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Abstract

Outside-knowledge visual question answering (OK-
VQA) requires the agent to comprehend the image, make
use of relevant knowledge from the entire web, and digest
all the information to answer the question. Most previ-
ous works address the problem by first fusing the image
and question in the multi-modal space, which is inflexible
for further fusion with a vast amount of external knowl-
edge. In this paper, we call for an alternative paradigm for
the OK-VQA task, which transforms the image into plain
text, so that we can enable knowledge passage retrieval,
and generative question-answering in the natural language
space. This paradigm takes advantage of the sheer vol-
ume of gigantic knowledge bases and the richness of pre-
trained language models. A Transform-Retrieve-Generate
framework (TRiG) framework is proposed1, which can be
plug-and-played with alternative image-to-text models and
textual knowledge bases. Experimental results show that
our TRiG framework outperforms all state-of-the-art super-
vised methods by at least 11.1% absolute margin.

1. Introduction
The visual question answering (VQA) task is to provide

a natural language answer to a natural language question
given an image [2]. This task has been well studied in the
research communities, and numerous cross-modal methods
have achieved state-of-the-art performance [6,14,21,30,31,
34, 50, 63, 67, 69]. The knowledge-based visual question
answering (KB-VQA) task requires more extensive learn-
ing since the questions can be answered only by referring
to external general knowledge [35, 48, 48, 57, 58]. Most
KB-VQA datasets come with pre-defined knowledge bases,
and each question is annotated with at least one supporting
knowledge fact. Moreover, the recently proposed outside-
knowledge visual question answering (OK-VQA) task is the
most open in the sense that any external knowledge can be

1The code of this work will be made public.

Figure 1. An intuitive example of our TRiG framework on the
OK-VQA problem. Our Framework transform all information into
language space and performs retrieved-based question answering
through generative language models.

used to answer the questions.
Consider the example in Figure 1. As a human, one

needs to first identify objects like giraffes and trees in the
image, and associate the giraffes to the word animal in the
question. Second, the human needs to apply his/her ac-
quired commonsense knowledge about giraffe’s character-
istics and answer the question that giraffe is known for hav-
ing a long neck. For machine learning models to solve the
same problem, there are several unique challenges. First, in
order to answer such a question, one has to align the image,
the question, and the vast amount of knowledge passages
into one common space. One solution is to first fuse the im-
age and question information in the multi-modal space with
pre-trained vision-language models, and then inject knowl-
edge into the multi-modal space. Most previous work on
OK-VQA follow this paradigm, including directly injecting
the knowledge embeddings [12,49] and fusing the output of
a vision-language model with the knowledge graph through
graph convolutional network [39]. However, this paradigm
is at the cost of squeezing the rich representation of the
textual knowledge, in the magnitude of hundreds of mil-
lions, into a much smaller multi-modal space. Comparing
to knowledge corpus such as BookCorpus (800M words)
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and English Wikipedia (2,500M words), multi-modal pre-
training datasets are much smaller such as Visual Genome
with 0.01 million images and less than 2 million question-
answer pairs [27], which leads to less knowledge. There-
fore, we argue that it is possible to transform everything
into the language space first, and then take advantage of the
tremendous amount of textual knowledge for question an-
swering. Although this seems counter-intuitive, our work
proves its advantage. In this paradigm, the challenge is to
be able to transform the image into language with minimum
information loss. In order to tackle this, we propose three-
level image-to-text transformations which significantly out-
perform baselines that use only captions or object labels.

The second challenge of the OK-VQA task is how to
effectively retrieve the most relevant knowledge passages
from gigantic knowledge bases. Previous work has ex-
plored various retrieval methods such as term-based BM25
[37], and network-based ranking [37, 61]. In the OK-VQA
dataset, this task is problematic in that there is no ground-
truth knowledge annotation for each question. The re-
trieval has to rely on either transfer learning from similar
knowledge-retrieval tasks or weak supervision from pseudo
signals such as whether the passage contains the answer
tokens [41]. Our preliminary study finds that there is no
guarantee that a passage containing the ground-truth an-
swer will essentially relate to the question or help the an-
swer prediction. Such signals are very weak and may intro-
duce more noise than useful information into the retrieval
model. Instead, we adopt the state-of-the-art dense pas-
sage retrieval model (DPR) [24] that is pre-trained on large
question-answering dataset Natural Questions (NQ) [28] as
our knowledge retriever, which is shown to outperform the
BM25 method in terms of retrieval coverage rate.

The third challenge of the OK-VQA task is to consoli-
date all the multi-source input, namely the question, visual
context, and the retrieved knowledge passages, to predict
answers. Since now everything is in the language space, the
problem can be formulated as a multi-passage question an-
swering problem. More specifically, the model needs to not
only rank the retrieved passages but also predict an answer
according to the ranked passages. Most existing work uti-
lizes extractive methods to predict the answer span in the
passage [5, 7, 29, 44, 45, 60, 62]. This is not applicable in
the OK-VQA dataset because there is neither annotation of
ground-truth passage nor answer span in any passage. In-
stead, we use the generative question answering model [19]
to avoid the defect in span prediction. Furthermore, we
use beam-search for robust answer generation. Lastly, since
the question-answering model is the last stage in the entire
framework, any information distortion or loss in the image-
to-text transformation and knowledge retrieval would prop-
agate to the final question answering model. Therefore, it is
important for the final question answering model to be more

transparent and interpretable to diagnose the root cause of
errors. We use cross-attention scores from the decoder of
the generative model to rank and highlight the top support-
ing knowledge passages, which helps to interpret the results
of the model.

To bridge the above-mentioned research gaps, we pro-
pose the Transform-Retrieve-Generate (TRiG) framework
for the OK-VQA task. At the high level, the framework
aligns all the information (image, question, and knowledge)
into the language space in order to take advantage of the
rich semantics of textual knowledge. The framework starts
with three-level image-to-text transformations, followed by
dense passage retrieval to retrieve the most relevant knowl-
edge passages. Further, the TRiG aggregates the informa-
tion from all passages and generates an answer that is rela-
tively easy to interpret. Our contributions are as follows:

• We propose a new paradigm shift for the OK-VQA
task, from aligning all the information in the multi-
modal space, to first transforming an image into plain
text and performing knowledge retrieval and question
answering all in language space.

• We propose a robust framework Transform-Retrieve-
Generate (TRiG), that achieves new state-of-the-art
performance on the OK-VQA dataset and leading
other supervised methods by 11.1%.

2. Related Work
Visual Question Answering (VQA) The conventional
visual question answering (VQA) task aims to answer ques-
tions pertaining to a given image. Multiple VQA datasets
have been proposed, such as Visual Genome QA [26] VQA
[2], GQA [17], CLEVR [23], MovieQA [54] and so on.
Many works have shown state-of-the-art performance on
VQA tasks, including task-specific VQA models with vari-
ous cross-modality fusion mechanisms [14,21,25,50,63,67,
68] and joint vision-language models that are pretrained on
large-scale vision-language corpus and finetuned on VQA
tasks [6, 11, 30, 31, 34, 53, 69]. Please note that the con-
ventional VQA task does not require external knowledge by
definition, although studies show some VQA questions may
require commonsense knowledge to answer correctly [2].

Outside Knowledge-Based VQA (OK-VQA) Beyond
the above paradigm, knowledge-based visual question an-
swering (KB-VQA) is proposed where a visual question
cannot be answered without external knowledge. Several
knowledge-based VQA datasets are proposed, each pro-
viding its own knowledge bases and ground-truth support-
ing fact [35, 48, 57]. More recently, the dataset outside-
knowledge visual question answering (OK-VQA) [40] is
proposed where the usage of outside knowledge is open to
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Figure 2. The overview of our TRiG framework. (1) T: Our TRiG framework transforms all visual information into natural language
space on three-levels: image-level captioning, object-level dense labeling and text OCR. (2) R: Our dense knowledge retriever retrieve
top-k knowledge passages from Wikipedia that are relevant to the query. (3) G: Our generative question answering model encode all
question-context-knowledge tuples and fuses the output to generate a final answer.

the entire web. Most existing work for OK-VQA rely on the
pre-trained vision-language models as a major workhorse
for question answering [12, 37, 39, 49, 61, 64]. In [12, 49],
learned knowledge embeddings are injected into vision-
language models to perform knowledge-aware question an-
swering. Other work uses vision-language models as a
knowledge-free VQA model first and later adjusts the pre-
dicted answers by fusion with knowledge graphs [39] or
answer validation with knowledge text [61]. Some also
propose to directly learn vision-language representation for
dense knowledge retrieval [37]. Different from the above,
one recent work proposes to first convert the image into
text caption and tags and then perform prompt-based QA
on GPT-3 model purely in the language space [64]. In ad-
dition, a concurrent work [13] takes advantages of GPT-3
to retrieve implicit knowledge. However, the accessibility
to this super-large-scale pre-trained language model is re-
stricted, and it is challenging to interpret the QA result from
the generative GPT-3 model.

Open-Domain Question Answering in NLP Open-
domain question answering (Open-Domain QA) has been
popular in the NLP community in recent years. The task is
to answer a question with external knowledge bases with-
out any given context paragraphs [44]. There are mainly
two streams of approaches, namely knowledge graph-based
question answering [10, 32, 38, 52, 59, 65] and knowledge
retrieval-based question answering [5, 7, 19, 29, 44, 45, 60,
62]. For retrieval-based methods, both elastic-search such
as BM25 [46] and semantic search such as Dense Passage
Retrieval (DPR) [24] are utilized to retrieve most relevant

knowledge snippets from knowledge bases. For question
answering, most existing work adopt extractive methods
to predict the span of an answer in knowledge snippets
[5, 7, 29, 44, 45, 60, 62]. One most recent work proposes to
use generative language models for knowledge-based QA,
which achieves state-of-the-art performances [19].

3. Methodology
In this section, we introduce the details of our

Transform-Retrieve-Generate (TRiG) framework. Shown
in Figure 2, our framework contains three stages: (i) image-
to-text transformation, (ii) knowledge passage retrieval, (iii)
multi-passages open-domain question answer generation.

3.1. Image-to-Text Transformation

Contrary to existing work, we first transform the image
into text and then perform all downstream tasks in the lan-
guage space. In order to minimize the information loss in
the process of transforming the image into plain text, three-
levels of transformations are performed (Equation 1). First,
image-level information is transformed to caption text with
a state-of-the-art image captioning model [31]. Second,
object-level information is translated to object and attribute
labels [1, 15]. Lastly, according to [20], some VQA ques-
tions can only be answered with optical character recogni-
tion (OCR). We use an off-the-shelf OCR model to detect
all possible texts in the images 2.

We denote Ci, Li, and Oi as the generated caption text,
attribute and object text, and OCR text from image Ii re-
spectively. In the rest of the paper, we will denote the visual

2https://github.com/JaidedAI/EasyOCR

5069



context vi = (Ci, Li, Oi) for the corresponding image Ii.
Please note that our proposed framework does not neces-
sitate the use of the above-mentioned image-to-text trans-
formation models only. One could choose to plug-and-play
alternative methods into the framework.

Ci = (wc
0, . . . , w

c
j)← fImageCaptioning(Ii)

Li = {(wattr
0 , wobj

0 ), . . . , (wattr
n , wobj

m )} ← ftagging(Ii)

Oi = {wocr
0 , . . . , wocr

k } ← focr(Ii)
(1)

3.2. Knowledge Passage Retrieval

After the image is transformed into plain-text represen-
tation, we use the text representation as the query to re-
trieve knowledge passages in the natural language space.
In this paper, we use the Wikipedia dump as the knowl-
edge base, which contains over 21 million Wikipedia pas-
sages [29]. We ensure that our framework is designed to be
generic enough to support other textual KBs such as Gener-
icsKB [3] or the surface forms of graph knowledge bases
such as ConceptNet [51].

More specifically, given a textual query qi of an image Ii
and a knowledge base K = {pj} where each pj is a knowl-
edge passage, the task is to retrieve top k knowledge pas-
sages Pk = [p1, p2, . . . , pk] from K that are most relevant
to the query qi, where k ≪ |K|. In this paper, we empiri-
cally use the query qi = (Qi, Ci), where Qi is the original
question and Ci is the the generated caption of correspond-
ing image Ii.

We use dense passage retrieval (DPR) to retrieve the
knowledge passages [24]. DPR encodes both query and
passage with BERT layers that could better capture the se-
mantic similarity between them than term-based retrieval
methods such as TF*IDF and BM25 [24]. First, the query
qi and a passage pk are encoded with two independent pre-
trained BERT encoders [9]. We take the embedding of the
[CLS] token xqi and xpi

in the BERT to represent qi and pk
respectively. Second, a similarity scores sim(qi, pk) is cal-
culated by taking the dot product of the two encoded dense
vectors of the query qi and a passage pk.

xqi = EQ(qi),xpi
= EP (pk) (2)

sim(qi, pk) = xT
qi · xpk

(3)

Because of the tremendous amount of passages in the
Wikipedia knowledge base, it is time-consuming to retrieve
the top k passages for each query from the knowledge
base with over 21 million passages. We leverage an open-
sourced indexing engine FAISS [22], an extremely efficient
library to speed up the clustering and indexing of large num-
ber of dense vectors. Given a query qi, the dense passage re-
trieval module will return k passages Pk = [p1, p2, . . . , pk]

from the entire knowledge base K where sim(qi, p1) >
sim(qi, p2) > · · · > sim(qi, pk) and k ≪ |K|. The
retrieved passages Pk will be later used for downstream
question-answering.

3.3. Generative Multi-Passages QA

After aligning the visual information, the question, and
the external knowledge into the language space, we in-
troduce our generative question-answering module. Our
design of the model takes the following into considera-
tion. First, although previous work on joint vision-language
models formulates the task as an answer classification task
[39, 51, 61], our preliminary studies show that language
models seem to be less flexible in classifying text into such
high-dimensional answer space (over 100k) given a rela-
tively small dataset. Second, although most previous lan-
guage QA models follow a span-based answer prediction
paradigm [29, 44, 60, 62], it is impractical in our open-
domain setting since there is no ground-truth supporting
fact in our task, let alone the ground-truth answer span for
prediction. On the other hand, recent work shows that a gen-
erative encoder-decoder network can achieve state-of-the-
art performance on multiple open-domain QA datasets [42],
and it avoids span prediction and directly generates a free-
form answer.

To achieve this goal, we use a transformer-like encoder-
decoder model T5 as the backbone of our generative ques-
tion answering module [43]. It is impractical to include
all top-k passages in one T5 model. We use T5 model to
encode each (question, visual context, knowledge) tuple
independently and then fuse the k encoded representations
to decode an answer following the idea in [19].

Multi-Passages Question Answer Generation First, we
feed the concatenated sequence of (Qi, vi, pi,k) into a self-
attentive encoder to get per-position hidden embeddings
zQi,k , where qi is the question, vi is the visual context text
and pi is one passage respectively.

zQi,k = ESelfAttn(Qi, vi, pi,k)

= (z0, . . . , zL)
(4)

where zi is the hidden embedding of the i-th token in the se-
quence, zQi,k ∈ R1×L×h is the hidden representation of the
sequence, L = |(Qi, vi, pi,k)| is the length of the sequence
and h is the size of the hidden embedding.

Subsequently, we perform the same encoding operation
on all k passages to derive k hidden representations:

zQi = (zQi,1 , . . . , zQi,k) (5)

where we concatenate the k hidden embeddings to zQi ∈
R(k·L)×h. This operation is to fuse all the information from
different question-context-passage interactions together in
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order to generate better answers. Then, we feed the concate-
nated hidden representation zQi into a stacked self-attentive
decoder to predict per-position word distribution over the
vocabulary space |V |:

P (a1), . . . , P (al) = σ(DSelfAttn(z
Qi)) (6)

where σ is a non-linear function such as softmax, l is the
length of the answer, and Qi ∈ R|V | is the word distribution
over the vocabulary of size |V |. Finally, we use teacher-
enforcing to train the entire model with auto-regressive
cross-entropy loss:

Lans = −
1

N · l · |V |
·

N∑
i=1

l∑
j=1

|V |∑
w=1

yi,j,w · log(p(ai,j,w))

(7)

Inference of the Multi-Passage Generative Model Dur-
ing training, teacher-enforcing is used to train the encoder-
decoder model auto-regressively. During inference time,
the answer tokens are generated iteratively by feeding the
previous token at−1 to the input of the next token at. We
apply both greedy-decode and beam-search for the answer
decoding. In greedy-decode, the best answer token is al-
ways selected with the highest probability at each decoding
step. In beam search, a beam of size m is maintained dur-
ing decoding, and m answer candidates are generated with
ranked scores. We also take ensembles of the 6 TRiG mod-
els trained on different splits of the top-100 passages, where
the best answer is selected by ranking the model answers
with average log probability of all the generated tokens of
the predicted answer: a∗ = argmaxn{ 1l

∑l
j lnP (an,j)}

and n is the number of ensembles.

4. Experiments
In this section, we describe the implementation details of

our method and report the experimental results.

4.1. Implementation Details

OK-VQA Dataset We use the OK-VQA dataset in this
research work (version v1.13, license CC-BY 4.04). It is one
of the most challenging visual question answering datasets
that is open to all external knowledge usage [40]. The
dataset contains 14,055 visual questions over 14,031 im-
ages from MSCOCO [33]. The dataset split is 9,009 for
training and 5,046 for testing. Each entry contains an im-
age, a question, and 10 ground-truth answers annotated by
human annotators.

Dense Passage Retrieval We use BERT-base encoders,
EQ and EP , in the retrieval module and initialize them with

3https://okvqa.allenai.org/download.html
4http://creativecommons.org/licenses/by/4.0/

the checkpoints pre-trained on the NQ dataset [28]. Due to
the extremely large size of the Wikipedia knowledge base,
we choose the HNSW indexing algorithm instead of flat in-
dexing for a much faster speed of queries with acceptable
accuracy trade-off. For more details, please refer to the im-
plementation of [22]. Each query is composed of the ques-
tion Qi and the corresponding caption Ci. The number of
retrieved passages k = 100 for the best possible QA perfor-
mance.

Generative Multi-Passages QA We use a transformer-
based [55] encoder-decoder T5-large [43] model as the
backbone. By default, the embedding size of the encoder is
768. The maximum length of the input tokens is restricted
to be 300. Padding to the maximum length is applied
for multiple questions batch training. Because the train-
ing of the generative model with 100 passages is memory-
intensive, the batch size is set to be 1 for each GPU. To opti-
mize the QA model, we apply the following techniques: (i)
AdamW as the optimizer with a linearly scheduled learn-
ing rate starting from 1e − 4; (ii) Warm-up of 2000 steps
as the learning rate scheduler. We train the multi-passages
QA model for 20000 optimization steps on an 8xA100 GPU
cluster for 12 hours. During inference, both greedy-decode
and beam-search are applied to get the best answers. Before
evaluation, a normalization step is performed on the gener-
ated answers, including lower-casing and removing articles,
punctuation, and duplicated white space.

4.2. Empirical Results on OK-VQA

4.2.1 Performance of Knowledge Retrieval

To evaluate the performance of the knowledge passage re-
trieval module, we consider a question that has a hit in its
retrieved knowledge passages if at least one of its ground-
truth answers appears in the retrieved passages. Then the
hit@k is defined as the percentage of questions in the en-
tire dataset who get a hit in their top k retrieved knowledge
passages.

OK-VQA Train OK-VQA Test
Top-K hit@k hit@k
Top-5 42.72% 45.83%
Top-10 54.66% 57.88%
Top-20 68.76% 72.11%
Top-50 72.27% 80.49%
Top-100 83.76% 86.56%

Table 1. Hit@k of the dense passage retrieval (k = the number of
retrieved knowledge passages).

From Table 1, we can observe that the answer retrieval
rate hit@k increases along with the number of passages k
from 42.7% to 83.7% as k increases from 5 to 100. A larger
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k increases the probability that each question has access to
at least one relevant knowledge passage during inference.
We experiment with different k for the downstream QA
model, which will be discussed in subsection 4.3.

4.2.2 Performance of the Generative QA Model

Exact Match and VQA Score The OK-VQA dataset has
10 annotated answers for each question, and we consider
both Exact Match and VQA Score as metrics to evaluate the
generative QA model. The Exact Match (EM) is defined as
the percentage of questions whose predicted answer exactly
matches any of the 10 annotated answers. EM metric con-
siders every answer as equally ground-truth the same. On
the other hand, VQA score defines a voting mechanism so
that each annotated answer ai is assigned a score si between
0 and 1 [2].

A generated answer âi would get si score if it matches
the annotated ai. The VQA metric is an average of the
weighted scores over the entire test set. Arguably, the voting
mechanism of the VQA score may promote some ground-
truth answers over others based on the annotators’ consen-
sus subjectively.

Comparison with Supervised-Learning SOTAs The
performance of our proposed TRiG framework with state-
of-the-art models is reported in Table 2. Please note that
all the models in comparison are supervised-learning mod-
els. Several observations can be made from the table.
First, most previous methods utilize the vision-language
model as the backbone for question answering and then
integrate it with external knowledge. Some represent the
knowledge in the form of graph (KRISP [39], Concept-
Bert [12], RVLESK [49]) while others fuse the output of the
vision-language model with textual knowledge representa-
tion (MAVEx [61]) or implicit knowledge from a language
QA mdoel [47]. Second, a concurrent work, VRR [37],
transforms the image into caption text and performs span-
based question answering on a trimmed knowledge base
using Google search engine. Last and most importantly,
all of the above methods achieve very similar VQA scores
between 38.60 and 39.4, despite usage of diverse sources
of knowledge bases such as ConceptNet [12, 39, 49, 61],
Google Image [61], Google Web Search [37] and Wikip-
iedia [61] and pretraining on other datasets such as VQA
[12, 39, 49, 61] and Visual Genome [49].

Our proposed TRiG framework significantly outper-
forms all state-of-the-art supervised-learning methods with
at least a 11.1% margin. Our TRiG framework differs from
the existing methods as (i) instead of aligning representa-
tion of the vision-language QA model with external knowl-
edge in the multimodal space, TRiG transforms the image
into text information as accurately as possible and aligns all

Model EM VQA Score
SOTA Methods
KRISP [39] 32.31
ConceptBert [12] 33.66
CBM [47] 38.60
KRISP w/ VQA2.0 pretrained 38.70
MAVEx [61] 38.70
RVLESK [49] 39.04
Weakly Supervised VRR [37] 39.20
MAVEx w/(Ensemble 5) [61] 39.40
Ours
TRiG w/ Q+C+DL+O, G 53.62% 49.24
TRiG w/ Q+C+DL+O, BS 53.59% 49.35
TRiG w/ Q+C+DL+O, G, E∗ 54.73% 50.50

Table 2. Comparison of supervised-learning methods on the OK-
VQA dataset. In TRiG Model, Q: Question, C: Caption, DL:
Dense Labels, O: OCR Text, G: Greedy Decode, BS: Beam-
Search, E∗: Ensembles of the 6 TRiG models.

the information of the image, question, and knowledge in
language space; (ii) the generative QA model in TRiG is
not pre-trained on other multimodal datasets, which helps
the model to start learning to reason over external knowl-
edge, rather than inducing data bias from other multimodal
datasets.

We would like to also highlight the Exact Match (EM)
score of our TRiG models, which are higher than the VQA
scores. As in Figure 4, we observe that sometimes the gen-
erative QA model predicts a reasonable answer but is not
credited with the highest VQA score or not even any score
according to annotators’ voting.

Model #Params VQA Score
SOTA Prompt Method [64]
PICa w/16 RP C+T 175B 43.30
PICa w/16 SP C+T 175B 46.50
PICa w/16 SP C+T, 3×E 175B 47.70
PICa w/16 SP C+T, 5×E 175B 48.00
Ours
TRiG w/ Q+C+DL+O, G 0.77B 49.24
TRiG w/ Q+C+DL+O, BS 0.77B 49.35
TRiG w/ Q+C+DL+O, G, E∗ 0.77B 50.50

Table 3. Comparison of Proposed TRiG with SOTA Prompt-Based
Method on the OK-VQA Dataset. In [64], RP: Random Prompt,
SP Selected Prompt, C: Caption, T: Image-Tagging, E: Prompt
Ensemble. In TRiG model, Q: Question, C: Caption, DL: Dense
Labels, O: OCR Text, G: Greedy Decode, BS: Beam-Search, E∗:
Ensembles of the 6 TRiG models.

Comparison with Prompt-Based SOTA We also com-
pare our method with one very recent prompt-based method
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on the OK-VQA problem [64]. By taking advantage of the
super large-scale language model GPT-3 [4], the proposed
prompt-based method (PICa) surpasses all existing super-
vised methods with sophisticated prompting. As shown in
Table 3, PICa achieves 43.3 VQA score with 16 prompts
randomly selected from the training data. By carefully se-
lecting 16 prompts based on the similarity between testing
and training questions, PICa further achieves 46.5. With 5
ensembles of 16 prompts, PICa reaches 48.0 VQA score.

Our method (TRiG) outperforms PICa with greedy-
decode 49.24, beam-search decoding 49.35 and ensemble
50.50. Both PICa and our method share the same idea
of unifying the image, the visual question, and knowledge
in language space and then performing question answering
with language models. The significant performance gain of
both methods (9-11.1% over SOTA) highlights the potential
of this idea – if the image could be transformed into plain
text information faithfully, then one could take advantage
of the vast volume of external knowledge in text form and
advanced language models pre-trained on rich variations of
human natural language to yield better answer prediction.

We would like to also highlight that our method outper-
forms PICa by a margin of 2.50%, especially considering
the among of parameters (175 billion over 0.77 billion of
our model) and accessibility of the GPT-3 model. More-
over, we argue that our prediction results are relatively eas-
ier to interpret by selecting supporting knowledge passages,
whereas in PICa the explanation is generated by GPT-3 in
a black-box manner. We use the averaged cross-attention
score of the generative model to select supporting facts [18].
For concrete examples of such interpretability, please see
the examples in Figure 4.

4.3. Ablation Study

Variant Visual Context Input We investigate the empir-
ical differences among the combination of the visual con-
texts inputs to the generative QA model, namely image cap-
tion (C), object label (L and DL), and OCR (O).

Inputs VQA Score
Question + K + C 42.54
Question + K + C + L 42.94
Question + K + C + L + O 43.53
Question + K + C + DL + O 49.35

Table 4. Ablation Study of the Different Variants of Text Input into
the Generative QA Model (K: Knowledge passages, C: Caption,
L = Bottom-Up Labels [1], DL = Dense Labels, O = OCR Text).

As in Table 4, we find that adding caption (C) to the in-
put yields decent performance (42.5), suggesting that cap-
tion conveys basic information of the image. Adding sparse
object labels and attributes (L) also helps a little (42.9). By
adding OCR, the performance is further improved (43.5),

Figure 3. Testing the QA model with varying number of passages.

which is in accord with previous findings that some ques-
tions in OK-VQA require understanding the text in the im-
age through OCR [20]. Interestingly, the largest gain is
achieved by replacing sparse object and attribute labels with
more semantically rich dense object labels (49.4), which
again highlights that the faithfulness of image-to-text trans-
formation is a crucial prerequisite for downstream QA in
the language space.

Generative Multi-Passages QA with Varying K passages
We also investigate how the generative QA model behaves
with a different number of passages k. We apply our best
model trained on 100 passages and test it with varying k
passages. From Figure 3-(a), we can see that the testing
performance of this model steadily increases along with the
growing number of passages k. However, the improvement
becomes marginal after k=25 (47.62 to 49.35), while the
coverage Hit@k still increases by 15% as Figure 3-(b). This
also supports our hypothesis that there may be a long-tail ef-
fect of the retrieval. Yet it is difficult to quantify as to which
passages are essentially relevant to the question-answering.

4.4. Discussion

Error Analysis To investigate the behavior of our TRiG
model, we conduct error analysis with our best model using
greedy-decoded predictions. The quantitative results are il-
lustrated in Figure 5. We observe that answers with numer-
ical values are harder to predict, where the model could get
into a blunt generation (Figure 5-(a)). Furthermore, as the
length of the answer increases, it is harder for the gener-
ative model to predict every token in the phrase correctly
(Figure 5-(b)).

We also manually reviewed 50 examples where TRiG
makes wrong predictions. Among these random examples,
50% of the errors are due to the information loss during
image-to-text transformation, such as in Figure 4-(h), where
the caption and dense labels failed to characterize the spe-
cial features of the bird. We also found that 24% of the error
are due to the failure in retrieving highly-relevant passages.
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Figure 4. Examples of our TRiG model prediction together with the supporting passage. Top: four examples where TRiG model makes
correct predictions. Bottom: four examples where TRiG model makes incorrect predictions. In each example: Q: question, GT: ground-
truth answers, Pred: predicted answer, C: image caption, DL: dense labels, O: OCR text, K: top-1 supporting knowledge passage.

The high Hit@k value doesn’t guarantee the passages are
indeed relevant to the question. Note that some examples
failed due to multiple reasons including QA error (22%) or
subjective human annotations (30%) as in Figure 4(g).

Figure 5. Performance of Generative QA model by different an-
swer types. Left: whether numerical answers are harder to predict.
Right: whether longer answers are harder to predict.

Interpretability To interpret the visual question-
answering models, previous works attempt to supervise the
VQA models with visual grounding annotations [8, 8, 70]
or neural symbolic network [16, 56, 66]. When it comes
to knowledge-based VQA, it is all the more challenging
to interpret the model in multimodal space because the
knowledge has been transformed into a fused representation
and loses its meaning.

Our TRiG framework alleviates this problem by provid-
ing transparent explanations in the language space. In the
top row in Figure 4, the image-to-text transformations pro-
vide sufficient information for both the knowledge retrieval
and QA model. Meanwhile, when Figure 4(e, f, g, h) make

wrong predictions, the QA model is still predicting the an-
swer according to the visual context and retrieved passages.

OK-VQA Evaluation Metrics Some researchers [36]
also argue that the VQA score metric is subjective. In one
OK-VQA example, a model will achieve 1.0 VQA score for
the answer wetsuit but only 0.66 score for the answer wet
suit. In daily language, the usage of any of the semantically-
similar answers is subtle and sometimes random. We also
look at the top-3 answers of our TRiG model using beam
search, and the model achieves significantly higher perfor-
mance, i.e. 67.4 VQA score and 71.8% EM. We call for bet-
ter VQA metrics that probably compare two sets of answers
instead of comparing only the top one answer or other alter-
natives such as AAS that automatically expands the ground-
truth answer set for better matching [36].

5. Conclusion
In this paper, we approach the OK-VQA task from a

new perspective, where all the visual information is aligned
into the language space to take advantage of the compre-
hensiveness in textual knowledge bases. Moreover, we pro-
pose a robust Transform-Retrieve-Generate (TRiG) frame-
work that outperforms state-of-the-art supervised methods
by 11.1%. One can plug-and-play with different image-to-
text methods and textual knowledge bases into TRiG for
potential further improvement. Our work has limitations
that the dense passage retrieval is not optimized for the OK-
VQA task, due to the unavailability of ground-truth support-
ing facts. We consider this as one of our future work, as well
as improving the quality of image-to-text transformation.
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