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Abstract

Domain generalization algorithms use training data from
multiple domains to learn models that generalize well to un-
seen domains. While recently proposed benchmarks demon-
strate that most of the existing algorithms do not outperform
simple baselines, the established evaluation methods fail to
expose the impact of various factors that contribute to the
poor performance. In this paper we propose an evaluation
framework for domain generalization algorithms that allows
decomposition of the error into components capturing dis-
tinct aspects of generalization. Inspired by the prevalence of
algorithms based on the idea of domain-invariant representa-
tion learning, we extend the evaluation framework to capture
various types of failures in achieving invariance. We show
that the largest contributor to the generalization error varies
across methods, datasets, regularization strengths and even
training lengths. We observe two problems associated with
the strategy of learning domain-invariant representations.
On Colored MNIST, most domain generalization algorithms
fail because they reach domain-invariance only on the train-
ing domains. On Camelyon-17, domain-invariance degrades
the quality of representations on unseen domains. We hy-
pothesize that focusing instead on tuning the classifier on
top of a rich representation can be a promising direction.

1. Introduction

Over the past decade machine learning research was pre-
dominantly focused on settings where the learner observes
training data from an unknown distribution and is evaluated
on testing data, sampled from the same distribution. While
modern deep learning approaches excel in such settings, they
do significantly worse when the test data comes from a dif-
ferent distribution [32, 41]. These methods might rely on
dataset biases to perform well, and fail when those biases
are eliminated [4, 10].

The goal of generalizing beyond training distribution is
formulated in the domain generalization (DG) task, where
the learner observes training data from multiple domains
and is evaluated on unseen domains. Naturally, it is as-
sumed that training and testing domains have some invariant

properties or mechanisms, which allow generalization from
one to another. At a high level, all domain generalization
approaches seek to capture those invariances, but do that
differently. A few of the possible directions of achieving do-
main generalization are: learning domain-invariant represen-
tations [9, 24], learning class-conditioned domain-invariant
representations [8, 21, 45], using robust loss functions [36],
learning invariant causal predictors [3], and using meta-
learning [20]. Most of the methods listed above outperform
the straightforward empirical risk minimization (ERM) ap-
proach on toy domain generalization instances (e.g., colored
MNIST). However, Gulrajani and Lopez-Paz [14] demon-
strate that when evaluated on realistic DG instances, these
methods are unable to outperform ERM significantly. To im-
prove domain generalization methods or propose new ones,
we need to understand why and how do domain generaliza-
tion methods fail. This is the main goal of this paper.

Our contributions are threefold. First, we characterize
the general failure modes of domain generalization methods:
training set underfitting, test set inseparability, training-test
misalignment and classifier non-invariance. We develop
tools that measure the contribution of each of these failures
in the total error of a given model. Inspired by the popularity
of the methods based on invariant representation learning, we
also characterize failure modes related to achieving domain
invariance. Second, we identify two common patterns of
generalization failures. In the first pattern, many algorithms
achieve domain-invariant representations across the training
domains, but not on unseen domains, while the generaliza-
tion error is negatively correlated with the representation
invariance on unseen domains. The second pattern is when
domain invariance is increased across all domains, but the
increase coincides with a degradation of the representations
of unseen domains, thus limiting the accuracy of the mod-
els. Third, we show that by fixing the representations it is
possible to isolate the classifier non-invariance failure, and
significantly improve the generalization even with the most
basic algorithms. These findings additionally confirm that
domain-invariant representations are neither necessary nor
sufficient for successful domain generalization.
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2. Related Work
The ability to generalize beyond the training distribution

is the key goal of machine learning. Torralba and Efros [41]
show that common image classification datasets have signifi-
cant differences, because of which methods trained on one
dataset often fail to generalize well to other datasets. The
fact that learning on a single domain is susceptible to dataset
biases and spurious correlations has been confirmed in many
contexts [2, 4, 6, 10, 32, 41].

A few settings focus on generalization outside the train-
ing distribution. The out-of-distribution (OOD) and robust-
ness literature focus on the case when there is a distribution
shift at test time [30, 39], including but not limited to la-
bel shifts [22, 34], co-variate shifts [12, 38], conditional
shifts [44], visual distortions [7, 16], stylistic and other
changes [15]. More general settings of domain generaliza-
tion and domain adaptation assume that examples from mul-
tiple domains are available for training, with the difference
that in domain adaptation a collection of examples (labeled
or not) from the testing domain are available for adapta-
tion [43]. In this paper we focus on the domain generaliza-
tion problem (also called zero-shot domain adaptation [28]),
because of its generality and better correspondence with prac-
tical settings. Nevertheless, most of the proposed techniques
and definitions can be easily extended to domain adaptation.

A group of approaches aim to get domain generalization
by learning domain-invariant representations [8,9,21,24,45].
DANN [9] uses an adversarial classifier to predict domain
from representations, while C-DANN [21] learns such a
classifier for each domain separately. Galstyan et al. [8] reg-
ularize empirical risk minimization (ERM) with a term that
uses Hilbert-Schmidt independence criterion (HSIC) [11] to
make representations be independent from domains condi-
tioned on labels. Zhao et al. [45] use a variety of techniques
to enforce the distribution of labels conditioned on repre-
sentations be the same for all domains. DeepCORAL [40]
adds a regularization term to align the second-order statistics
of representations of different domains. Invariant risk mini-
mization (IRM) [3] aims to learn invariant causal predictors,
by finding a representation of data such that optimal classi-
fiers on top of representations are the same for each domain.
Li et al. [21] use meta-learning with the one-step look-ahead
gradient update technique to simulate evaluating on unseen
domains during the training. GroupDRO [36] minimizes the
worst-case risk across training domains. Recently, methods
based on gradient matching have been proposed [31, 37].
Finally, a few works introduce benchmarks for evaluating
domain generalization methods [14, 18].

Gulrajani and Lopez-Paz [14] demonstrate that none of
the existing domain generalization approaches outperform
empirical risk minimization when evaluated on realistic tasks.
There is a very limited amount of research done on why and
how these domain generalization methods fail. Rosenfeld

et al. [33] study the failure modes of the IRM in theoreti-
cal settings. Nagarajan et al. [25] explain the mechanisms
by which ERM fails on very easy out-of-domain general-
ization tasks. In contrast to these works, our analysis and
proposed techniques below are applicable to any domain
generalization algorithm.

3. Problem Setting and Notation

Consider an input space X and output space Y . A joint
probability distribution p(x, y) on X ×Y is called a domain
and defines a prediction task. In the domain generalization
task we assume there is a family D of domains that are
somehow related to each other and correspond to similar
prediction tasks. The learner observes training data from n1

domains, p11(x, y), . . . , p
1
n1
(x, y). The goal is to learn a pre-

dictor f : X → Y that generalizes to unseen domains from
D . Note that in contrast to the domain adaptation problem,
here the learner cannot do any adaptation at inference time.

In this paper we focus on classification tasks, where
X = Rp and Y = {1, 2, . . . , C}. We assume that,
in addition to n1 training domains, we have n2 valida-
tion domains p21(x, y), . . . , p

2
n2
(x, y), and n3 test domains,

p31(x, y), . . . , p
3
n3
(x, y). We assume that there is no label

shift across domains: p11(y) = . . . = p1n1
(y) = p21(y) =

. . . = p2n2
(y) = p31(y) = . . . = p3n3

(y). We discuss this
limitation in Appendix F. We also assume that for each do-
main i = 1, . . . , nj , j = 1, 2, 3, we are given a collection
of independent samples Dj

i from the corresponding distri-
bution pji (x, y). Each of these sets is further divided into
two parts: Dj

i = T j
i ∪ Vj

i . For simplicity, we also define the
union of the samples of training (validation, testing) domains:
Dj =

⋃nj

i=1 D
j
i , T j =

⋃nj

i=1 T
j
i , Vj =

⋃nj

i=1 V
j
i , for each

j = 1, 2, 3. The algorithms will be trained on samples from
T 1. The set V1 is called in-domain validation set in [18],
quasi-development set in [8] and training-domain validation
set in [14]. It is used to measure the performance of the
algorithms on unseen samples from the training domains.
The performance on unseen domains is measured using D3.
The sets T j and Vj , j = 2, 3, are used for analysis.

We consider domain generalization methods that use
neural networks with two components: a feature extrac-
tor z = hθ(x) ∈ Rd with parameters θ ∈ Θ, and a
classification head ŷ = fw(z) ∈ RC with parameters
w ∈ W . Throughout the paper we call z the representa-
tion of x. Let ℓ : RC × Y → R be a loss function that
measures discrepancy between a prediction and a label. In
this work ℓ is chosen to be the standard 0-1 loss function:
ℓ(ŷ, y) = 1{argmaxkŷk(z(x)) ̸= y}, which is the most pop-
ular evaluation metric in classification tasks. Nevertheless,
most of the results of this paper can be easily extended to
other choices of loss functions, such as the negative log-
likelihood loss function, often used for training classifiers.
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(a) e′0 ≫ 0 (b) e′0 = 0, e1 ≫ 0 (c) e′1 = 0, e2 ≫ 0 (d) e′2 = 0, e3 ≫ 0 (e) e′3 = 0

Figure 1. Failure modes of domain generalization algorithms demonstrated by 2D representations of a two-class data. Failure modes are
described in Sec. 4. Empty and full circles correspond to 0 and 1 classes. Colors encode the domains, training domains use colors close to
red, test domains use colors close to blue. The lines correspond to decision boundaries likely to be found by a simple ERM algorithm trained
on the training domains. In all subfigures the domains are distinguishable: d0 ≫ 0.

4. Failure Modes
We propose simple evaluation metrics to diagnose a

trained model and identify a set of failures that contribute
to the final error on unseen domains. We present simpli-
fied schematic visualizations of 2-dimensional representa-
tion spaces corresponding to each of the failure modes, e.g.
Fig. 1. In all such figures each circle corresponds to a repre-
sentation of one sample. The domain of a sample is encoded
by the color of its circle. Orange-red-pink colors correspond
to the training domains, while green-blue colors correspond
to the test domains. Filled and empty circles are used to
encode the binary labels.

To formally define the generalization and invariance
metrics, we need the following additional notation.
Let (X1

1 , Y
1
1 ), . . . (X

1
n1
, Y 1

n1
) be random variables

drawn from training domains p11(x, y), . . . , p
1
n1
(x, y)

and (X3
1 , Y

3
1 ), . . . (X

3
n3
, Y 3

n3
) be random variables

drawn from test domains p31(x, y), . . . , p
3
n3
(x, y).

Let (X1,3, Y 1,3) be a random variable drawn
from the mixture of all training and test domains
p1,3(x, y) = 1

n1+n3

(∑n1

i=1 p
1
i (x, y) +

∑n3

i=1 p
3
i (x, y)

)
.

4.1. Generalization metrics

Below we define four evaluation metrics that capture
qualitatively different aspects of generalization. All of this
metrics will be some kind of errors (so lower better). Hence,
we will use terms “metric” and “error” interchangeably.

Training set underfitting. How well does the model per-
form on training domains? Formally, this metric is denoted
by e′0 and is defined as follows:

e′0 ≜
1

n1

n1∑
i=1

EX1
i ,Y

1
i

[
ℓ
(
fw(hθ(X

1
i )), Y

1
i

)]
,

where hθ and fw are the learned feature extractor and clas-
sifier, respectively. This metric is expected to be small for

most domain generalization algorithms. A model might have
large e′0 if the regularization terms of its objective were so
strong compared to the classifier loss that the feature ex-
tractor failed to learn anything useful. An example will be
discussed in the Experiments section. Training set underfit-
ting is demonstrated in Fig. 1a.

Test set inseparability. How well are the representations
of the test domains separable with respect to the chosen class
of classifier heads? Formally, we define test set inseparability
error as follows:

e′1 ≜ inf
w′∈W

{
1

n3

n3∑
i=1

EX3
i ,Y

3
i

[
ℓ
(
fw′(hθ(X

3
i )), Y

3
i

)]}
.

This metric will be large for models whose feature extractor
is overfitted on the training domains and does not produce
a reasonable representation for the test domains. Note that
the quality of the representation is measured with respect to
the class of classifier heads (e.g., linear functions), because
we are not interested in cases when the representations have
information about domains but that information is not decod-
able/usable by the considered family of classifiers. The case
when e′0 = 0 and e′1 is large is demonstrated in Fig. 1b.

Training-test misalignment. Is there a common clas-
sifier for the representations of training and test domains?
The extent of the answer to this question being negative is
measured by the e′2 metric:

e′2 ≜
1

n3

n3∑
i=1

EX3
i ,Y

3
i

[
ℓ(fw̃(hθ(X

3
i )), Y

3
i )
]
,

where w̃ ∈ arg min
w̃∈W

EX1,3,Y 1,3

[
ℓ(fw̃(hθ(X

1,3)), Y 1,3)
]
.

If e′1 is small, the representations of the samples from
each domain are good enough to be separated by a domain-
specific classifier. But it might be impossible to find a clas-
sifier that would separate samples from all domains (both
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(a) e′0 ≫ 0 (b) e′0 = 0, e′1 ≫ 0 (c) e′1 = 0, e′2 ≫ 0 (d) e′2 = 0, e′3 ≫ 0 (e) e′3 = 0

(f) e′0 ≫ 0 (g) e′0 = 0, e′1 ≫ 0 (h) e′1 = 0, e′2 ≫ 0 (i) e′3 = 0, d′2 = 0

Figure 2. Failure modes of domain generalization algorithms demonstrated by 2D representations of a two-class data. The first row
corresponds to training domain invariance (d′0 = 0), but d′1 ≫ 0. The second row corresponds to training-test domain invariance (d′1 = 0).
In particular, the first three images demonstrate that d′1 = 0 can co-occur with large e0, e1 and e2. The right-most image demonstrates that
e′0 = 0 and d′2 = 0 together imply e′3 = 0. Failure modes are described in Sec. 4.

training and test) at once, resulting in relatively high e′2 error.
This case is demonstrated in Fig. 1c. Such scenarios can be
thought of as “milder” versions of overfitting, as the feature
extractor learned useful and decodable information, but was
not able to distribute the representations in a consistent way
across domains.

Classifier non-invariance. This final generalization met-
ric is the standard test error and measures the performance
of the learned model on test domains. Formally, the metric
e′3 is defined as follows:

e′3 ≜
1

n3

n3∑
i=1

EX3
i ,Y

3
i

[
ℓ(fw(hθ(X

3
i )), Y

3
i )
]
.

If e′2 = 0, the representations are so good that there exists
a classifier that can separate samples from both training
and test domains with significant success. In such cases
e′3 essentially measures whether the training algorithm was
able to find a classifier that works for both training and test
domains. Hence, the name of this metric e′3 is “classifier non-
invariance”. Note that a training algorithm might easily fail
to select an invariant classifier, as it does not have access to
the test data during training. This scenario is schematically
demonstrated in Fig. 1d.

Note that the four failure modes defined above and de-
picted in Fig. 1 are extreme cases and should not be thought
as a comprehensive list of cases. In Sec. 4.4 we propose a
way of attributing the model’s overall test error to each of
these failure modes.

4.2. Invariance metrics

Many domain generalization algorithms attempt to learn
domain-invariant representations. The intuition is that if the
representations of the samples are similar across all domains,
then a classifier designed for the training domains will gen-
eralize to the test domains. As the algorithms have access
only to the training data, they usually achieve domain invari-
ance across the training domains, but not across the union of
training and test domains.

Motivated by the generalization metrics defined above,
we introduce metrics that assess qualitatively different as-
pects of domain invariance of learned representation. While
there are many ways to measure the extent of invariance
of representations across two or more domains (e.g., using
formal distances or divergences between probability distri-
butions), we choose to use a technique similar to the one
used in generalization metrics above. Informally, we will
measure how invariant are the representations of samples of
two domains by measuring how well one can differentiate
them using a domain classifier. Importantly, we will draw
domain classifier from the same family of functions as label
classifiers. That is, if the label classifier head uses a specific
architecture, we would use the same architecture (with a
different number of outputs) for domain classifiers. This
intentionally ignores domain information in representations
that cannot be decoded by the label classifier. Domain clas-
sifiers will be functions of the form gω : Rd → RK , ω ∈ Ω,
where K is the number of domains.
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Training domain distinguishability. Are the repre-
sentations of examples from the training domains domain-
invariant? Formally, we denote our first invariance metric d′0
and define it the following way:

d′0 ≜ 1− inf
ω∈Ω

[
1

n1

n1∑
i=1

EX1
i

[
ℓ(gω(hθ(X

1
i )), i)

]]
− 1

n1
.

Here the constant 1
n1

is the accuracy of the random classifier.
Note that lower values of d′0 correspond to higher invariance,
and d′0 = 0 implies it is impossible to distinguish domains
better than the trivial baseline. Large values of d′0 can arise
when the regularizer designed to induce invariance is too
weak compared to the classification loss. In practice, most
algorithms do not end up in this state if the regularization
term is tuned correctly. It is important to note that achieving
domain invariance on the training domains is not necessary
to have domain generalization, as demonstrated in Fig. 1e.

Training-test domain distinguishability. Are the repre-
sentations of examples from the union of the training and test
domains domain-invariant? Our second invariance metric
d′1 measures the extent of this question having a positive
answer:

d′1 ≜ 1− inf
ω∈Ω

EX1
1:n1

,X3
1:n3

[
1

n1 + n3

(
n1∑
i=1

ℓ(gω(hθ(X
1
i )), i)

+

n3∑
i=1

ℓ(gω(hθ(X
3
i )), i+ n1)

)]
− 1

n1 + n3
.

Assuming that d0 = 0′, this metric d′1 can be large if the
distributions of the representations of the training and test
sets do not coincide; if there is no domain invariance across
the test domains; or both. In theory, this failure of reaching
invariance can coincide with all failure modes of general-
ization, as shown in Fig. 2. Moreover, it is possible to have
domain generalization along with large d′1 (Fig. 2e).

Even when a model achieves high training-test domain
invariance (low d′1), it is still possible that representations of
Class 1 samples of the first domain coincide with the repre-
sentations of Class 2 samples of the second domain and vice
versa. In this case, there will be no domain generalization.
The next metric is designed to capture such situations.

Training-test class-conditional domain invariance. Are
the representations of samples belonging to each of the
classes domain-invariant? Let Ey denote the event (Y 1

1 =
y ∧ · · · ∧ Y 1

n1
= y ∧ Y 3

1 = y ∧ · · · ∧ Y 3
n3

= y). We define
the d′2 metric as follows:

d′2 ≜ 1− 1

C

C∑
y=1

inf
ω∈Ω

E

[
1

n1 + n3

(
n1∑
i=1

ℓ(gω(hθ(X
1
i )), i)

+

n3∑
i=1

ℓ(gω(hθ(X
3
i )), i+ n1)

)∣∣∣∣Ey

]
− 1

n1 + n3
.

This d′2 metric can be seen as the conditional version of the
previous metric d′1.

4.3. Relations between domain invariance and gen-
eralization metrics

We prove two propositions that establish connections
between generalization and invariance failures. In particular,
these propositions rule out some combinations of invariance
and generalization failures. We first formally define domain
invariance of representations and class-conditional domain
invariance of representations (not to be confused with the
corresponding invariance metrics).

Definition 4.1 (Domain invariance of representations). Let
D be a family of domains. We say that the representa-
tions learned by a feature extractor z = h(x) are domain-
invariant with respect to D if for any two domains p1(x, y)
and p2(x, y) from D , the distributions of representations are
equal, i.e., ∀z, pZ1

(z) = pZ2
(z), where X1 ∼ p1(x), X2 ∼

p2(x), Z1 = h(X1) and Z2 = h(X2).

Likewise, we define invariance of representations condi-
tioned on labels by requiring p(z|y) to be the same for across
all domains of the family D .

Proposition 1. If e′2 = 0, then domain invariance of repre-
sentations w.r.t. the union of training and testing domains
implies class-conditioned domain invariance w.r.t. the union
of training and testing domains.

Proposition 2. If e′0 = 0 and representations are class-
conditioned domain-invariant w.r.t. the union of training
and testing domains, then e′3 = 0.

The second proposition implies that for a class-
conditioned domain-invariant model, perfect performance on
the training domains is sufficient for domain generalization.

4.4. Decomposition of errors

The generalization metrics defined above are sequential
in the sense that if e′i is large then e′i+1 is likely to be large as
well. For this reason, the differences e′i+1 − e′i, i = 0, 1, 2,
are more suitable quantities for analysis purposes. In fact,
the failure modes depicted in Fig. 1 are cases when one of
these differences is large in conjunction with the previous
metric being close to zero. Following this reasoning, we
define e0 ≜ e′0, e1 ≜ e′1 − e′0, e2 ≜ e′2 − e′1, e3 ≜ e′3 − e′2,
and decompose the error e ≜ e′3 on the test domains into
four components:

e = e0︸︷︷︸
training set underfitting

+ e1︸︷︷︸
test set inseparability

+ e2︸︷︷︸
training-test misalignment

+ e3︸︷︷︸
classifier non-invariance

. (1)
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Each of these components can be interpreted as the individ-
ual contribution of the corresponding failure mode to the
error of the model. This decomposition is the most meaning-
ful when its components are nonnegative. In general, e1, e2,
and e3 can be negative, for example when samples of testing
domains are significantly easier to classify compared to those
of training domains. However, this is a rare phenomenon and
has not been observed in our experiments. Moreover, one
can prove that on average (w.r.t. to the training-test splits of
the domains) each ei, i = 0, 1, 2, 3 is nonnegative. We give
the precise formulation of this statement along with its proof
in Appendix B.

Similarly, domain-distinguishability d ≜ d′2 can be de-
composed into three components:

d = d0︸︷︷︸
training domain distinguishability

+ d1︸︷︷︸
training-test domain distinguishability

+ d2︸︷︷︸
training-test class-conditional domain distinguishability

, (2)

where d0 ≜ d′0, d1 ≜ d′1 − d′0, and d2 ≜ d′2 − d′1. Again,
each of these components can be interpreted as the individ-
ual contribution of the corresponding failure mode. Some
components of this decomposition also can be negative in
rare situations but are nonnegative if we consider averaging
over training-test splits of the domains (see Appendix B).

5. Experiments
5.1. Datasets and algorithms

The number of datasets suitable for testing domain gen-
eralization algorithms is not large. An attempt to collect
them under a unified format was done in [14]. Two of the
seven datasets are based on MNIST digits, four others are
simple unions of unrelated datasets with similar labels, and
only one is realistic: TerraIncognita. This latter one has
a serious label shift between domains. Recently proposed
WILDS benchmark [18] has another seven datasets which
are connected to real-world problems. Only one of the seven,
Camelyon17, is carefully designed to have no label shift. It
is a patch-based variant of the larger Camelyon17 dataset [5]
of lymph node captures. The version in the WILDS bench-
mark contains 450000 96x96 patches of images of cancer
metastases in lymph node sections. The label for each patch
is binary indicating whether the patch contains any tumor
tissue. The domain of a patch is the hospital from where the
image comes from. There are five different hospitals, three
for training, one for validation and one for testing. Follow-
ing [18], we use Densenet-121 [17] for all algorithms on this
dataset and train for 10 epochs.

We also use a slightly modified version of Colored
MNIST dataset from [8], originally from [19]. We
changed the dataset generation process to mimic Came-
lyon17. Namely, we construct five domains by splitting

MNIST images into five sets of equal size. For each domain
we randomly fix three “colors”, which are essentially 50
dimensional vectors, one for each digit. Then we “colorize”
each image with the corresponding color. We end up with
around 1200 images in each domain of shape 50x28x28. All
models trained on this dataset use a simple neural network
with a two-layer ReLU-activated convolutional feature ex-
tractor and a linear layer on top of it. All models are trained
for 10 epochs. Samples from the datasets are presented in
Appendix C.

We analyze the following domain generalization algo-
rithms. Empirical Risk Minimization (ERM) [42] is used
as a baseline. It minimizes the sum of errors on all training
domains and does not use domain information. ERM+HSIC
[8] is a simple algorithm that attempts to induces domain
invariance for training domains by adding a Hilbert-Schmidt
Independence Criterion (HSIC) [12] regularization term that
penalizes domain information in the learned representations.
DeepCORAL [40] was introduced as a domain adaptation
algorithm, but was recently applied in domain generaliza-
tion settings [14]. It penalizes the difference between the
means and covariance matrices of representation distribu-
tions across domains. Invariant Risk Minimization (IRM)
algorithm [3] tries to push representation distributions for all
domains to have the same optimal classifier head. In [29] the
authors analyze the phenomenon of gradient starvation in al-
gorithms based on gradient descent. They propose a new reg-
ularization method called Spectral Decoupling (SD). To over-
come gradient starvation, it penalizes model’s confidence
by adding an L2 penalty on networks logits. GroupDRO
was used by [35] to tackle poor worst-group performance.
It tries to increase worst-group performance by avoiding
spurious correlations in the training data. By interpreting
domains as groups, this algorithm becomes applicable to
our setting. Another method relying on domain-invariant
features is Domain-Adversarial Neural Network (DANN)
introduced in [1]. It tries to achieve invariance by using
a domain classifier (from features) and a gradient reversal
layer. All of these algorithms (except ERM) have a regu-
larization strength hyperparameter, which we denote by β.
Hyperparameter ranges can be found in Appendix D.

Following literature, we consider the outputs of the last
hidden layer as the learned representations hθ(x). Hence,
label and domain classifiers fw(z) are linear (i.e., just a
single fully-connected layer).

Model selection. The authors of DomainBed benchmark
explicitly warned against improper model selection methods
in domain generalization. They advocated that in practice
model selection should be done either based on the perfor-
mance on in-domain validation sets (V1), or by using leave-
one-domain-out validation. WILDS benchmark introduced
separate validation domains and suggested to use them for
model selection. In our experiments we will use this method
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(b) DeepCORAL
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(c) DANN
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(d) ERM+HSIC (β = 0.1)
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(e) Random init (validation)
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(f) Random init (test)
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(g) Frozen BYOL (validation)
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(h) Frozen BYOL (test)

Figure 3. Decomposition of generalization errors and domain-distinguishability of several models measured on the validation domains (a-e,
g) and test domains (f, h). Horizontal axis corresponds to: (a)-(c) regularization strength of the algorithms, (d-h) training epochs. Figure (c),
(b) and (d) show results on Colored MNIST dataset; all others are on Camelyon17.

for hyperparameter selection. To select the best checkpoint
inside a single run, one can use the same validation domains.
In this paper we always picked the last epoch.

5.2. Measuring the failures

To avoid accessing the test domains, we perform anal-
ysis on training and validation domains only. The metrics
defined in Sec. 4 contain expectations over distributions
and infimums over classifiers. In practice, we approximate
infimums by empirical risk minimization using the imple-
mentation of logistic regression in scikit-learn package [27].
Note that this might fail to find the optimum, and the empiri-
cal estimates might be worse than the true values. In case of
e′2, the estimate can be worse than the solution found by the
domain generalization algorithm itself, i.e. e′3 < e′2. In fact,
we encounter this phenomenon later in Tab. 1. Following
standard machine learning practices, we approximate distri-
butions p1i (x, y) and p2j (x, y) with corresponding empirical
distributions T 1

i and T 2
j during training, and with V1

i and V2
j

when reporting the scores (i = 1, . . . , n1, j = 1, . . . , n2).
In practice, to make d′1 and d′2 comparable with d′0, we train

and evaluate domain classifiers on the union of n1 − n2

training domains and n2 validation domains.

6. Results and Discussion

Our analysis shows distinct patterns of failures on the
two datasets. On Colored MNIST, all algorithms, including
the ERM baseline (β = 0), achieve domain invariance on
training domains, but unseen domains remain quite distin-
guishable. At the same time, the representations of each
domain remain separable (e0 and e1 are close to zero), but
we have well-expressed training-test misalignment and/or
classifier non-invariance across all algorithms and hyperpa-
rameters (Figs. 3b, 6b and 6c). The error on the validation
set is usually larger than 0.8. We observe a positive corre-
lation (0.4-0.5) between d′1 and generalization error on the
validation set (e′3) (Fig. 5a).

The only exception to this pattern is seen on ERM+HSIC
algorithm (Fig. 3a). When the regularization strength β ap-
proaches 1, we achieve full invariance across all domains,
training-test misalignment approaches zero and the classifier
becomes invariant. The error on the test set is 0.09 which is
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Algorithm Initialization Valid. Test

ERM (Fig. 3e) Random 0.164 0.287
ERM Frozen BYOL 0.138 0.077
ERM (wd=0, Fig. 3g) Frozen BYOL 0.097 0.070
SD (β = 5) Frozen BYOL 0.111 0.070
GroupDRO (β = 5) Frozen BYOL 0.140 0.078
IRM (β = 5) Frozen BYOL 0.147 0.081
e′2 (lower bound, est.) Frozen BYOL 0.123 0.062

Table 1. Generalization error e′3 on validation and test domains of
several algorithms trained on Camelyon17. Weight decay coeffi-
cient for all algorithms is set to 0.01 except the third row. The last
row shows the generalization error without classifier non-invariance
component (e′2). As the representations are fixed, these values re-
main constant during the training and serve as a lower bound for
all models with frozen representations. See Sec. 5.2 on why the
estimated lower bound is poor on the validation set.

equal to the error on the training set. Stronger regularization
makes the error on the training set larger as the representa-
tions collapse. The latter causes the correlation between d′1
and e′3 to be much lower for ERM+HSIC (Fig. 5b).

Another interesting phenomenon was observed while
training ERM+HSIC with a lower β = 0.1. Initially, the
model does not fit the training domains (large e0). Over time,
e0 is gradually transformed into e3, e2 and e1 (Fig. 3d). The
overall error always stays above 0.7 during the training, but
the composition of the error changes significantly.

On Camelyon17, training domain distinguishability and
training-validation domain distinguishability are virtually
the same for all algorithms (Figs. 3c and 7). Nevertheless,
validation set inseparability is always non-zero, which is the
largest contributor to the error on unseen domains for well
performing models. The magnitude of e1 varies a lot during
the training and across random seeds (Appendix E). Addi-
tionally, there is no correlation between d′1 and e′3 (Figs. 5c
and 5d). This gives a little hope that focusing on domain
invariance will help succeed on this dataset.

A more detailed analysis uncovers an interesting pattern.
As we have only two unseen domains in Camelyon17, we
look at both of them during our analysis (violating “do not
look at the test set” rule). Many methods we tried, including
the baseline, increase the invariance after the first few epochs
of training. The large variance of e1 is observed only after
d1 gets small (Figs. 3e and 3f). Instead, when the domains
are well distinguishable, e1 is relatively stable (although
the absolute values are different on the two domains) and
is accompanied by e2 and e3. In fact, on the test domain,
the largest contributor to the generalization error over the
first epochs is e3. This implies that if we do not push the
representations to be domain-invariant, there is a hope to
get better generalization on unseen domains by focusing on

the classifier. Unfortunately, even the basic ERM, without
additional loss terms, converges towards training-domain
invariance and harms test set separability.

To verify that focusing on the classifier can be beneficial,
we take a ResNet-50 pretrained on ImageNet using BYOL
algorithm [13] and fix the representations. At this point, the
representations of different domains are well distinguishable
(similar to the first epochs of a regular training), e′1 for the
validation and test domains are 0.123 and 0.062 respectively.
This implies that the test domain is more similar to the train-
ing domains than the validation domain in BYOL’s space.
As we freeze the representations, these numbers serve as
lower bounds for the generalization error, and the training
can affect only e0 and e3. Experiments show that the ERM
baseline with no weight decay (Figs. 3g and 3h), as well as
SD algorithm with a large β, can indeed decrease e3 and
approach the lower bound (Tab. 1). GroupDRO and IRM
fail to decrease e3, while DANN and ERM+HSIC are not
applicable to the setup with fixed representations. This result
indicates that avoiding even a little collapse of representa-
tions, which in these cases coincides with increased domain
invariance, opens new opportunities to decrease the general-
ization error by targeting just e3. The causal link between
poor representations and domain invariance is not clear.

Model selection. To verify whether model selection using
validation domains is suitable, we compute the correlation
between accuracy of the models on validation and test do-
mains at each epoch for a given dataset/algorithm pair. On
Colored MNIST we get 0.98, 0.8, 0.73 and 0.31 correlations
for ERM+HSIC, DeepCORAL, SD and DANN, respectively.
On Camelyon17 basically no correlation is observed, which
is similar to the findings in [23]. Corresponding plots are
shown in Appendix H.

Model complexity. To test the dependence of generaliza-
tion failures on model complexity, we followed [26] to train
several ResNet 18K models (k = 2, 4, 8, 16, 32, 64) with
ERM+HSIC objective on Colored MNIST (β = 1). As seen
on Fig. 6d, larger models better fit the training set, but get
worse training-test domain invariance (d′1).
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