this is the ability

to optimize the GB loss over such trees, a difficult prob-

lem which we address using a variation of tree alternating

optimization. Far from decreasing the ensemble diversity,

the resulting oblique forests considerably improve over axis-

aligned forests, even those of highly sophisticated imple-

mentations such as XGBoost or LightGBM. In raw accu-

racy, the oblique forests consistently improve over all com-

petitors, sometimes by a surprisingly large margin, using

few, shallow trees, often having fewer parameters overall.

Given the widespread use of GB forests in computer vision

and other areas, this could have a considerable practical im-

pact. Our work also suggests that exploring other types of

trees or loss functions, properly optimized, may result in

even better GB forests.
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Miguel Á. Carreira-Perpiñán. Improved multiclass

AdaBoost for image classification: The role of tree opti-

mization. In IEEE Int. Conf. Image Processing (ICIP 2021),

pages 424–428, Online, Sept. 19–22 2021. 2

[41] Arman Zharmagambetov, Suryabhan Singh Hada, Magzhan
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