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Abstract

From CNN, RNN, to ViT, we have witnessed remarkable
advancements in video prediction, incorporating auxiliary
inputs, elaborate neural architectures, and sophisticated
training strategies. We admire these progresses but are con-
fused about the necessity: is there a simple method that can
perform comparably well? This paper proposes SimVP, a
simple video prediction model that is completely built upon
CNN and trained by MSE loss in an end-to-end fashion.
Without introducing any additional tricks and complicated
strategies, we can achieve state-of-the-art performance on
five benchmark datasets. Through extended experiments, we
demonstrate that SimVP has strong generalization and ex-
tensibility on real-world datasets. The significant reduction
of training cost makes it easier to scale to complex scenar-
ios. We believe SimVP can serve as a solid baseline to stim-
ulate the further development of video prediction.

1. Introduction
A wise person can foresee the future, and so should an

intelligent vision model do. Due to spatio-temporal infor-
mation implying the inner laws of the chaotic world, video
prediction has recently attracted lots of attention in climate
change [71], human motion forecasting [3], traffic flow pre-
diction [69] and representation learning [55]. Struggling
with the inherent complexity and randomness of video, lots
of interesting works have appeared in the past years. These
methods achieve impressive performance gain by introduc-
ing novel neural operators like various RNNs [65–69,71] or
transformers [48,70], delicate architectures like autoregres-
sive [21,28,49,55,71] or normalizing flow [73], and apply-
ing distinct training strategies such as adversarial training
[1,8,39,40,51,52,58,64]. However, there is relatively little
understanding of their necessity for good performance since
many methods use different metrics and datasets. More-
over, the increasing model complexity further aggravates
this dilemma. A question arises: can we develop a simpler
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model to provide better understanding and performance?
Deep video prediction has made incredible progress in

the last few years. We divide primary methods into four
categories in Figure. 1, i.e., (1) RNN-RNN-RNN (2) CNN-
RNN-CNN (3) CNN-ViT-CNN, and (4) CNN-CNN-CNN.
Some representative works are collected in Table. 1, from
which we observe that RNN models have been favored
since 2014.
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Figure 1. Different architectures for video prediction. Red and
blue lines help to learn the temporal evolution and spatial depen-
dency. SimVP belongs to the framework of CNN-CNN-CNN,
which can outperform other state-of-the-art methods.

In this context, lots of novel RNNs are proposed. Con-
vLSTM [71] extends fully connected LSTMs to have con-
volutional structures for capturing spatio-temporal corre-
lations. PredRNN [67] suggests simultaneously extract-
ing and memorizing spatial and temporal representations.
MIM-LSTM [69] applies a self-renewed memory module to
model both non-stationary and stationary properties. E3D-
LSTM [66] integrates 3D convolutions into RNNs. Phy-
Cell [18] learns the partial differential equations dynamics
in the latent space.

Recently, vision transformers (ViT) have gained tremen-
dous popularity. AViT [70] merges ViT into the autoregres-
sive framework, where the overall video is divided into vol-
umes, and self-attention is performed within each block in-
dependently. Latent AViT [48] uses VQ-VAE [44] to com-
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RNN-RNN-RNN CNN-RNN-CNN CNN-ViT-CNN CNN-CNN-CNN

2014-2015 [41, 55, 71] [36, 46] - [40]
2016-2017 [38, 47, 63, 67] [3, 9, 15, 32, 62] - [20, 35, 59]
2018-2019 [22, 43, 56, 65, 69, 74] [6, 10, 61, 66, 73] [70] [16, 29, 72]
2020-2021 [68] [18, 23] [48] [7, 54]

Table 1. Some representative video prediction works since 2014.

press the input images and apply AViT in the latent space to
predict future frames.

In contrast, purely CNN-based models are not as favored
as the approaches mentioned above, and fancy techniques
are usually required to improve the novelty and perfor-
mance, e.g., adversarial training [29], teacher-student dis-
tilling [7], and optical flow [16]. We admire their signif-
icant advancements but expect to exploit how far a simple
model can go. In other words, we have made much progress
against the baseline results, but have the baseline results
been underestimated?

We aim to provide a simpler yet better video prediction
model, namely SimVP. This model is fully based on CNN
and trained by the MSE loss end-to-end. Without intro-
ducing any additional tricks and complex strategies, SimVP
can achieve state-of-the-art performance on five benchmark
datasets. The simplicity makes it easy to understand and use
as a common baseline. The better performance provides a
solid foundation for further improvements. We hope this
study will shed light on future research.

2. Background

Problem statement Video prediction aims to infer the fu-
ture frames using the previous ones. Given a video sequence
Xt,T = {xi}tt−T+1 at time t with the past T frames, our
goal is to predict the future sequence Y t,T ′ = {xi}t+T ′

t at
time t that contains the next T ′ frames, where xi ∈ RC,H,W

is an image with channels C, height H , and width W . For-
mally, the predicting model is a mapping FΘ : Xt,T 7→
Y t,T ′ with learnable parameters Θ, optimized by:

Θ∗ = argmin
Θ

L(FΘ(Xt,T ),Y t,T ′) (1)

where L can be various loss functions, and we simply em-
ploy MSE loss in our setting.

RNN-RNN-RNN As shown in Figure. 1 (a), this kind of
method stacks RNN to make predictions. They usually de-
sign novel RNN modules (local) and overall architectures
(global). Recurrent Grammar Cells [41] stacks multiple
gated autoencoders in a recurrent pyramid structure. Con-
vLSTM [71] extends fully connected LSTMs to have con-
volutional computing structures to capture spatio-temporal

correlations. PredRNN [67] suggests simultaneously ex-
tracting and memorizing spatial and temporal representa-
tions. PredRNN++ [65] proposes gradient highway unit
to alleviate the gradient propagation difficulties for captur-
ing long-term dependency. MIM-LSTM [69] uses a self-
renewed memory module to model both the non-stationary
and stationary properties of the video. dGRU [43] shares
state cells between encoder and decoder to reduce the com-
putational and memory costs. Due to the excellent flexibil-
ity and accuracy, these methods play fundamental roles in
video prediction.

CNN-RNN-CNN This framework projects video frames
to the latent space and employs RNN to predict the future
latent states, seeing Figure. 1 (b). In general, they focus
on modifying the LSTM and encoding-decoding modules.
Spatio-Temporal video autoencoder [46] incorporates Con-
vLSTM and an optical flow predictor to capture changes
over time. Conditional VRNN [6] combines CNN encoder
and RNN decoder in a variational generating framework.
E3D-LSTM [66] applies 3D convolution for encoding and
decoding and integrates it in latent RNNs for obtaining
motion-aware and short-term features. CrevNet [73] pro-
poses using CNN-based normalizing flow modules to en-
code and decode inputs for information-preserving feature
transformations. PhyDNet [18] models physical dynamics
with CNN-based PhyCells. Recently, this framework has
attracted considerable attention, because the CNN encoder
can extract decent and compressed features for accurate and
efficient prediction.

CNN-ViT-CNN This framework introduces Vision
Transformer (ViT) to model latent video dynamics. By
extending language transformer [60] to ViT [12], a wave
of research has been sparked recently. As to image
transformer, DeiT [57] and Swin Transformer [33] have
achieved state-of-the-art performance on various vision
tasks. The great success of image transformer has inspired
the investigation of video transformer. VTN [42] applies
sliding window attention on temporal dimension following
a 2D spatial feature extractor. TimeSformer and ViViT [2,4]
study different space-time attention strategies and suggest
that separately applying temporal and spatial attention can
achieve superb performance. MViT [14] extracts multiscale
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Figure 2. The overall framework of SimVP. Both the Encoder, Translator, and Decoder are built upon CNN. The encoder stacks Ns

ConvNormReLU block to extract spatial features, i.e., convoluting C channels on (H,W ). The translator employs Nt Inception modules
to learn temporal evolution, i.e., convoluting T×C channels on (H,W ). The decoder utilizes Ns unConvNormReLU blocks to reconstruct
the ground truth frames, which convolutes C channels on (H,W ).

pyramid features to provide state-of-the-art results on SSv2.
Video Swin Transformer [34] expands Swin Transformer
from 2D to 3D, where the shiftable local attention schema
leads to a better speed-accuracy trade-off. Most of the
models above are designed for video classification; works
about video prediction [48, 70] using ViT are still limited.
More related works may emerge in the future.

CNN-CNN-CNN The CNN-based framework is not as
popular as the previous three because it is so simple that
complex modules and training strategies are usually re-
quired. DVF [35] suggests learning the voxel flow by CNN
autoencoder to reconstruct a frame by borrowing voxels
from nearby frames. PredCNN [72] combines cascade mul-
tiplicative units (CMU) with CNN to capture inter-frame
dependencies. DPG [16] disentangles motion and back-
ground via a flow predictor and a context generator. [7] en-
codes RGB frames from the past and decodes the future
semantic segmentation by using CNN and teacher-student
distilling. [54] uses a hierarchical neural model to make pre-
dictions at different spatial resolutions and train the model
with adversarial and perceptual loss functions. While these
approaches have made progress, we are curious about what
happens if the complexity is reduced. Is there a solution
that is are much simpler but can exceed or match the perfor-

mance of state-of-the-art methods?

Motivation We have witnessed many terrific methods that
have achieved outstanding performance. However, as the
models become more complex, understanding their perfor-
mance gain is an inevitable challenge, and scaling them into
large datasets is intractable. This work does not propose
new modules. Instead, we aim to build a simple network
based on existing CNNs and see how far the simple model
can go in video prediction.

3. SimVP
Our model, dubbed SimVP, consists of an encoder, a

translator and a decoder built on CNN, seeing Figure. 2.
The encoder is used to extract spatial features, the trans-
lator learns temporal evolution, and the decoder integrates
spatio-temporal information to predict future frames.

Encoder The encoder stacks Ns ConvNormReLU blocks
(Conv2d+LayerNorm+LeakyReLU) to extract spatial fea-
tures, i.e., convoluting C channels on (H,W ). The hidden
feature is:

zi = σ(LayerNorm(Conv2d(zi−1))), 1 ≤ i ≤ Ns (2)

where the input zi−1 and output zi shapes are (T,C,H,W )
and (T, Ĉ, Ĥ, Ŵ ), respectively.
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Translator The translator employs Nt Inception modules
to learn temporal evolution, i.e., convoluting T×C channels
on (H,W ). The Inception module consists of a bottleneck
Conv2d with 1×1 kernel followed by parallel GroupConv2d
operators. The hidden feature is:

zj = Inception(zj−1), Ns < j ≤ Ns +Nt (3)

where the inputs zj−1 and output zj shapes are (T ×
C,H,W ) and (T̂ × Ĉ,H,W ).

Decoder The decoder utilizes Ns unConvNormReLU
blocks (ConvTranspose2d+GroupNorm+LeakyReLU) to
reconstruct the ground truth frames, which convolutes C
channels on (H,W ). The hidden feature is:

zk = σ(GroupNorm(unConv2d(zk−1))),

Ns +Nt < k ≤ 2Ns +Nt

(4)

where the shapes of input zk−1 and output zk are
(T, Ĉ, Ĥ, Ŵ ) and (T,C,H,W ), respectively. We use Con-
vTranspose2d [13] to serve as the unConv2d operator.

Summary SimVP does not use advanced modules such
as RNN, LSTM and Transformer, nor introduce complex
training strategies such as adversarial training and curricu-
lumn learning. All the things we need are CNN, shortcuts
and vanilla MSE loss.

4. Experiments

Metrics We employ MSE, MAE, Structural Similarity
Index Measure (SSIM), and Peak Signal to Noise Ratio
(PSNR) to evaluate the quality of predictions, following
[18, 45, 73]. We also report the running time per epoch and
the memory footprint per sample on a single NVIDIA-V100
to provide a comprehensive view for future research. 1

Datasets We conduct experiments on five datasets for
evaluation. The statistics are summarized in Table. 2, in-
cluding the number of training samples ntrain, number of
testing samples ntest, image resolution (C,H,W ), input
sequence length T and forecasting sequence length T ′. The
detailed dataset description can be found in the appendix.
4.1. How far can SimVP go?

We pursue the simple but effective model. The simplicity
has been described in Section. 3. The effectiveness will be
verified through exploratory experiments in this section.

1The realistic running time is more reliable to FLOPs or MACs of the
model, e.g., when RNN and CNN have the same FLOPs, RNN takes much
more time due to its recurrent computation.

Table 2. The statistics of datasets. The training or testing set has
Ntrain or Ntest samples, each of which consists T or T ′ images
with the shape (C,H,W ).

Ntrain Ntest (C,H,W ) T T ′

MMNIST 10000 10000 (1, 64, 64) 10 10
TrafficBJ 19627 1334 (2, 32, 32) 4 4
Human3.6 2624 1135 (3, 128, 128) 4 4

Caltech Pedestrian 2042 1983 (3, 128, 160) 10 1
KTH 5200 3167 (1, 128, 128) 10 20 or 40

Challenge We aim to provide a comprehensive and rig-
orous view of video prediction methods. However, three
challenges stand in our way:

• Various methods may adopt disparate metrics.
• These methods apply experiments on different datasets

with distinct protocols.
• They use different code frameworks and unique tricks,

making it difficult to compare fairly.

Solution To overcome aforemesioned challenges, we
choose the common used dataset (Moving MNIST) and
metrics (MSE and SSIM) to evaluate recent important re-
searches. We directly report the best metrics according to
the original papers, avoiding the risk of performance degra-
dation caused by our reproduction. Any method that does
not use the same dataset, metrics, or protocol will be ne-
glected here. For convenience, we provide the publication
status and Github links of these method in Table. 3.

Results and Discovery As shown in Table. 3, SimVP
achieves state-of-the-art MSE and SSIM on Moving
MNIST. We observe that SimVP, PhyDNet, and CrevNet
significantly outperform previous methods, with MSE re-
duction up to 42%. However, SimVP is much simpler
than PhyDNet and CrevNet, without using RNN, LSTM, or
complicated modules, which are considered as the impor-
tant reason for performance improvement. Through these
explorations, we are excited to find that it is promising
to achieve better performance with a extremely simple
model. Perhaps previous works pay too much attention to
the model complexity and novelty, and it’s time to go back
to basics because a simpler model makes things clearer.

Simplicity leads to efficiency. Another benefit that comes
from simplicity is good computational efficiency. In Ta-
ble. 4, we compare GPU memory (per sample), FLOPs
(per image) and training time of SOTA methods on Moving
MNIST. As CNN has good computational optimization and
avoids iterative calculation, the training process of SimVP
is much faster than others, which means that SimVP can be
used and extended more easily.
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Table 3. Performance comparision of various methods on Moving
MNIST. The source code of SimVP will be released soon.

Method Conference MSE SSIM Github

ConvLSTM [71] (NIPS 2015) 103.3 0.707 PyTorch
PredRNN [67] (NIPS 2017) 56.8 0.867 PyTorch

PredRNN-V2 [68] (Arxiv 2021) 48.4 0.891 PyTorch
CausalLSTM [65] (ICML 2018) 46.5 0.898 Tensorflow

MIM [69] (CVPR 2019) 44.2 0.910 Tensorflow
E3D-LSTM [66] (ICLR 2018) 41.3 0.920 Tensorflow

PhyDNet [18] (CVPR 2020) 24.4 0.947 PyTorch
CrevNet [73] (ICLR 2020) 22.3 0.949 PyTorch

SimVP – 23.8 0.948 PyTorch

Table 4. Computation comparision on Moving MNIST. We re-
port the per sample memory overhead, per frame FLOPs, and total
training time. For methods marked with ∗, we report the results
reproduced by their official codes. Other results refer to [73].

Method Memory FLOPs Training time

ConvLSTM 1043MB 107.4G –
PredRNN 1666 MB 192.9 G –

CausalLSTM 2017 MB 106.8 G –
E3D-LSTM 2695 MB 381.3 G –
CrevNet ∗ 224 MB 1.652 G ≈ 10d (300k iters)
PhyDNet ∗ 200 MB 1.633 G ≈ 10d (2k epochs)

SimVP ∗ 412 MB 1.676 G ≈ 2d (2k epochs)

4.2. Translator: should we use RNN, Transformer
or CNN?

With the rapid development of novel temporal modules
based on RNN, Transformer, and CNN, researchers may be
dazzled and confused about which one to choose for video
modeling. In SimVP, the Translator module is responsible
for learning temporal evolution. We replace the CNN-based
Translator with the most representative RNNs and Trans-
formers to reveal that which time module is more suitable
for video modeling under the SimVP framework.

Translator selection The CNN-based Translator serves
as the baseline, since it is quite simple yet effective. We
hope to find new modules that is promising to outper-
form the Translator to inspire subsequent researches. For
RNN, we choose currently state-of-the-art PhyDNet [18]
and CrevNet [73]. As suggested in PhyDNet, we use the
PhyCell, a novel time module considering physical dynam-
ics, for temporal modeling. As to CrevNet, we use normal-
izing flow autoencoder + ST-LSTM [67] as the translator.
For Transformers, we chose recent influential work such
as Video Swin Transformer [34] and Latent Video Trans-
former [48, 70]. To make these modules workable under
the SimVP framework, we may modify a few implemen-
tation details without changing the core algorithm, such

as removing the autoregressive generation scheme and re-
implementing position encoding.

Setting We compare five translators on Moving MNIST
and Human, keeping the encoder and decoder the same.
We adjust the hyperparameters of these translators to make
them work with similar GPU memory footprints. By de-
fault, we use batch size 16, epoch 100, and Adam optimizer.
The number of encoder and decoder layers is 4. We choose
the largest learning rate from {1e−2, 1e−3, 1e−4} under the
premise of stable training.

Swin Transformer

Video Transformer

PhyDNet

SimVP

CrevNet

Swin Transformer

Video Transformer

PhyDNet

SimVP

CrevNet

(a) Moving MNIST (b) Human 3.6

Figure 3. Training dynamics of translators on Moving MNIST and
Human3.6. The x-axis is the training epochs and the y-axis is the
evaluated MSE. SimVP converges faster than other methods in the
early training phase, but CrevNet performs better in the long run.

Results and Discoveries In Figure. 3, we show the train-
ing dynamics using various translators on Moving MNIST
and Human3.6, respectively. CrevNet looks like a good so-
lution because the inherent simplicity of Moving MNIST,
while our SimVP is suboptimal. However, this does not al-
ways hold true when it comes to real-world datasets. For
example, on Human dataset (Figure. 3(b)), SimVP signifi-
cantly outperforms other methods. As to the training stabil-
ity, CNN performs better than RNN (Figure. 7, appendix),
since it will not fluctuate violently under large learning rate.
In short, our discoveries are:

1. CNN and RNN achieves state-of-the-art performance
under limited computation costs.

2. RNN converges faster than others in the long run (Fig-
ure. 3) if the model capacity is sufficient.

3. CNN training is more robust and does not fluctuate
dramatically at large learning rates (Figure. 7).

4. Transformer has no advantage in our SimVP frame-
work under the similar resource consumption.

4.3. Does SimVP achieve SOTA on general cases?

From previous analysis, we believe that SimVP has po-
tential to outperform recent state-of-the-art methods. In this
section, we provide more experimental evidence to confirm
this claim. Specifically, we aim to answer three questions:

• Q1: Can SimVP achieve SOTA results on other com-
mon benchmarks?
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Table 5. SimVP vs SOTA. The optimal(or suboptimal) results are marked by bold(or underlined).

Moving MNIST TrafficBJ Human3.6
MSE↓ MAE↓ SSIM↑ MSE × 100 ↓ MAE↓ SSIM↑ MSE / 10 ↓ MAE / 100 ↓ SSIM↑

ConvLSTM 103.3 182.9 0.707 48.5 17.7 0.978 50.4 18.9 0.776
PredRNN 56.8 126.1 0.867 46.4 17.1 0.971 48.4 18.9 0.781

CausalLSTM 46.5 106.8 0.898 44.8 16.9 0.977 45.8 17.2 0.851
MIM 44.2 101.1 0.910 42.9 16.6 0.971 42.9 17.8 0.790

E3D-LSTM 41.3 86.4 0.910 43.2 16.9 0.979 46.4 16.6 0.869
PhyDNet 24.4 70.3 0.947 41.9 16.2 0.982 36.9 16.2 0.901
SimVP 23.8 68.9 0.948 41.4 16.2 0.982 31.6 15.1 0.904

• Q2: Does SimVP generalize well across different
datasets?

• Q3: Does SimVP extend well to the case of flexible
predictive length?

Setting of Q1 Reporting the widely used metrics on stan-
dard benchmark datasets is the key to advancing the re-
search progress. We evaluate SimVP on three common
used benchmarks, i.e., Moving MNIST, TrafficBJ and Hu-
man3.6. Moving MNIST [55] consists of two digits inde-
pendently moving within the 64 × 64 grid and bounced off
the boundary. By assigning different initial locations and
velocities to each digit, we can get an infinite number of
sequences, and predict the future 10 frames from previous
10 frames. TrafficBJ contains the trajectory data in Beijing
collected from taxicab GPS with two channels, i.e. inflow
or outflow defined in [75]. Following [69], we transform the
data into [0, 1] via max-min normalization. Since the origi-
nal data is between -1 and 1, the reported MSE and MAE are
1/4 and 1/2 of the original ones, consistent with previous lit-
erature [18,69]. Models are trained to predict 4 next frames
by observing prioring 4 frames. Human3.6 [24] is a com-
plex human pose dataset with 3.6 million samples, record-
ing different activities. Similar to [18, 55, 69], only videos
with ”walking” scenario are used, and 4 future frames are
generated by feeding previous 4 RGB frames. Follow-
ing [18], we report the MSE, MAE and SSIM of SimVP
in Table. 5. Six state-of-the-art RNN baselines are chosen
for comparison, including ConvLSTM [71], PredRNN [67],
CausalLSTM [65], MIM [69], E3D-LSTM [66] and PhyD-
Net [18]. We train SimVP on Moving MNIST, Human3.6,
and TrafficBJ for 2k, 100 and 80 epochs, respectively. We
use Adam optimizer and the learning rate is 0.01.
Answer of Q1 SimVP can achieve SOTA results on
lightweight benchmarks. From Table. 5, we observe that
SimVP outperform all RNN baselines in all settings. The
improvements on Moving MNIST and TrafficBJ are mod-
est; On Human3.6, the relative improvement is significant.
In addition, SimVP takes training time compared to pre-
vious PhyDNet. Both performance and computing advan-
tages support our answer.

Figure 4. Visualization of Moving MNIST.

Setting of Q2 Generalizing the knowledge across differ-
ent datasets, especially under the unsupervised setting, is
the core research point of machine learning. To investi-
gate the generalization ability of SimVP, we train the model
for 50 epochs on KITTI and evaluate it on Caltech Pedes-
trian. KITTI [17] is one of the most popular datasets for
mobile robotics and autonomous driving. It includes hours
of traffic scenarios recorded with high-resolution RGB im-
ages. CalTech Pedestrian [11] is a driving dataset focused
on detecting pedestrians. It is conformed of approximately
10 hours of 640 × 480 30 FPS video taken from a ve-
hicle driving through regular traffic in an urban environ-
ment. Models are trained on KITTI dataset to predict the
next frame after 10-frame warm-up and are evaluated on
Caltech Pedestrian. Compared with the previous experi-
ments, carmounted camera videos dataset and the distinct
training-evaluating data present another level of difficulty
for video prediction as it describes various nonlinear three-
dimensional dynamics of multiple moving objects including
backgrounds. Following [37, 45, 73], we center-crop Six-
teen baselines are selected for comparision, including Be-
yondMSE [40], MCnet [62], DVF [35], Dual-GAN [32],
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CtrlGen [19],PredNet [37], ContextVP [5], GAN-VGG, G-
VGG, G-MAE, GAN-MAE [54], SDC-Net [50], rCycle-
Gan [29], DPG [16], CrevNet [73] and STMFANet [26].

Table 6. Results on Caltech Pedestrian dataset.

Caltech Pedestrian (10 → 1)
Method MSE↓ SSIM↑ PSNR↑

BeyondMSE [40] 3.42 0.847 -
MCnet [62] 2.50 0.879 -
DVF [35] - 0.897 26.2

Dual-GAN [32] 2.41 0.899 -
CtrlGen [19] - 0.900 26.5
PredNet [37] 2.42 0.905 27.6

ContextVP [5] 1.94 0.921 28.7
GAN-VGG [54] - 0.916 -

G-VGG [54] - 0.917 -
SDC-Net [50] 1.62 0.918 -

rCycleGan [29] 1.61 0.919 29.2
DPG [16] - 0.923 28.2

G-MAE [54] - 0.923 -
GAN-MAE [54] - 0.923 -

CrevNet [73] - 0.925 29.3
STMFANet [26] - 0.927 29.1

SimVP (ours) 1.56 0.940 33.1

Figure 5. Visualization of Caltech (10 → 1).

Answer of Q2 SimVP generalize well cross different
datasets, seeing Figure. 5. Although there is room to im-
prove the clarity of the generated objects, the evaluated met-
rics have exceeded previous methods. As shown in Table.
6, the MSE is reduced by 3.1%, the SSIM is improved by
1.4%, and the PSNR is improved by 13.0%. The training
process can be finished within 4h.

Setting of Q3 A possible limitation of CNN-based meth-
ods is that it may be diffifcult to scale to prediction with
flexible length. We handle this problem by imitating RNN,

that is taking previous predictions as recent inputs to recur-
sively produce long-term predictions. Following [45, 66],
we compare the PSNR and SSIM of SimVP with other base-
lines on KTH, seeing Table.8, where we train SimVP for
100 epochs. The KTH dataset [53] contains 25 individ-
uals performing 6 types of actions, i.e., walking, jogging,
running, boxing, hand waving and hand clapping. Follow-
ing [62, 66], we use person 1-16 for training and 17-25
for testing. Models are trained to predict next 20 or 40
frames from the previous 10 observations. Sixteen base-
lines are included, such as MCnet [62], ConvLSTM [71],
SAVP, SAVP-VAE [30], VPN [28], DFN [25], fRNN [43],
Znet [74], SV2P [3], PredRNN [67], VarNet [27], Pre-
dRNN++ [65], MSNET [31], E3d-LSTM [66] and STM-
FANet [26].

Table 8. Results on KTH dataset.

KTH (10 → 20) KTH (10 → 40)
Method SSIM↑ PSNR↑ SSIM↑ PSNR↑

MCnet [62] 0.804 25.95 0.73 23.89
ConvLSTM [71] 0.712 23.58 0.639 22.85

SAVP [30] 0.746 25.38 0.701 23.97
VPN [28] 0.746 23.76 – –
DFN [25] 0.794 27.26 0.652 23.01
fRNN [43] 0.771 26.12 0.678 23.77
Znet [74] 0.817 27.58 – –
SV2Pi [3] 0.826 27.56 0.778 25.92
SV2Pv [3] 0.838 27.79 0.789 26.12

PredRNN [67] 0.839 27.55 0.703 24.16
VarNet [27] 0.843 28.48 0.739 25.37

SVAP-VAE [30] 0.852 27.77 0.811 26.18
PredRNN++ [65] 0.865 28.47 0.741 25.21

MSNET [31] 0.876 27.08 – –
E3d-LSTM [66] 0.879 29.31 0.810 27.24
STMFANet [26] 0.893 29.85 0.851 27.56

SimVP (ours) 0.905 33.72 0.886 32.93

Answer of Q3 SimVP extend well to the case of flexi-
ble predictive length. From Table. 8, we know that SimVP
achieve state-of-the-art performance. Notebly, the PSNR
improves by 11.8% and 19.5% in both (10 → 20) and
(10 → 40) settings. This phenomenon further indicates
that the performance degradation of SimVP is less than oth-
ers on long-term prediction tasks.

5. Ablation study
While SimVP is quite simple, we believe there still exists

unapprehended parts. We are eager to know:

• Q1: Which architectural design plays the key role in
improving performance?

• Q2: How the Conv kernel influence the performance?
• Q3: What roles do the Enc, Translator, and Dec play?
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model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8 model 9 SimVP
A

rc
hi

S-UNet – ! ! ! ! ! ! ! ! !

T-UNet ! – ! ! ! ! ! ! ! !
#Groups 4 4 1 4 4 4 4 4 4 4

Norm G G G B G G G G G G

K
er

ne
l

(3) +ct – – – – ! – – – – –
(5)+ct – – – – – ! – – – –
(7)+ct – – – – – – ! – – –

(11)+ct – – – – – – – ! – –
(11)+2ct – – – – – – – – ! –

(3,5,7,11)+ct ! ! ! ! – – – – – !

M
SE

Moving MNIST 41.7 41.5 44.8 41.0 58.9 51.1 49.1 46.3 44.8 41.7
TrafficBJ (×100) 43.5 41.5 44.5 44.3 43.5 44.0 43.3 42.3 42.3 42.0
Human3.6 (/10) 32.4 33.4 33.0 34.8 37.3 34.0 32.9 33.4 32.1 32.0

Summary ↓ ↓ ↓↓↓ ↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓ ↓ –

Table 7. Ablation study. S-UNet or T-UNet denotes the shortcut connection in the spatial or temporal encoder-decoder. #Groups is the
number of convolutional groups. G and B indicate group normalization and batch normalization. (3,5,7,11)+ct means the Conv kernels of
the Inception module plus the translator’s hidden dimension. Note that the spatial Enc and Dec are fixed on each dataset, seeing Table. 10
(appendix) for detailed settings. Finally, we compare models with SimVP, and results with a gap of less than 0.5 are regarded as the same.

Setting of Q1 and Q2 We perform the ablation study on
Moving MNIST, TrafficBJ, and Human3.6. All models are
trained up to 100 epochs, different from previous settings.
For neural architecture design, we study whether using spa-
tial UNet shortcut, temporal UNet shortcut, group convolu-
tion, and group normalization can bring performance gain.
As to the convolutional kernel, we study how the kernel size
and hidden dimension affect the model performance. We re-
port the MSE metric for all datasets.

Answer of Q1 All of S-UNet, T-UNet, group convolu-
tion and group normalization can bring performance gain,
and the order of significance is: group convolution >
group normalization ≈ S-UNet ≈ T-UNet. Please see Ta-
ble. 7 (from model 1 to model 4) for experimental evidence.

Answer of Q2 Larger kernel size and more model param-
eters lead to better performance. In Table. 7, from model 5
to model 8, with the increasing kernel size, we can see the
significant performance gain. This improvement can be fur-
ther enhanced by doubling the hidden dimension of model
8 to construct model 9. SimVP chooses multi-scale kernels,
and the parameters of the Translator are 84% of model 9.

Setting of Q3 We represent submodules trained with n
epochs as Encn,Translatorn,Decn, mix them and evaluate
the results at t = 20 (the last prediction) to reveal the role
of each well-tuned module.

Answer of Q3 As shown in Figure. 6, we conduct that the
translator mainly focus on predict the position and content
of the objects. The decoder is responsible for optimizing
the shape of the foreground objects. The encoder can erase
the background error by means of spatial UNet connection.

Figure 6. The role of the Translator, Encoder and Decoder.

6. Conclusion
We propose SimVP, a simpler yet effective CNN model

for video prediction. We show that SimVP can achieve
state-of-the-art results without introducing any complex
modules, strategies and tricks. Meanwhile, the reduced
computing cost makes it easy to scale up to more scenar-
ios. We believe simpler is better, and SimVP may serve as a
strong baseline and provide inspiration for future research.
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[28] Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Dani-
helka, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu.
Video pixel networks. In International Conference on Ma-
chine Learning, pages 1771–1779. PMLR, 2017. 1, 7

[29] Yong-Hoon Kwon and Min-Gyu Park. Predicting future
frames using retrospective cycle gan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1811–1820, 2019. 2, 7

[30] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,
Chelsea Finn, and Sergey Levine. Stochastic adversarial

3178



video prediction. arXiv preprint arXiv:1804.01523, 2018.
7

[31] Jungbeom Lee, Jangho Lee, Sungmin Lee, and Sungroh
Yoon. Mutual suppression network for video prediction us-
ing disentangled features. arXiv preprint arXiv:1804.04810,
2018. 7

[32] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. Dual
motion gan for future-flow embedded video prediction. In
proceedings of the IEEE international conference on com-
puter vision, pages 1744–1752, 2017. 2, 6, 7

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 2

[34] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. arXiv
preprint arXiv:2106.13230, 2021. 3, 5

[35] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and
Aseem Agarwala. Video frame synthesis using deep voxel
flow. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4463–4471, 2017. 2, 3, 6, 7

[36] William Lotter, Gabriel Kreiman, and David Cox. Unsuper-
vised learning of visual structure using predictive generative
networks. arXiv preprint arXiv:1511.06380, 2015. 2

[37] William Lotter, Gabriel Kreiman, and David Cox. Deep pre-
dictive coding networks for video prediction and unsuper-
vised learning. arXiv preprint arXiv:1605.08104, 2016. 6, 7,
12

[38] Chaochao Lu, Michael Hirsch, and Bernhard Scholkopf.
Flexible spatio-temporal networks for video prediction. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6523–6531, 2017. 2

[39] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las
Casas, Yotam Doron, Albin Cassirer, and Karen Simonyan.
Transformation-based adversarial video prediction on large-
scale data. arXiv preprint arXiv:2003.04035, 2020. 1

[40] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error.
arXiv preprint arXiv:1511.05440, 2015. 1, 2, 6, 7

[41] Vincent Michalski, Roland Memisevic, and Kishore Konda.
Modeling deep temporal dependencies with recurrent gram-
mar cells””. Advances in neural information processing sys-
tems, 27:1925–1933, 2014. 2

[42] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan As-
selmann. Video transformer network. arXiv preprint
arXiv:2102.00719, 2021. 2

[43] Marc Oliu, Javier Selva, and Sergio Escalera. Folded re-
current neural networks for future video prediction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 716–731, 2018. 2, 7

[44] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
arXiv preprint arXiv:1711.00937, 2017. 1

[45] Sergiu Oprea, Pablo Martinez-Gonzalez, Alberto Garcia-
Garcia, John Alejandro Castro-Vargas, Sergio Orts-
Escolano, Jose Garcia-Rodriguez, and Antonis Argyros. A
review on deep learning techniques for video prediction.

IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2020. 4, 6, 7

[46] Viorica Patraucean, Ankur Handa, and Roberto Cipolla.
Spatio-temporal video autoencoder with differentiable mem-
ory. arXiv preprint arXiv:1511.06309, 2015. 2

[47] Isabeau Prémont-Schwarz, Alexander Ilin, Tele Hotloo Hao,
Antti Rasmus, Rinu Boney, and Harri Valpola. Recurrent
ladder networks. arXiv preprint arXiv:1707.09219, 2017. 2

[48] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, De-
nis Zorin, and Evgeny Burnaev. Latent video transformer.
arXiv preprint arXiv:2006.10704, 2020. 1, 2, 3, 5

[49] MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael
Mathieu, Ronan Collobert, and Sumit Chopra. Video (lan-
guage) modeling: a baseline for generative models of natural
videos. arXiv preprint arXiv:1412.6604, 2014. 1

[50] Fitsum A Reda, Guilin Liu, Kevin J Shih, Robert Kirby, Jon
Barker, David Tarjan, Andrew Tao, and Bryan Catanzaro.
Sdc-net: Video prediction using spatially-displaced convolu-
tion. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 718–733, 2018. 7

[51] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Tempo-
ral generative adversarial nets with singular value clipping.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2830–2839, 2017. 1

[52] Masaki Saito and Shunta Saito. Tganv2: Efficient training of
large models for video generation with multiple subsampling
layers. 2018. 1

[53] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recog-
nizing human actions: a local svm approach. In Proceedings
of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., volume 3, pages 32–36. IEEE, 2004. 7,
12

[54] Osamu Shouno. Photo-realistic video prediction on nat-
ural videos of largely changing frames. arXiv preprint
arXiv:2003.08635, 2020. 2, 3, 7

[55] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-
nov. Unsupervised learning of video representations using
lstms. In International conference on machine learning,
pages 843–852. PMLR, 2015. 1, 2, 6, 12

[56] Jiangxin Sun, Jiafeng Xie, Jian-Fang Hu, Zihang Lin, Jian-
huang Lai, Wenjun Zeng, and Wei-Shi Zheng. Predicting
future instance segmentation with contextual pyramid convl-
stms. In Proceedings of the 27th acm international confer-
ence on multimedia, pages 2043–2051, 2019. 2

[57] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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