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Abstract

Today’s VidSGG models are all proposal-based methods,
i.e., they first generate numerous paired subject-object snip-
pets as proposals, and then conduct predicate classification
for each proposal. In this paper, we argue that this prevalent
proposal-based framework has three inherent drawbacks:
1) The ground-truth predicate labels for proposals are par-
tially correct. 2) They break the high-order relations among
different predicate instances of a same subject-object pair.
3) VidSGG performance is upper-bounded by the quality of
the proposals. To this end, we propose a new classification-
then-grounding framework for VidSGG, which can avoid
all the three overlooked drawbacks. Meanwhile, under this
framework, we reformulate the video scene graphs as tem-
poral bipartite graphs, where the entities and predicates are
two types of nodes with time slots, and the edges denote dif-
ferent semantic roles between these nodes. This formulation
takes full advantage of our new framework. Accordingly, we
further propose a novel BIpartite Graph based SGG model:
BIG. It consists of a classification stage and a grounding
stage, where the former aims to classify the categories of
all the nodes and the edges, and the latter tries to localize
the temporal location of each relation instance. Extensive
ablations on two VidSGG datasets have attested to the ef-
fectiveness of our framework and BIG. Code is available at
https://github.com/Dawn-LX/VidSGG-BIG.

1. Introduction

To bridge the gap between vision and other modalities
(e.g., language), a surge of interests in our community start
to convert the vision data into graph-structured representa-
tions, called scene graphs [20]. Scene graphs are visually-
grounded graphs, where the nodes and edges represent ob-
ject instances (or entities) and their pairwise visual relations
(predicates), respectively. Due to the inherent interpretabil-
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Figure 1. (a): The pipeline of proposal-based framework. Given
a video, it first generates numerous proposals (with different time
slots), and then conducts predicate classification for each proposal.
(b): The pipeline of classification-then-grounding framework. It
first conducts predicate classification based on the whole tracklet
pair, and then grounds all the predicted relation instances.

ity, scene graphs have been widely used in numerous down-
stream tasks to help boost model performance, e.g., caption-
ing [6, 10, 47], grounding [8, 23], and QA [9, 11, 19, 26].

Video Scene Graph Generation (VidSGG) has achieved
significant progress over the recent years. Currently, almost
all existing VidSGG models are proposal-based1. Specifi-
cally, they can be categorized into two groups: 1) Segment-
proposal based: They first cut the video into short segments
and detect object tracklets in each segment to compose seg-
ment proposals, then classify predicates in each proposal
and merge all predicted relation triplets (i.e., 〈subject,
predicate, object〉) among adjacent segments [28,32,
33]. However, they fail to exploit the long-term context in
the video (or tracklets) due to the limits of short segments.
2) Tracklet-proposal based: They directly detect tracklets in

1We use proposals to represent paired subject-object tracklet segments.
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the whole video and generate tracklet proposals by sliding-
windows [22] or confidence splitting [13], and then conduct
predicate classification for each proposal.

Although these proposal-based methods have dominated
the performance on VidSGG datasets, it is worth noting that
this prevalent framework has three inherent drawbacks:

1. The ground-truth predicate labels for proposals are
partially correct. By “partially”, we mean that the ground-
truth predicate labels sometimes are WRONG. Specifically,
following the IoU-based strategy in object detection, exist-
ing proposal-based models all assign predicate labels to pro-
posals based on the volume IoU (vIoU). This strategy natu-
rally discards some “ground-truth” predicates if their vIoUs
are less than the threshold. As shown in Figure 1(a), two re-
lations behind and towards happen simultaneously on
multiple frames inside both proposala and proposalb, but
the assigned predicate label for proposala is only behind
(and towards for proposalb)2. Meanwhile, once a predi-
cate label is assigned to the proposal, they assume this rela-
tion should last for the whole proposal (i.e., it happens in all
the frames of the proposal). Obviously, one of the negative
impacts of this issue is that the ground-truth labels for two
highly-overlapped proposals (proposala/b) may be totally
different, and this inconsistency hurts the model training.

2. They break the high-order relations among different
predicate instances of a same subject-object pair. Due to
the nature of videos, there are always multiple relations hap-
pening between a same subject-object pair, and these rela-
tions can serve as critical context (or inductive bias) to bene-
fit the predictions of other relations. For example, behind,
towards, and away always happen sequentially between
dog and child. Instead, proposal-based methods explic-
itly break these high-order relations by pre-cutting tracklets,
and classify predicates independently in each proposal3.

3. VidSGG performance is upper-bounded by the qual-
ity of the proposals. The VidSGG performance is sensitive
to the heuristic rules for proposal generation (e.g., the sizes
or number of proposals). Meanwhile, to achieve higher re-
calls, they always generate excessive proposals, which sig-
nificantly increases the computation complexity.

In this paper, we propose a classification-then-grounding
framework for VidSGG, which can avoid all the mentioned
drawbacks in proposal-based methods. Specifically, we first
conduct predicate classification based on the whole track-
lets, and then ground each predicted predicate instance (Fig-
ure 1(b)). Compared to proposal-based methods, we regard
all the relations happen between the two tracklets as ground-
truth predicate labels (e.g., behind, towards, away, and
in-front-of are all ground-truth predicates for dog and

2For proposala, its vIoU with predicate towards< 0.5 and its vIoU
with predicate behind > 0.5. The situation is opposite for proposalb.

3Although a few proposal-based models start to resort to some context
modeling techniques to remedy this weakness, we claim that the proposal-
based framework itself overlooks and breaks these high-order relations.
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Figure 2. Left: A video example and its ground-truth visual rela-
tion triplets. Right: The corresponding temporal bipartite graph.
Comparisons with existing formulation are left in appendix.

child). Our framework not only provides more accurate
ground-truth predicate labels, but also preserves the ability
to utilize high-order relations among predicates. Moreover,
it avoids superfluous proposals and heuristic rules.

Under this framework, we propose to reformulate video
scene graphs as temporal bipartite graphs, where the entities
and predicates are two types of nodes with time slots, and
the edges denote different semantic roles (i.e., subject
and object) between these nodes (Figure 2). Each entity
node is an object tracklet, and its time slot is the temporal
range of this tracklet. Each predicate node is a set of rela-
tion instances between two entities with the same predicate
category, where each time slot denotes the temporal range
of each relation instance (e.g., predicate node towards in
Figure 2 has two time slots). Thus, each entity node can be
linked with multiple predicate nodes to represent multiple
relations involved, and each predicate node can be linked
with at most one entity node for each role. This formulation
can not only be easily extended to more general relations
with more semantic roles [50], but also avoid exhaustively
enumerating all entity pairs for predicate prediction.

Accordingly, we propose a BIpartite Graph based model
BIG, which consists of a classification stage and a ground-
ing stage. Specifically, the former aims to classify the cate-
gories of all the nodes and edges, and the latter tries to local-
ize the temporal location of each relation instance. For the
classification stage, it is a Transformer-based model, where
the inputs for the encoder and decoder are tracklet features
and learnable predicate embeddings, respectively. To distin-
guish different semantic roles, we also propose a role-aware
cross-attention which introduces role-wise distinctions into
predicate embeddings. For the grounding stage, we regard
the triplet categories of each predicate node as a language
query (e.g., 〈dog, towards, child〉 in Figure 2), and
ground this language query in the video. Since each relation
category may happen multiple times between two tracklets,
we design a multi-instance grounding head at this stage.

We evaluate models on two challenging VidSGG bench-
marks: VidVRD [32] and VidOR [30]. Extensive ablations
and results have demonstrated the effectiveness of our new
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classification-then-grounding framework and BIG model.
In summary, we make three contributions in this paper:

1. We propose a new classification-then-grounding frame-
work for VidSGG. It avoids three inherent drawbacks of
the existing proposal-based framework.

2. We reformulate video scene graphs as temporal bipartite
graphs, and take full advantage of the new framework.

3. We propose a novel model BIG, which achieves state-of-
the-art performance on two VidSGG datasets.

2. Related Works
Video Scene Graph Generation. Today’s VidSGG models
are all proposal-based. They usually focus on designing: 1)
more effective context fusing mechanism among segment or
tracklet proposals, e.g., GCNs or CRFs [22,28,37], compo-
sitional relation encoding [13], or structure context aggre-
gation [36]; or 2) stronger relation association approaches,
such as MHA [33] or online association [28]. In contrast,
we are the first to avoid the proposal generation step and
solve VidSGG task in a new classification-then-grounding
manner. Meanwhile, we propose a temporal bipartite graph
formulation by extending the image bipartite graph [50] into
the video domain, i.e., assigning predicate nodes with time
slots. Accordingly, we propose a novel BIG model.
Transformer Structure for SGG. Transformer struc-
tures [38, 39] regain vision community attention after the
pioneering work DETR [4], which regards the object detec-
tion task as a set prediction problem. Inspired from DETR,
several recent works start to use Transformer models for im-
age scene graph generation [12, 15, 35, 53]. Similarly, these
models utilize a set of learnable embeddings as the input of
the decoder, and predict the triplets based on the encoded
global object features. Inspired from these works, we also
adopt the Transformer structure in our classification stage,
and design a role-aware cross-attention module to explicitly
model different edges of the temporal bipartite graph.
Video Grounding. It aims to localize the video segment de-
picted by a language query [16,49]. Existing models can be
roughly grouped into: 1) Anchor-based [1,3,41,44,46,52]:
They match all moment proposals to the language query and
select the one with the highest matching score as the predic-
tion. 2) Anchor-free [7,24,42,45,48]: They directly predict
the probability of being a boundary for each frame, or di-
rectly regress the temporal locations of the target moment.
In this paper, we convert the grounding stage as a video
grounding problem, and build on top of a SOTA model DE-
BUG [24] by extending it into multiple segment outputs.

3. Approach
In this paper, we reformulate video scene graphs as tem-

poral bipartite graphs. Given an entity category set Ce and
predicate category set Cp, a temporal bipartite graph is for-
mally defined as G = (Ne,Np, E), where Ne, Np, and E

denote the set of entity nodes, predicate nodes and edges, re-
spectively. For each entity node ei ∈ Ne, it associates with
an entity class cei ∈ Ce and a time slot (sei , e

e
i ). Similarly,

for each predicate node pj ∈ Np, it associates with a pred-
icate class cpj ∈ Cp and a set of time slots {(spj,k, e

p
j,k)}Kj

k=1.
This multiple time slots setting implies that each predicate
node has Kj instances with the same category (happens Kj

times) in the same subject-object pair. E ⊆ Ne×Np×Cr is
a set of mapping that maps an entity-predicate pair to a se-
mantic role, i.e., Ne ×Np → Cr, where Cr = {subject,
object} is a semantic role set. The size ofNe andNp are
denoted as n and m, respectively.

Under this new bipartite graph formulation, we propose a
novel VidSGG model: BIG. The overview pipeline of BIG
is illustrated in Figure 3, which consists of two stages: clas-
sification stage (Sec. 3.1) and grounding stage (Sec. 3.2).

3.1. Classification Stage

3.1.1 Overview

The classification stage aims to classify the categories of all
the nodes (i.e., entity and predicate), and the edges between
them (i.e., the semantic roles). As shown in Figure 3(a), the
classification stage consists of four parts: a tracklet detector,
an encoder, a decoder, and a classification head.

Tracklet Detector. Given a video, we use a pretrained
tracklet detector to detect all tracklets in the video (denoted
as entity set Ne), and corresponding spatial-temporal loca-
tions, categories, and features. Specifically, for each entity
ei ∈ Ne with length li (the number of frames), it is charac-
terized by the bounding box coordinates bi ∈ Rli×4, object
category cei ∈ Ce, and a time slot (sei , e

e
i ). We fix all the de-

tection results (i.e., {bi} and {cei}) as the final predictions.
The tracklet feature fi for each entity ei is a combination

of appearance feature and spatial feature. The appearance
feature fai ∈ Rli×da is extracted at each frame based on the
box locations by using RoIAlign [29]. The spatial feature
fsi ∈ Rli×8 is the concatenation of all box coordinates bi
and offsets ∆bi, where ∆bi,j is the box coordinate offsets
of two consecutive frames, i.e., ∆bi,j = bi,j+1−bi,j . Then,
the tracklet feature fi ∈ Rli×de for entity ei is

fi = Conv [MLPa(fai ); MLPs(f
s
i )] , (1)

where MLPa and MLPs are two learnable MLPs, [; ] is a con-
catenate operation, and Conv is a 1D convolutional layer.

Encoder. Given entity features {fi}, the encoder aims to
encode global context among all entities. Thus, we utilize
the vanilla Transformer encoder [38] as our encoder, where
each layer consists of a multi-head self-attention (MHSA) and
a feed-forward network (FFN). Since the sizes of the entity
features are different, we first utilize a pooling operation to
transform each feature fi ∈ Rli×de to a fixed size feature
f ′i ∈ Rl×de , and use a MLP to mapping it into a vector hi ∈
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Figure 3. The overall pipeline of the proposed BIG model, which consists of a classification stage (a) and a grounding stage (b).

Rde . Then, we stack all entity features {hi} into a matrix
H ∈ Rn×de , and feed the H into the encoder. The outputs
of the encoder are contextualized features H̃ ∈ Rn×de .

Decoder. The decoder is designed to predict the edges
of the graph, and derive enhanced predicate representations
for the following predicate classification. The inputs for the
decoder is a fixed-size set of m predicate queries with cor-
responding learnable embeddings Q ∈ Rm×dq . Each query
is responsible for a predicate node in the bipartite graph.
We built on top of the Transformer decoder and replace the
original cross-attention with a Role-aware Cross-Attention
(RaCA). Therefore, each decoder layer is summarized as:

Q′(i) = LNorm(Q(i) + MHSA(Q(i))),

Q̄′(i) = RaCA(Q′(i), H̃, H̃),

Q′′(i) = LNorm(Q′(i) + Q̄′(i)),

Q(i+1) = LNorm(Q′′(i) + FFN(Q′′(i))),

(2)

where LNorm is the layer normalization [2], Q(i) is the in-
put query embeddings of i-th decoder layer. The output of
the last deocder layer is denoted as Q̃, i.e., the enchanced
query embeddings. Meanwhile, the cross-attention matrix
(inside RaCA module) of the last decoder layer is denoted
as Ã, which can be regarded as a soft edge linkage of the bi-
partite graph. More details and discussions about the RaCA
module (vs. original cross-attention) are in Sec. 3.1.2.

Classification Head. Given the query embeddings Q̃
and cross-attention matrix Ã, the classification head aims to
classify the category of each query (i.e., predicate node). As
shown in Figure 4, Ã has two channels which correspond to
two different semantic roles in the bipartite graph. Based on
Ã, we first derive the predicted subject and object for each
predicate node pj by selecting the entity with the highest
attention score in each channel, of which the indices are
denoted as js and jo, respectively. Then, the classification
feature fpj for predicate pj is a concatenation of three types
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Figure 4. Illustration of the Role-aware Cross-Attention module.

of features: query embedding q̃j , subject/object entity fea-
tures hjs and hjo , and word embeddings of subject/object
entity categories, i.e., fpj = [q̃j ;hjs ;hjo ; Π(cejs); Π(cejo)],
where Π(cei ) ∈ Rdw is the GloVe embedding [27] of object
category cei . Finally, the predicate category is classified by:

P (cpj ) = Softmax(MLPp(f
p
j ) + bcejs ,c

e
jo

), (3)

where MLPp is a MLP, and b∗,∗ is the statistical prior of the
relation triplet categories from the training set [36, 51].

3.1.2 Role-aware Cross-Attention (RaCA)

As shown in Figure 4, the RaCA module aims to aggregate
entity features from different semantic roles into query em-
beddings based on the cross-attention matrix. To distinguish
different semantic roles (i.e., subject or object), we
perform cross-attention for each semantic role separately,
and then fuse these role-wise features with two non-linear
transformations. Specifically, let K = V = H̃ ∈ Rn×de
be the key and value matrix which are the output of the
encoder, and Q′ ∈ Rm×dq be the query matrix which are
the output from the first subnet in each decoder layer4 (cf.
Eq. (2)). RaCA constructs a two-channel attention matrix
A ∈ R2×m×n and each channel of A is calculated as:

Ar = (Q′WQ
r )(KWK

r )T/
√
de, (4)

4For brevity, we omit subscripts i in this subsection, e.g., Q′
(i)
→ Q′.
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where WQ
r , WK

r are learnable weights and r ∈ {1, 2} rep-
resent the subject and object channel, respectively. In our
formulation, since we assume each predicate query can only
link to one entity in each role and each entity-predicate pair
has one type of semantic roles at most. Thus, we normalize
A along both the entity axis and the role axis, i.e.,

Ãr,j,i =
exp(Ar,j,i)∑n
i′=1 exp(Ar,j,i′)

× exp(Ar,j,i)∑2
r′=1 exp(Ar′,j,i)

. (5)

Then, we use two role-specific non-linear MLPs (F∗) to in-
troduce role-wise distinctions into query embeddings,

Q̄′ = Fs(Ã1V ) + Fo(Ã2V ), F∗ : Rde 7→ Rdq , (6)

where Q̄′ is the output of the RaCA module (cf. Eq. (2)),
which aggregates role-aware information from each entity.
Discussions. Compared to the plain cross-attention in orig-
inal Transformer [38], RaCA explicitly learns the adjacency
matrix of the bipartite graph based on role-wise normaliza-
tion (cf. Eq. (5)) and role-aware non-linear mappings (F∗ in
Eq. (6)). Otherwise the adjacency matrix (or edge linkage)
can not be modeled by the plain cross-attention module.

3.2. Grounding Stage

The grounding stage aims to localize the temporal lo-
cation of each predicted predicate node. So far, for each
predicate node pj , the classification stage have predicted its
category cpj and two linked entity tracklets: subject ejs and
object ejo . In this stage, we regard the predicate localization
as a video grounding problem [16]. Specifically, we treat
the triplet categories sequence (cejs , c

p
j , c

e
jo

) (e.g., 〈person,
ride, motorcycle〉 in Figure 3(a)) as a language query,
and extend an existing video grounding model DEBUG [24]
for multi-instance predicate localization. As shown in Fig-
ure 3(b), this stage consists of three parts: a feature extrac-
tor, a feature encoder, and a multi-instance grounding head.

Feature Extractor. For the given video, we use a pre-
trained I3D [5] network to extract frame-level visual feature
F ∈ RT×dv , where T is the number of whole video frames.
For query (cejs , c

p
j , c

e
jo

) (refer to predicate node pj), we ini-
tialize the query feature Sj = [Π(cejs),Π(cpj ),Π(cejo)], i.e.,
the GloVe embeddings of the triplet categories. Meanwhile,
since each predicate only happen in the overlapping time of
its subject and object, we use the temporal boundaries of
this overlapping time as a prior feature to enhance Sj , i.e.,

S̃j = MLPw(Sj) + MLPt([sj , ej ]), S̃j ∈ R3×dw , (7)

where [sj , ej ] ∈ R2 are the overlapping boundaries of the
subject and object linked to predicate node pj . Note that
only those predicate nodes referring to overlapped subject-
object tracklets are used in the grounding stage. Visual fea-
tures F is shared for all the queries with features {S̃j}mj=1.

Feature Encoder. This encoder aims to model the inter-
action between the video feature F and all query features
{S̃j}. Specifically, we use the same feature encoder as DE-
BUG [24], which contains two parallel embedding encoders
and a multi-modal attention layer. The output of the feature
encoder is a fused multimodal feature M ∈ RT×d. We
refer readers to the DEBUG [24] paper for more details.

Multi-instance Grounding Head. Different from the
existing video grounding task where each query only refers
to a single segment, in VidSGG, a predicate category can
happen multiple times between a same subject-object pair,
i.e., each language query may refer to multiple segments
(cf. Figure 2). Since the number of time slots varies widely
in different predicate nodes, it is difficult to directly predict
a variable number of temporal segments for each query. In-
stead, we set K bins for each language query. As shown
in Figure 5(a), in the training stage, we divide the whole
normalized video length evenly into K intervals, referring
to K bins. Then, each bin is assigned with the target time
slots centered in its interval5. In the test stage, all time slots
predictions are processed by NMS to reduce false positives.
Finally, the NMS operation results in Kj time slots for the
triplet query (csj , c

p
j , c

o
j), denoted as {(spj,k, e

p
j,k)}Kj

k=1.
Following DEBUG [24], we design three branches net-

work for grounding: a classification subnet, a boundary re-
gression subnet, and a confidence subnet (cf. Figure 5(b)).
In particular, we extend the output channels of the last conv-
layer to K for the classification and confidence branch, and
2K for the regression branch (corresponding to K bins).

3.3. Training Objectives

Classification Stage. Since we fix all the tracklets from
the detection backbone as the final entity nodes predictions,
we only consider the training losses for classification of the

5Although multiple targets may still fall into a same bin, such samples
only account for a small proportion (details are in the appendix).
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edges and the predicate nodes. Let N̂p = {p̂j}mj=1 be the
predicted set of m predicate nodes, and N ∗p be the ground-
truth predicate set of size m padded with ∅ (background).
We adopt a one-to-one label assignment by finding a bipar-
tite matching between N̂p and N ∗p . Specifically, we search
for a permutation of m elements σ̂ by optimizing the cost:

σ̂ = arg min
σ

∑m
j=1Lmatch(p∗j , p̂σ(j)). (8)

This matching problem can be computed efficiently with the
Hungarian algorithm [25], following prior work DETR [4].

The matching cost considers both predicate classification
and edge prediction. Since all the entity nodes are fixed, the
cost can be considered at the view of predicate nodes, and
entity nodes are assigned to their ground-truths in advance
(which is based on vIoU and the criterion is similar to that in
Faster R-CNN [29]). Thus, each predicate node can be de-
scribed by its category and the two edges to subject/object.
We denote p∗j = (cp∗j ,a

∗
j ), where cp∗j is the predicate cat-

egory (which may be ∅) and a∗j ∈ {0, 1}2×n is the j-th
row of A∗ (ground-truth adjacent matrix) for two channels.
Note that a∗j,r,i = 0 when the i-th entity has no ground-truth
to match. For the predicted predicate with index σ(j), the
corresponding edges are described by âσ(j) ∈ R2×n, which
is the σ(j)-th row of the predicted Â for two channels. With
the above notations, the matching cost is defined as:

Lmatch(p∗j , p̂σ(j)) =− 1{cp∗j 6=∅} logP (ĉpσ(j) = cp∗j )

+ 1{cp∗j 6=∅}λattLatt(a
∗
j , âσ(j)),

(9)

where λatt is hyperparameter, and Latt is defined as a binary-
cross entropy (BCE) loss, 1{·} is an indicator function. Af-
ter obtaining σ̂, the loss Lc for classification stage consists
of the matching loss between (p∗j , p̂σ̂(j)) pairs, and the back-
ground classification loss for other predicate nodes, i.e.,

Lc =
∑
jLmatch(p

∗
j , p̂σ̂(j))−

∑
c
p∗
j =∅ logP (ĉpσ̂(j) = ∅). (10)

Grounding Stage. The grounding stage is trained sepa-
rately from the classification stage, and we use ground-truth
triplet categories for training. Following DEBUG [24], the
training objectives consist of three losses for three respec-
tive branches. The total loss is averaged among all K bins.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We evaluated BIG on two benchmarks: 1)
VidVRD [32]: It consists of 1,000 videos, which covers
35 object categories and 132 predicate categories. We used
the official splits: 800 videos for training and 200 videos
for test. 2) VidOR [30]: It consists of 10,000 videos, which
covers 80 object categories and 50 predicate categories. We
used official splits: 7,000 videos for training, 835 videos for

validation, and 2,165 videos for test. Since the annotations
of the test set are not released, we only evaluated the val set.

Evaluation Metrics. We evaluated BIG on two tasks: 1)
Relation Detection (RelDet): It detects a set of visual rela-
tion triplets, and corresponding tracklets of subject and ob-
ject. A detected triplet is considered to be correct if there is
a same triplet tagged in ground-truth, and both subject and
object tracklets have a sufficient vIoU (e.g., 0.5) with the
ground-truth. We used mAP and Recall@K (R@K, K=50,
100) as metrics for RelDet. 2) Relation Tagging (RelTag):
It only focuses on the precision of visual relation triplets
and ignores the localization results of tracklets. For RelTag,
we used Precision@K (P@K, K=1,5,10) as metrics.

4.2. Implementation Details

Tracklet Detector. We utilized the video object detec-
tor MEGA [14, 17] with backbone ResNet-101 [18] to ob-
tain initial frame-level detection results, and adopted deep-
SORT [40] to generate object tracklets.

Adapting BIG to VidVRD. For each relation triplet in
the training set of VidVRD [32], we noticed that only a por-
tion of ground-truth segments is annotated as foreground,
which makes the annotated temporal boundaries unreliable
for training. Therefore, we only used the classification stage
of BIG for VidVRD, termed BIG-C. Consequently, the time
slot for each predicate pj is calculated as the overlap of its
subject and object, i.e., (sejs , e

e
js

) ∩ (sejo , e
e
jo

), and Kj = 1.
More implementation details are left in the appendix.

4.3. Ablation Studies

Effectiveness of Classification-Then-Grounding. We
designed a baseline model to show the effectiveness of this
framework and the two stages (classification & grounding).
Specifically, it directly classifies predicate categories of all
tracklet pairs through multi-label classification, based on
feature f ′pj = [hjs ;hjo ; Π(cejs); Π(cejo)] (cf. fpj in Eq.(3)),
namely Base-C. Then, we apply the grounding stage to the
Base-C, termed Base. All results are in Table 2. From this
table, we can observe that even without the BIG model, the
simple classification-then-grounding baseline (Base) still
outperforms SOTA proposal-based model Sun et al. [34].

Furthermore, we reported the number of average relation
candidates for the grounding stage (#Cand.) in Table 2 to
demonstrate the effectiveness of each stage. For the classifi-
cation stage, by comparing BIG-C with Base-C, we can ob-
serve that BIG-C outperforms Base-C on all metrics, espe-
cially with a large margin on RelTag while having fewer av-
erage relation candidates (135.4 vs. 482.1), which demon-
strates the superiority of the encoder-decoder pipeline under
the temporal bipartite graph formulation. For the grounding
stage, we can observe that it can consistently improve de-
tection mAP and recall for both two backbones (Base-C and
BIG-C). The improvements of RelTag are slight because it
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Models Features RelDet RelTag
Visual Motion mAP R@50 R@100 P@1 P@5 P@10

VidVRD [32]MM’17 iDT X 8.58 5.54 6.37 43.00 28.90 20.80
GSTEG [37]CVPR’19 iDT X 9.52 7.05 8.67 51.50 39.50 28.23
VRD-GCN [28]MM’19 iDT X 16.26 8.07 9.33 57.50 41.00 28.5 0
MHA [33]MM’20 iDT X 19.03 9.53 10.38 57.50 41.40 29.45
IVRD [21]MM’21 RoI X 22.97 12.40 14.46 68.83 49.87 35.57
VidVRD-II [31]MM’21 RoI X 29.37 19.63 22.92 70.40 53.88 40.16
Liu et al. [22]CVPR’20 RoI+I3D† X 18.38 11.21 13.69 60.00 43.10 32.24
Chen et al. [13]ICCV’21 RoI+I3D X 20.08 13.73 16.88 62.50 49.20 38.45
Liu et al. [22]CVPR’20 RoI† 14.01 8.47 11.00 56.50 36.70 26.60
TRACE [36]ICCV’21 RoI 15.06 7.67 10.32 — — —
BIG-C (Ours) RoI† 17.56 9.59 10.92 56.50 44.30 32.35
Liu et al. [22]CVPR’20 RoI+I3D† 14.81 9.14 11.39 55.50 38.90 28.90
TRACE [36]ICCV’21 RoI+I3D 17.57 9.08 11.15 61.00 45.30 33.50
BIG-C (Ours) RoI+I3D† 17.67 9.63 11.29 56.00 43.80 32.85
BIG-C (Ours) RoI‡ 26.08 14.10 16.25 73.00 55.10 40.00

Table 1. Performance (%) on VidVRD of SOTA methods. Visual: † means that these models use
the same tracklets and features as Liu et al. [22], and ‡ means that these models use tracklets and
features generated by MEGA. Motion: It refers to the relative motion feature of entity pairs [31].
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Figure 6. Qualitative results on VidOR.

Models RelDet (%) RelTag (%) #Cand.
mAP R@50 R@100 P@1 P@5

Sun et al. [34] 6.56 6.89 8.83 51.20 40.73 —
Base-C 7.05 7.17 9.19 59.01 47.07 482.1
Base 7.19 7.32 9.50 59.49 47.28 482.1
BIG-C 8.29 7.92 9.65 64.42 51.70 135.4
BIG 8.54 8.03 10.04 64.42 51.80 135.4

Table 2. Ablations on effectiveness of different stages on VidOR.

doesn’t consider the locations of relation triplets.
Number of Predicate Queries. We compared BIG-C

with different number of predicate queries (m) in Table 4.
It can be observed that more predicate queries always im-
prove the final VidSGG performance, but also result in more
computations (e.g., #Cand.). To trade-off effectiveness and
efficiency, we setm = 192 for all the following experiments.

Ablations on the RaCA Module. We analyzed the im-
pact of role-wise normalization (R-norm) and the two role-
specific mappings (F∗) in the RaCA module on BIG-C.
From the results in Table 5, we can observe that both the R-
norm and F∗ are important for the role-aware information
encoding. Particularly, when both two techniques are used,
the model achieves the best results, especially on P@1.

Ablations on the Multi-instance Grounding. We fur-
ther investigated the influence of different number of bins in
the multi-instance grounding. Since each predicate category
of a same subject-object may have multiple instances, we
regarded relation triplets with the same subject-object pair
and predicate category as a sample. Each ground-truth sam-
ple can be partially hit with a fraction recall (fR), which is

calculated as the fraction of hit relation triplets of each sam-
ple. For more precise, we evaluated fR@K for ground-truth
samples with a single instance (fRS) and multiple instances
(fRM ), separately. From the results in Table 6, we can ob-
serve that: 1) With the increase of K, corresponding fR@K
increases on both single-instance and multi-instance sam-
ples. 2) Our multi-instance grounding (e.g., #Bins=5,10) is
more capable of improving the fR of predicates on multi-
instance samples, e.g., the relative gains of fRM are larger
than fRS (3.97% (5.53→5.75) vs. 0.61% (12.96→13.04)).

4.4. Comparisons with State-of-the-Arts

4.4.1 Performance on VidVRD

Settings. For VidVRD, we compared our BIG-C with sev-
eral state-of-the-art methods, which can be coarsely catego-
rized into two groups: 1) Segment-proposal based methods:
VidVRD [32], GSTEG [37], VRD-GCN [28], MHA [33],
IVRD [21], VidVRD-II [31], and TRACE [36]. 2)
Tracklet-proposal based models methods: Liu et al. [22]
and Chen et al. [13]. For more fair comparisons, we also
reported the results of BIG-C with the same features as [22].
Results. All results are reported in Table 1. From this table,
we have following observations: 1) When using the MEGA
backbone, BIG-C (with only RoI feature) beats most of the
proposal-based methods even without the grounding stage.
Particularly, we achieve a very high mAP (i.e., 26.08%) and
the highest P@1 (i.e., 73.00%). 2) When using the same
RoI feature as [22], BIG-C outperforms TRACE [36] and
Liu et al. [22] on both RelDet and RelTag tasks, especially
we achieve significant performance gains on mAP (17.56%
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Models Detector Features RelDet RelTag
Visual Lang Motion Mask mAP R@50 R@100 P@1 P@5 P@10

Liu et al. [22]CVPR’20 RefineDet RoI+I3Dr X 6.85 8.21 9.90 51.20 40.73 —
Chen et al. [13]ICCV’21 Faster R-CNN RoI+I3Dr X X 10.04 8.94 10.69 61.52 50.05 38.48
Chen et al. [13]ICCV’21 Faster R-CNN RoI+I3Dr X X X 11.21 9.99 11.94 68.86 55.16 43.40
IVRD [21]MM’21 Faster R-CNN RoI X 7.42 7.36 9.41 53.40 42.70 —
Chen et al. [13]ICCV’21 Faster R-CNN RoI X 8.93 7.38 9.22 56.89 44.76 34.07
VidVRD-II [31]MM’21 Faster R-CNN RoI X 8.65 8.59 10.69 57.40 44.54 33.30
BIG-C (Ours) MEGA RoI 8.03 7.60 9.39 62.25 50.96 40.30
BIG (Ours) MEGA RoI+I3Df 8.28 7.74 9.82 62.13 51.25 40.48
VRU’19-top1 [34]MM’19 FGFA — X X 6.56 6.89 8.83 51.20 40.73 —
MHA [33]MM’20 FGFA — X X 6.59 6.35 8.05 50.72 41.56 —
VRU’20-top1 [43]MM’20 CascadeRCNN RoI X X X 9.93 9.12 — 67.43 — —
Chen et al. [13]ICCV’21 Faster R-CNN RoI X X 9.54 8.49 10.17 59.24 47.24 35.99
BIG-C (Ours) MEGA RoI X 8.29 7.92 9.65 64.42 51.70 41.05
BIG (Ours) MEGA RoI+I3Df X 8.54 8.03 10.04 64.42 51.80 40.96

Table 3. Performance (%) on VidOR of SOTA models. The Best and second best are marked in according formats. Visual: I3Dr and I3Df
denote region-level and frame-level I3D features, respectively. Lang: The word embeddings of entity categories. Motion: It refers to the
relative motion feature of entity pairs [31]. Mask: It means the localization mask of entities [43].

m
RelDet (%) RelTag (%) #Cand.

mAP R@50 P@1 P@5
128 7.50 7.15 62.62 51.02 105.1
192 8.29 7.92 64.42 51.70 135.4
256 8.31 7.92 62.86 51.22 169.3
Table 4. Ablations of BIG-C for different
number of predicate queries on VidOR.

R-norm F∗
RelDet (%) RelTag (%)

mAP R@50 P@1 P@5
X 7.98 7.71 61.65 51.10

X 8.02 7.36 61.65 51.68
X X 8.29 7.92 64.42 51.70

Table 5. Ablations of BIG-C for the R-
norm and F∗ of RaCA module on VidOR.

#Bins fRS@K (%) fRM@K (%)
50 100 150 50 100 150

1 12.96 15.59 16.76 5.53 6.86 7.46
5 13.07 15.83 17.26 5.75 7.20 8.05
10 13.04 15.89 17.61 5.75 7.30 8.25

Table 6. Ablations for multi-instance grounding
with different number of bins on VidOR.

vs. 14.01%). 3) When using the same RoI and I3D features
as [22], BIG-C achieves better results on mAP and R@50.

4.4.2 Performance on VidOR

Settings. For VidOR, we compared our BIG (and BIG-C)
with the state-of-the-art methods: MHA [33], IVRD [21],
VidVRD-II [31], Liu et al. [22], Chen et al. [13], and two
top-1 methods [34, 43] from Video Relation Understanding
(VRU) Challenges. All results are reported in Table 3. It is
worth noting that we only use the frame-level I3D features
(I3Df ) in BIG model (i.e., the grounding stage), while some
works use more stronger region-level I3D features (I3Dr).
Quantitative Results. Due to the multifarious object de-
tector backbones and features, it is difficult to fairly com-
pare BIG (BIG-C) with these methods. From Table 3, we
can observe: 1) For BIG (BIG-C) without language feature,
we achieve significant performance gains on RelTag (e.g.,
51.25% vs. 44.76% on P@5), and also have competitive
performance on RelDet. 2) For BIG (BIG-C) with language
feature, we can also achieve comparable results on RelDet
and RelTag, especially the highest P@5 (i.e., 51.80%).
Qualitative Results. Figure 6 shows some qualitative re-
sults that justifies the necessity of the grounding stage. Take
〈dog, away, child〉 for example: Without grounding, we

can only use the temporal intersection of dog and child to
approximate the time slot of away, i.e., (0, 35.47). Instead,
with the help of multi-instance grounding, the time slots are
predicted as (0, 3.44) & (10.13, 13.25). Refer to the ap-
pendix for more details.

5. Conclusions and Limitations

In this paper, we pointed out three inherent drawbacks
of the prevalent proposal-based framework, and proposed a
new classification-then-grounding framework for VidSGG.
Under this framework, we reformulated video scene graphs
as temporal bipartite graphs, and proposed a novel VidSGG
model BIG. We validated the effectiveness of BIG through
extensive comparative and ablative experiments.

Limitations. 1) Detecting long object tracklets in videos
is still an open problem, and the fragmented tracklets may
weaken the advantages of our framework, making it close to
the proposal-based one. 2) Multi-instance grounding may
not be suitable for some extreme situations where too many
targets fall into the same bin (videos with dense relations).
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