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Abstract

Recent video question answering benchmarks indicate
that state-of-the-art models struggle to answer composi-
tional questions. However, it remains unclear which types
of compositional reasoning cause models to mispredict.
Furthermore, it is difficult to discern whether models ar-
rive at answers using compositional reasoning or by lever-
aging data biases. In this paper, we develop a question
decomposition engine that programmatically deconstructs
a compositional question into a directed acyclic graph of
sub-questions. The graph is designed such that each parent
question is a composition of its children. We present AGQA-
Decomp, a benchmark containing 2.3M question graphs,
with an average of 11.49 sub-questions per graph, and
4.55M total new sub-questions. Using question graphs, we
evaluate three state-of-the-art models with a suite of novel
compositional consistency metrics. We find that models ei-
ther cannot reason correctly through most compositions or
are reliant on incorrect reasoning to reach answers, fre-
quently contradicting themselves or achieving high accu-
racies when failing at intermediate reasoning steps.

1. Introduction

Compositional reasoning is fundamental to how humans
represent visual events [20,26,32,38]. For instance, Fig-
ure | visualizes a video consisting of actions such as

and ; the action
involves an actor initially twisting the bottle and then later
holding it. This ability to compose interactions and actions
is reflected in the compositional nature of language people
use to communicate about what they see [5,28]. To measure
compositional reasoning of visual events, the computer vi-
sion community has proposed multiple video benchmarks
using question answering [12,23,39]. These benchmarks
ask questions such as “Is a phone the first object that the

“Equal contribution

Q. Is a phone the first object that the person is touching after A:yes,
?
Q. Does a phone exist? A:yes, PRED: yes
Q. What is the first object that the person is touching after A: phone,
?
Q. What is the person touching after ?
Q. Is a person touching something after ? Ayes,
Q. Is the person touching something? A:yes, PRED:yes
Q. Is the person ? A:yes, PRED:yes
Q. Does a person exist? A:yes, PRED:yes ::|
Q. Is the person taking something? A:yes,
Q. Does a picture exist? A:vyes, PRED: yes
Q. Does a person exist after ? A:yes, PRED: yes
objects relationships T Btime

Figure 1. We introduce a question decomposition engine, which
produces a DAG of sub-questions from a compositional question
about visual events. A sub-question is designed to contain a sub-
set of the original question’s reasoning steps. Our engine pro-
duces a benchmark with 4.55M question answer pairs associated
with 9.6 K videos. We design handcrafted programs and templates
for each sub-question as well as composition rules to compose
sub-questions together. We analyze existing models using a suite
of new compositional consistency metrics using our DAGs. Our
DAGs isolate which composition rules cause mispredictions (er-
ror path is shown by pink arrows). They also highlight scenarios
where models might exhibit self-contradiction (blue arrows).

person is touching after ?”. where models
need to compose actions ( ) with relation-
ships (touching) and objects (phone) to arrive at the correct
answer. Using these benchmarks, researchers have recently
concluded that state-of-the-art models [8,22,25] struggle to
reason compositionally [12].

Unfortunately, existing benchmarks are unable to ex-
plain why video question answering models struggle with
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Table 1. We visualize our hand-designed sub-questions, which consist of a subset of the reasoning steps found in the AGQA bench-

mark [

Sub-question type Description

]. Each sub-question consists of a functional program and a natural language template. Parentheses indicate further categorization.

Example

Object exists To verity if an object exists

Does a doorway exist?

Relation exists To verify if a relationship exists

Is the person holding something?

Interaction .
person and an object

To verify if there is a particular relationship between

Is the person touching a dish?

Interaction temporal loc.

A filter on an interaction type question

Is the person holding a book

while ?
Exists temporal loc. A condition on object/relationship exists question Does a phone exist after ?
. . . . . . What is the first object that the person is above
First/last Getting the first/last instance of the given object before J P 5 ove

Longest shortest action Getting the longest/shortest

What does the person do for
the longest amount of time?

Conjunction

Get a new exists question by combining two
interaction questions with a conjunction

Is the person in front of the mirror and behind
the table while ?

Compares between two objects,
Choose

) Is the doorknob or the dish the first object that

relationships, or time lengths the person is holding?
Compares two objects and verifies if they are the same . . . .
npare 00 . ) Y Is the doorway the object they are interacting with
Equals Verifies if the given is longer/shorter o

than the other one

while

compositional reasoning. In Figure 1, a model incorrectly
answers the root question as “no” instead of the correct an-
swer of “yes.” However, this information does not explain
what caused the model to err: Did the model struggle with
words requiring temporal reasoning, such as first or after?
Did it fail at detecting the phone or identifying the relation-
ship touching? Or did it struggle to compose the relation-
ship with the object? Even if we assume the model had cor-
rectly answered the question, it remains uncertain whether
this behavior was due to proper compositional reasoning or
a reliance on spurious correlations to “cheat.”

Not only do standard evaluation schemes fall short in
this regard, but existing approaches for dissecting model be-
havior also struggle to resolve this uncertainty. Attribution
methods, such as GradCAM [35] or LIME [34], can high-
light important aspects of the input data, but are agnostic
to the structure of compositional reasoning. Approaches
that rely on counterfactuals to illuminate model behavior,
such as contrast sets [9], focus primarily on model decision
boundaries by performing minor, local changes to the in-
put. These local changes, however, cannot capture the full
range of compositional reasoning steps required to answer
compositional visual questions [12], which assess multiple,
often interdependent, reasoning abilities at once.

In this paper, we develop a question decomposition en-
gine that decomposes a compositional question into a di-
rected acyclic graph (DAG) of sub-questions (see Figure 1).
A sub-question isolates a subset of the reasoning steps that
the original question requires, exposing model performance
on subsets of intermediate reasoning steps. This expo-
sure enables us to identify difficult sub-questions and study
which compositions cause models to struggle. It also allows
us to test whether models are right for the right reasons. For

instance, the root question mentioned earlier can not only
decompose into intermediate reasoning steps that determine
if the “the person was touching something after

;> but also isolate basic perception capabilities, such as
determining whether a “phone exists”.

Using our engine, we construct the AGQA-Decomp
dataset', which decomposes the 2.3M compositional ques-
tions in the updated version® of the recent balanced AGQA
benchmark [12] to produce 1.62M unique sub-questions
for 9.6 K videos for a total of 4.55M sub-questions. To
generate sub-questions, we hand-design 21 sub-questions,
each with a functional program and natural language tem-
plate (Table 1). To compose the sub-questions within a
DAG, we hand-design 13 composition rules (Table 2). Fi-
nally, we create a suite of new metrics to evaluate compo-
sitional reasoning. One of those metrics — internal consis-
tency — measures whether models are self-consistent when
they answer questions within a DAG. To enable this metric,
we further hand-design 10 consistency rules between sub-
questions (see Table 5 in the Supplementary).

We evaluate three state-of-the-art video question answer-
ing models, HCRN [22], HME [§] and PSAC [25] using our
DAGs and metrics. Our analyses reveal that for a major-
ity of compositional reasoning steps, models either fail to
successfully complete the step or rely on faulty reasoning
mechanisms. They frequently contradict themselves and
achieve high accuracies even when failing at intermediate
steps. Models even struggle when asked to choose between
or compare two options, such as objects or relationships.
Finally, we find that for HCRN and PSAC, there is no cor-
relation between internal consistency and accuracy across

IProject page: https://tinyurl.com/agga—decomp
2AGQA 2.0: https://tinyurl.com/aggavideo
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d: What is the first object that the personis touching
Program: first( objects( objExists(person), relationExists(to

ng)))

Iterate through arguments

g: What is the first object that the person is touching?
Program: first( object that the person is touching )

Return indirect reference

Program: objects( objExists(person), relationExists(touching) ) Program: objects( person, touching) ------ »s1: What is the person touching?
Iterate through
arguments
Leaf Program: relationExists(touching) -----===---F--===-----~ »s3: Is the person touching something?
Leaf program: objExists(person) === -=--=----—--- -~ - ——————- - - -+ s52: Does a person exist?

Use templates to produce sub-question

Figure 2. Our question decomposition engine expects a compositional root question as input and outputs a DAG of sub-questions. The root
question has an associated functional program which explains the reasoning steps necessary to answer the question. We recursively iterate
over the arguments of the function until we reach a leaf function. We design natural language templates for each leaf function, converting
them into sub-questions. Once a leaf function is converted to a question, we return an indirect reference of the answer back to its parent.
The parent uses composition rules to combine the indirect references from its children to similarly generate questions.

DAGs. For HME, however, there is a weak negative correla-
tion, suggesting that the model is frequently inaccurate and
propagates this inaccuracy due to its internal consistency.
We believe that our decomposed question DAGs could fur-
ther enable a host of future research directions: from pro-
moting transparency through consistency to developing in-
teractive model analysis tools.

2. Related Work

We contrast our contributions against recently proposed
evaluation measures in machine learning, focusing espe-
cially on video question answering. We also contextualize
the idea of question decomposition to related work in com-
puter vision and in natural language processing (NLP).
Video question answering. Despite the popularity of video
question answering as a benchmark task [10, 12, 15,23, 39,

,47], questions in several prominent benchmarks rely on
dialogue and plot summaries instead of a video’s visual con-
tents [18, 23,39, 49], focus on short video clips or only a
handful of objects [29,45], or suffer from biases associated
with human generated questions [15,23,39,47]. These lim-
itations reduce benchmarks’ effectiveness at reasoning over
compositional visual events. Given these limitations, we
focus on the recent AGQA benchmark [12] of question an-
swer pairs for compositional visual reasoning.

Evaluating consistency. Our focus on providing an evalu-
ation metric beyond standard task accuracy is in line with
recent efforts toward more metamorphic evaluation of ma-
chine learning models [2, 9, 24]. While we may be the
only method to date proposing a consistency-based metric
for video question answering, the role of consistency has
been explored for image question answering [2, | 1, 14,31,

,30,37,48] and for text question answering [9, 43]. Ex-
isting metrics measure whether models can consistently an-
swer sets of questions logically entailed by a given ques-

tion [11, 14,31, 33] or answer counterfactuals with differ-
ent answers [9,43]. To enable these metrics, researchers
have collected datasets by asking human annotators to gen-
erate perceptual questions associated with reasoning ques-
tions [36], used large language models to generate counter-
factuals [43], or asked domain experts to compile rules to
generate contrast sets [9]. In comparison, we programmati-
cally decompose questions by hand-designing composition
rules over programs associated with questions.
Decomposing question answering. Decomposing the
question answering task into simpler tasks has appeared
within both the computer vision [, 3] and NLP commu-
nities [42]. Most prominently in computer vision, neu-
ral module networks and related architectures [, 4, 13]
break down questions into modular programs defining the
architecture of the neural network instantiated to answer
the question. To design modular architectures, ACMN [3]
decomposes questions using dependency parses. The
GQA [14] and AGQA [12] benchmarks use programs as-
sociated with each question to compute answers from scene
graphs [19] and spatio-temporal scene graphs [16]; how-
ever, these programs are unused beyond dataset generation.

In NLP, “multi-hop” reasoning questions are decom-
posed into “single-hop” ones (e.g. decomposing “Which
team does the player named 2015 Diamond Head Classic’s
MVP play for?” into the simpler “Which player was named
2015 Diamond Head Classic’s MVP?”). Multi-hop mod-
els answer simpler questions and combine their answers to
ultimately answer the original multi-hop question [27,30].
In a similar vein, explanation methods have decomposed
language statements into tree-structured sets of premises
that entail the original statement (e.g. “eruptions block sun-
light” entails “eruptions can kill plants”) [7]. While Break-
ItDown [42] decomposes questions for HotPotQA [44] into
programs to design neural architectures, we decompose
questions to design evaluation metrics.
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Table 2. We hand-design composition rules to generate questions g using indirect references produced by its sub-questions {s1, s2, . ..}
Composition rules Description Example
g : Is a person holding a doorway?
; e e . . s1: Does a person exist?
Interaction Verify if an interaction exists . .
s2: Is a person holding something?

s3: Does a doorway exist?

Combine two interaction or exists
questions using a temporal localizer

Temporal loc.
(After, before, while, between)

q: Is the person before ?
s1: Is the person ?
s2: Is a person ?

Getting the first/last occurrence

g: What is the first object that the person is holding?

Fi t/last . . .
irst/las from a set of object/actions s1: What is the person holding?
. . . . . . g: Is the person and before ?
Conjunction Combine two interaction questions .
s1: Is the person before ?

(And, xor) using a conjunction

s52: Is the person before

Choose
(Choose (object/Time)
longer/shorter choose)

Chooses one of two possible options

g: Is the doorway or the book the first object they were in front of?
s1: Is the doorway the first object they were in front of?
s52: Is the book the first object they were in front of?

Compares two objects/actions to

Equals verify if they are the same

g: Is a book the first object that the person is carrying?
s1: Does a book exist?
s2: What is the first object that the person is carrying?

Compositional reasoning. While multiple definitions of
compositionality exist, we use what is more colloquially re-
ferred to as bottom-up compositionality — “the meaning of
the whole is a function of the meanings of its parts” [6].
In our case, reasoning about the question “Was the person

after touching a phone?” entails being able
to answer simpler questions (e.g. “Did the person touch a
phone?”’), which can be further decomposed into percep-
tual questions (e.g. , “Does a phone exist?”’) and spatio-
temporal relationship detection (e.g. “Did the person touch
something?”’). Recent work has argued the importance of
compositionality in enabling models to generalize to new
domains, categories, and logical rules [21,40] and has dis-
covered that current models struggle with multi-step reason-
ing [8, 12]. These studies motivate our contribution.

3. Question decomposition engine

Given a question ¢ as input, our engine outputs a directed
acyclic graph (DAG) (N, E;) € G4 of sub-questions for
that question. The nodes N, are the list of sub-questions
for question ¢ while the directed edges identify the com-
position rule used to compose a question from a node’s
sub-questions. For example, the decomposition of “What
is the first object that the person is touching?” will produce
the following list of sub-questions: {sl: “What is the
person touching?”’, s2: “Does a person exist?”, and s3 :
“Is the person touching something?” }. The edges are:
{(q, s1, first), (s1, s2, interaction), (s1, s3, interaction) },
where “first” and “interaction” are composition rules.

To generate the DAG, we first represent the question ¢
as a functional program, which consists of the individual
reasoning steps needed to answer g. The program structure
defines the structure of the DAG (as shown in Figure 2).
We recursively iterate over this program and its arguments
to generate the DAG.

While our composition rules and templates are tailored
towards AGQA [12], our engine can be generalized to other

datasets involving questions paired with functional pro-
grams, such as GQA [14], CLEVR [17] or CLEVRER [45].
This will require defining composition rules and templates
based on the datasets’ function programs.

3.1. Representing questions as programs

We assume all questions have a correspond-
ing functional program, with multiple reason-
ing steps. For instance, the program for ¢ is
first (objects (objExists (person),
relationExists (touching))). Intuitively,
this particular program searches through all the frames
of a given video to find instances where there is a
person present: objExists (person).  Similarly,
it finds the frames where a person is touching some-
thing: relationExists (touching). From those
frames, it extracts the objects that are being touched
by a person: objects (objExists (person),
relationExists (touching)). Finally, it re-
turns the first object from the list of objects identified:
first (-).

Each reasoning step is a function composed of multi-
ple arguments: For example, the function objects (-)
contains the following arguments: objExists (-) and
relationExists (-). We utilize the 2.3M questions,
each generated using 27 unique functions associated with
217 natural language templates, in AGQA.

3.2. Decomposing questions using programs

To decompose ¢, we topologically iterate over all the ar-
guments of the top-level reasoning function and recursively
decompose each argument. For instance, the top level rea-
soning function for ¢is first (-) . We iterate over its argu-
ment objects (-) and then recursively iterate over its two
arguments: objExists (-) and relationExists (-).

Eventually, we will arrive at a “leaf” pro-
gram with no further functions as arguments (e.g.
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objExists (person)). To convert the leaf program
into a node in the DAG, we design natural language
question templates for every program (see Table 1). For
instance, obJjExists (-) has the template: “Does an
[object] exist?” that creates the subquestion s2. We check
if we have already added s2 € N, while traversing another
argument. If s2 ¢ N, then we use the template to create a
new node s2 = “Does a person exist?” and add it to IV,.

Once we convert a leaf function into s2, we parse
the template to extract an indirect reference and send
it back to its parent function. The parent func-
tion, in this case objects (objExists (person),
relationExists (touching) ) uses its arguments s2
and s3, along with a compositionality rule to produce the
node s1 = “What is the person touching?”. We design a
set of compositionality rules, listed in Table 2, to ingest the
indirect references passed back (s2 — “person” and s3 —
“touching”) into its corresponding template: ““What is the
[object] [relationship]?”. Next, we add the edges between
s1 and its two arguments to F, with the composition rule,
interaction, used to compose the arguments together.
This process continues until we return back to the original
top-level function first (-).

Our recursive decomposition process makes an average
of 11.49 sub-questions for each of the 2.3 M questions in the
balanced AGQA questions, creating 4.55M sub-questions.

3.3. AGQA answer generation

Once all the questions are decomposed into DAGs
of sub-questions, we programmatically propagate answers
from the original AGQA questions to the sub-questions.
Some sub-questions are already present in the original un-
balanced AGQA dataset; for these, we automatically have
the answers. For others, we craft logical consistency rules
to generate answers (see Table 5 in the Supplementary).

For example, if the answer to an Interaction ques-
tion is “yes”, then all its sub-questions should also be an-
swered “yes”. If the answer to “Is the person touching
something?” is “yes,” for instance, then the answer to “Does
a person exist?” is also “yes”. If a “choose X or Y ques-
tion’s answer is “X”, then all sub-questions along X’s recur-
sive call should be answered “yes,” while Y’s answer should
be “no.” If, for example, “Did the person throw the blanket
but not hold the blanket?” is answered “yes”, then the an-
swer to “Did the person throw the blanket?” is “yes” but
“Did the person hold the blanket” is “no”. Similar logical
rules apply for Before and After question types.

Our answer generation rules are unable to propagate an-
swers for questions answered “no”. For instance, if the an-
swer to “Is the person touching something?” is “no”, we can
not entail an answer to the question “Does a person exist?”.
To answer such questions, we run a large-scale annotation
task on Amazon Mechanical Turk to identify all objects that

appear in a randomly selected subset of videos in AGQA
(see Supplementary for details). We use these annotations
to propagate “no” answers to the relevant sub-questions.

Finally, we balance the answer distribution to arrive at
our final dataset. When generating AGQA’s original bal-
anced dataset, the authors used an answer smoothing algo-
rithm to mitigate biases in the training process. Adding our
sub-questions to AGQA changes the training answer distri-
butions. To reduce the bias in the new answer distributions,
we adopt the same answer smoothing algorithm. This pro-
cess results in 1.62M unique new sub-questions across the
dataset, and a total of 4.55M sub-questions.

4. Metrics

Using the sub-question types and composition rules we
handcrafted, we design novel metrics that measure mod-
els’ compositional accuracy, test whether models are right
for the wrong reasons, and identify whether models are in-
ternally consistent. Our metrics are complementary and
should be used together to guide error analysis. Formal def-
initions for the metrics can be found in the Supplementary.
Compositional accuracy (CA): A model reasoning com-
positionally should be able to answer a given parent ques-
tion ¢ correctly when it answers its sub-questions cor-
rectly. We operationalize this intuition with the CA metric,
which measures parent question accuracy across composi-
tions where a model answers all immediate sub-questions
correctly. Low CA scores for a given category indicate dif-
ficulty performing that intermediate reasoning step.

Right for the wrong reasons (RWR): Given that the sub-
questions of a given question q represent intermediate rea-
soning steps, a model reasoning compositionally should an-
swer all sub-questions correctly if it answers g correctly.
Failure to do so implies the model is relying on faulty deci-
sion mechanisms to reach correct answers. The RWR met-
ric aims to determine to what extent such faulty reasoning
occurs. To compute this, we measure parent question ac-
curacy across compositions where a model answers at least
one sub-question incorrectly. High RWR scores for a given
category imply that the model’s reasoning is faulty for those
intermediate steps. For granularity, we additionally com-
pute parent question accuracies across compositions where
a model answers exactly n sub-questions incorrectly, where
n is an integer. We denote this variant RWR-n and present
its results in the Supplementary (Tables 6, 7).

Delta: We derive additional insights by computing the dif-
ference between RWR and CA values. Ideally, RWR will
be lower than CA, leading to negative Delta values. A posi-
tive Delta value implies incorrect reasoning since the model
performs better when it errs on a sub-question.

Internal Consistency (IC): A model that reasons composi-
tionally should produce answers that don’t contradict each
other, regardless of accuracy. Unlike most past work on
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Table 3. We report accuracy, compositional accuracy (CA), right for the wrong reasons (RWR), delta (RWR-CA) and internal consistency
(IC) values. We also present accuracy for the Most-Likely baseline and the rate at which annotators agreed with ground-truth answers
in our AMT study (Human). Models particularly struggle at Interaction Temporal Localization, Choose and Equals
questions as well as basic question types such as Object Exists. N/A indicates there were no valid compositions for a given type.

Accuracy CA RWR Delta 1C
Question Type HCRN HME PSAC Most-Likely HCRN HME PSAC HCRN HME PSAC HCRN HME PSAC HCRN HME PSAC Human
Object Exists 47.03 46.74  45.02 50.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.00
Relation Exists 52.14 5121 3644 50.00 7317 8.99 N/A 16.67 N/A 2022 -56.50 N/A N/A 82.87 100.00  50.00 92.00
Interaction 4671 50.57 62.33 50.00 62.50 32.66 N/A 3331 23.58 48.63 -29.19  -9.08 N/A 84.87  62.66 50.00 88.00
Interaction Temporal Loc.  49.53 5043 4520 50.00 5782 57.96 391 4739 5046 46.92 -10.43  -7.51 43,01 7147 6256 6149 96.00
Exists Temporal Loc. 47.82  49.69 53.52 50.00 90.92 22.60 67.68 4544 196 18.69 -4549  -20.64 -48.99 7419 7636 71.05 92.00
First/Last 9.28 12.31 8.20 3.79 N/A  N/A N/A N/A  N/A N/A N/A N/A N/A N/A N/A N/A 88.00
Longest/Shortest Action 3.24 1.67 1.58 3.57 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 76.00
Conjunction 49.60 50.07 50.01 50.00 71.64 8526 85.81 42.19 3985 39.92 -29.45 -4542 -45.89 64.00 6536 54.34 76.00
Choose 2444 3516 26.03 1.89 51.19 5524 4649 47.05 4828 48.09 -4.14  -6.96 1.59 5.75 0.65 12.18 88.00
Equals 50.53  50.08 49.92 50.00 4771 52.88  49.00 51.67 47.15 5036 396 572 1.35 4756 51.03 4761 70.00
Overall 2127 3047 21.29 331 7459 4928 60.97 4622 2529 36.68 -2837 -23.99 -24.28 62.88 5834 5795 84.36

measuring consistency [14,33, 36], we can use our logical
consistency rules (see Table 5 in the Supplementary) and
their contrapositives to determine whether models are self-
consistent without access to ground-truth answers. We note
that most compositions considered for the IC metric have
multiple logical consistency rules associated with them. To
compute the IC metric for a given composition rule, we first
measure the percentage of consistency checks a model sat-
isfies for each of its logical consistency rules. Then we
average these percentages to obtain the IC score for that
composition. With this, we avoid overemphasizing a more
common rule. IC scores for individual logical consistency
rules can be found in the Supplementary (Table 8).
Accuracy: To obtain a baseline understanding of model
performance, we additionally compute accuracy per ques-
tion type. To elevate the role of answers on the long tail of
the answer distributions, we compute accuracy per ground-
truth answer and then normalize across answers.

5. Experiments

We evaluate three state-of-the-art video question answer-
ing models on our DAGs to analyze their compositional
visual reasoning capability. We start by analyzing model
accuracy on leaf nodes testing basic perception. We then
analyze three different groups of compositional reasoning
steps: Choose and Equals questions, Conjunction
questions, and the Temporal Localization cate-
gories. In these analyses, the CA metric helps determine
which reasoning steps models struggle at, the RWR metric
checks whether models achieve high accuracies even when
failing at intermediate reasoning steps, and the IC metric
determines how often models contradict themselves. We
additionally cite exact values for RWR-n scores, IC values
for individual consistency rules and accuracies per ground-
truth answers to support analysis. Full tables for these val-
ues can be found in the Supplementary (Tables 6-9).
Models. We use the three models evaluated in the AGQA
paper: HME [8], HCRN [22] and PSAC [25]. HME
fuses memory modules for visual and question features [8],

HCRN creates a multi-layer hierarchy of a reusable module
that integrates motion, question, and visual features at each
layer [22] and PSAC integrates visual and language features
using positional self-attention and co-attention blocks [25].
Like the AGQA paper, we also consider a model (Most-
Likely) that outputs the most common answer for each
question type as a baseline relying only on linguistic biases.
Training. We trained models on a version of the AGQA
balanced dataset that is augmented with the balanced sub-
question DAGs we produced. We stop training when vali-
dation accuracy plateaues.

5.1. Human evaluation

To evaluate the quality of the questions and answers our
engine generates, we run a human evaluation study. We hire
annotators at a rate of $15/hr in accordance with fair work
standards on Amazon Mechanical Turk [41]. We present
annotators with at least 25 randomly sampled questions per
sub-question type and adopt the human evaluation protocol
presented in AGQA [12]. Annotators are asked to verify
a question and answer pair by watching the video associ-
ated with them. The majority vote of 3 annotators per ques-
tion labeled 84.36% of our answers as correct, implying that
about 15.64% of our questions contain errors (see Table 3).
These errors originate in scene graph annotation errors and
ambiguous relationships. We describe in supplementary
materials the sources of human error. To put this number
in context, GQA [14], CLEVR [17] and AGQA [12], three
recent automated benchmarks, report 89.30%, 92.60%, and
86.02% human accuracy, respectively.

5.2. Performance on Leaf Nodes

Upon inspecting model accuracy (Table 3) on the
Object Exists and Relation Exists categories,
we find that each model struggles on basic perceptual ques-
tions, casting doubt on good performance on more complex
categories. Model accuracy on both categories is either on
par with or poorer than the Most-Likely baseline. By in-
vestigating model accuracy per-ground truth answer (see
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Table 9 in the Supplementary), we find that HME is heav-
ily biased towards “no” answers for Relation Exists,
achieving 99.11% and 3.29% accuracy on “no” and “yes”
answered questions respectively. PSAC is similarly biased
on the Object Exists category, achieving 86.67% and
3.38% accuracy on “no” and “yes” answered questions.
HCRN, finally, has near or below-chance performance on
both categories, only achieving above 50% accuracy on
“No” answered questions of the Relation Exists cat-
egory with a score of 55.84%.

5.3. Performance on Choose and Equals

Our CA, RWR and IC metrics (Table 4) help demon-
strate not only that models struggle at the Choose and
Equals categories, but that they also rely on incorrect
reasoning for them. Firstly, by looking at the CA scores,
we find that even when models answer all child ques-
tions correctly, they obtain around or below 50% accuracy
for these binary questions. Models particularly struggle
at Longer/Shorter Choose compositions. HCRN,
HME and PSAC, for instance, obtain 42.02%, 41.90% and
38.51% CA for Longer Choose. Furthermore, mod-
els achieve an IC score of at most 12.18% for Choose
compositions, providing evidence for incorrect reasoning.
Models’ reasoning is particularly faulty when the Choose
composition requires ordering two events (Table 8), with
HCRN, HME and PSAC’s predictions being self-consistent
only 4.92%, 0.54% and 9.56% of the time for this rule. We
can reach a similar conclusion for the Equals composi-
tion. HCRN and PSAC have Delta scores of 3.96% and
1.35% respectively, meaning they are better at answering
parent questions upon making mistakes at child questions.
In contrast, HME obtains a Delta score of —5.72% (Table
4), indicating that errors on intermediate reasoning steps
have only a small negative impact on its performance, which
shouldn’t occur if reasoning compositionally.

5.4. Performance on Conjunctions

Models’ inability to reason compositionally largely per-
sists for the logical Conjunction categories. While both
HME and PSAC obtain high CA scores (Table 4) for And
(95.81% and 88.31%) and Xor (78.91% and 84.32%) com-
positions, their success stems primarily from their perfor-
mance when the parent question has “no” as a ground-
truth answer. For the CA metric, HME and PSAC predict
41.95% and 37.60% of “yes” answered questions correctly
for And compositions and only 1.41% and 14.79% of “yes”
answered questions correctly for Xor compositions. Both
models obtain approximately 80% RWR-1 performance for
And and over 80% RWR-2 performance for Xor composi-
tions (Table 7). Their performance is far above chance when
making mistakes on intermediate reasoning steps, indicat-
ing that their success on ‘“no” answered questions is not due

to an understanding of logical conjunctions. HCRN, how-
ever, behaves differently. For Xor, it obtains a poor CA
score of 52.33%, which is close to chance. On the other
hand, HCRN appears to properly understand the And com-
position. It achieves a high CA score of 88.49, answering
90.66% of “yes” and 84.52% of “no” answered questions
correctly. Its IC score is a similarly high 84.31% (Table 4),
where it is internally consistent for 74.37% and 94.24% of
consistency checks where the parent is “yes” and “no” re-
spectively (Table 8). While its RWR-1 score of 48.35 (Ta-
ble 7) casts doubt on whether HCRN has a grounded un-
derstanding of what the question asks, its high CA and IC
scores nonetheless indicate that it can successfully execute
the And reasoning step.

5.5. Performance on Temporal Reasoning

We finally analyze model performances on the
Temporal Localization categories, starting with
the Exists Temporal Localization question
type. We split analysis by the temporal localization com-
position types: After, Before, While or Between.
We first find that HME fails on After, Before and
While compositions, obtaining poor CA scores of
30.88%, 31.95% and 24.36% respectively (Table 4). While
PSAC and particularly HCRN obtain higher CA scores on
these compositions, their success is likely due to faulty
reasoning. Both models obtain IC scores less than 50%
when answering “yes” to the parent question (Table 8),
contradicting themselves over half the time in one common
setting. HCRN’s above chance RWR-1 scores of 61.24%,
65.16%, 66.01% for these compositions (Table 7) further
indicate incorrect reasoning. Model performances on
Between compositions, however, are reminiscent of
those on And compositions. While HME obtains a high
CA score of 94.54%, it achieving an IC score of 42.01%
when the parent is “yes” (Table 8) and a high RWR-1
score of 77.83% (Table 7) indicates that this success is
due to incorrect reasoning. Meanwhile, HCRN and PSAC
achieve high CA scores, do not have RWR values far
above chance (Tables 4, 7) and obtain high IC scores of
85.95% and 87.97% respectively. These models can suc-
cessfully execute the Between reasoning step even if their
understandings of the underlying Before and After
compositions are suspect. Interaction Temporal
Localization, on the other hand, additionally involves
an Interaction composition and requires the model
to temporally reason about two different relationships or
actions. PSAC, given its 3.91% CA score, is incapable of
performing this task. HCRN and HME, on the other hand,
likely rely on spurious correlations even when they are
correct. For instance, while HCRN and HME obtain CA
scores of 57.82% and 57.96% respectively (Table 4), they
also obtain RWR-2 scores of 55.34% and 93.92% (Table
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Consistency and Accuracy

HCRN HME PSAC

~100 100

X g'100 e

< [ <

> 80 > > 80

e g 80 <

] @ [7]

ki ® @ 60

4 €0 0 6o @

] D 2

8 3 S 40

o 40 S a0 o

© © ©

(] © S

£ 2 € =il

[ 1] 9

L 9 2

(=4 c S o

S S,

0 20 40 60 80
0 20 40 60 80 100 0 20 40 60 80 100 o
Accuracy(%) Accuracy(%) Accuracy(%)

Figure 3. We measure the internal consistency of each DAG using handcrafted consistency rules. HCRN and PSAC do not have a
correlation between the internal consistency of a DAG and the accuracy across all its questions while HME has a weak negative correlation
(Pearson Correlation Coefficient: —0.086 for HCRN, —0.293 for HME and —0.109 for PSAC).

Table 4. We calculate the compositional accuracy (CA), right for the wrong reasons (RWR), delta (RWR-CA) and internal consistency
(IC) metrics with respect to composition rules for HCRN, HME and PSAC. We find that models are either unable to reason over a given
composition or are right for the wrong reasons, often due to self-contradiction.

CA RWR Delta IC
Composition Type HCRN HME PSAC HCRN HME PSAC HCRN HME PSAC HCRN HME PSAC
Interaction 5842 42.09 92.75 40.73 38.85 49.94 -17.70  -3.24  -42.82 87.81 63.63 49.98
First N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A  N/A N/A
Last N/A  N/A N/A N/A  N/A N/A N/A N/A N/A N/A  N/A N/A
Equals 47.71 52.88 49.00 51.67 47.15 50.36 396 572 1.35 47.56 51.03 47.62
And 88.49 9581 88.31 3486 40.79 4246 -53.63 -55.03 -45.85 84.31 7836 52.33
Xor 5233 7891 84.32 49.21 3876 36.98 -3.12 -40.15 -47.34 4370 5236 56.34
Choose 5242 57.02 47.64 4742 4858 4832 -5.00  -8.45 0.68 575 0.65 12.18
Longer Choose 42.02 4190 3851 38.68 41.04 41.00 -3.34  -0.87 2.49 N/A  N/A N/A
Shorter Choose  40.28 50.88 38.86 36.83 41.87 4144 -345 -9.01 2.58 N/A  N/A N/A
After 78.10 30.88 57.34 48.02 2245 30.00 -30.08  -8.43 -27.34 70.24 70.08 71.17
Before 7849 3195 58.48 5193 2193 28.73 -26.57 -10.02  -29.75 69.24 71.05 71.67
While 89.36 2436 6453 4440  9.33 23.88 -44.96  -15.03 -40.66 7132 6696 72.33
Between 84.80 94.54 89.38 17.37 585 12.25 -67.43 -88.69 -77.12 8595 7090 87.97
Overall 69.70 5190 62.29 45.84 2798 37.82 -23.87 -23.92 -24.47 62.88 5834 57.95

7), meaning that their performance does not depend on
whether they are accurate for intermediate reasoning steps.
Models’ overall poor performance on Interaction
Temporal Localization is similar to the perfor-
mance on Choose and Equals questions, both of which
also require reasoning over two distinct components.

5.6. Correlation between consistency and accuracy

We test whether our IC metric is predictive of model ac-
curacy, as this can aid users at inference time. Specifically,
we measure whether IC is correlated with accuracy. To do
this, we compute internal consistency on DAGs by mea-
suring the percentage of correct logical consistency checks
across all compositions in a DAG and compare against ac-
curacy on the entire DAG. Figure 3 shows that internal con-
sistency either has no correlation with accuracy or a weak
negative one, with HCRN, HME and PSAC having corre-
lation coefficients of —0.086, —0.293 and —0.109 respec-
tively. HME’s negative correlation can be explained by its

consistent bias towards ‘“no” answers (see Table 9 in the
Supplementary), which are less frequent in our DAGs as our
consistency checks can only propagate “yes” answers. As
such, while HME is highly consistent, it is also frequently
incorrect, which causes inaccuracies to propagate through-
out hierarchies. HCRN and PSAC, on the other hand, are
less biased models but are nonetheless often right for the
wrong reasons. As they do not reason compositionally, their
internal consistency is not predictive of their accuracy.

6. Discussion

In conclusion, we developed a question decomposition
engine and generated the dataset AGQA-Decomp hoping to
facilitate the analysis of video question answering models
beyond average accuracy. Our work is a continuation of a
shift in machine learning away from standard accuracy met-
rics towards more metamorphic evaluation [2, 9, 24]. Our
results are bleak: models frequently contradict themselves
and are often right for the wrong reasons.
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