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Figure 1. Overview of our novel pretext task, Multiple Choice Questions (MCQ), for video-text pre-training. MCQ is performed using a
newly-proposed parametric module BridgeFormer, which associates all-level local features (intermediate tokens) from VideoFormer and
TextFormer to answer multiple choice questions in the form of contrastive learning. Given that nouns and verbs carry informative local
objects and object motions, we construct a noun question (in yellow) and a verb question (in red) by erasing the corresponding phrase
from the sentence. The BridgeFormer is trained to select the correct erased phrase via visual reasoning with intermediate tokens from
VideoFormer, given the questions’ intermediate tokens from TextFormer. The noun and verb questions promote VideoFormer to capture
detailed spatial content and temporal information. The semantic associations between video-text intermediate tokens are also enhanced via
the proxy task of questions and answers. Note that BridgeFormer is removed for downstream retrieval.

Abstract
Pre-training a model to learn transferable video-text

representation for retrieval has attracted a lot of attention
in recent years. Previous dominant works mainly adopt
two separate encoders for efficient retrieval, but ignore lo-
cal associations between videos and texts. Another line of
research uses a joint encoder to interact video with texts,
but results in low efficiency since each text-video pair needs
to be fed into the model. In this work, we enable fine-
grained video-text interactions while maintaining high effi-
ciency for retrieval via a novel pretext task, dubbed as Mul-
tiple Choice Questions (MCQ), where a parametric mod-
ule BridgeFormer is trained to answer the “questions” con-
structed by the text features via resorting to the video fea-
tures. Specifically, we exploit the rich semantics of text (i.e.,
nouns and verbs) to build questions, with which the video
encoder can be trained to capture more regional content
and temporal dynamics. In the form of questions and an-
swers, the semantic associations between local video-text

features can be properly established. BridgeFormer is able
to be removed for downstream retrieval, rendering an ef-
ficient and flexible model with only two encoders. Our
method outperforms state-of-the-art methods on the popu-
lar text-to-video retrieval task in five datasets with different
experimental setups (i.e., zero-shot and fine-tune), including
HowTo100M (one million videos). We further conduct zero-
shot action recognition, which can be cast as video-to-text
retrieval, and our approach also significantly surpasses its
counterparts. As an additional benefit, our method achieves
competitive results with much shorter pre-training videos
on single-modality downstream tasks, e.g., action recogni-
tion with linear evaluation.

1. Introduction

Pre-training a model to learn transferable representa-
tions for video-text retrieval requires the understanding of
video concepts, text semantics, and the relationships be-
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tween videos and texts. Existing works for video-text pre-
training can be divided into two main categories. “Dual-
encoder” methods [6,11,13,22,24,27,30,38,40] (see Fig. 2
(a)) adopt two separate encoders to contrast video-level and
sentence-level representations respectively, ignoring the de-
tailed local information within each modality and the as-
sociations between modalities. “Joint-encoder” methods
[20, 21, 23, 35, 37, 41] (see Fig. 2 (b)) concatenate texts
and videos as inputs to a joint encoder for the interactions
between local features of videos and texts, sacrificing the
retrieval efficiency (every text-video pair needs to be fed
into the encoder during inference) for the benefits of fine-
grained feature learning.

To enable fine-grained video-text interactions and mean-
while maintaining high retrieval efficiency, we introduce
a novel parametric pretext task for video-text pre-training,
namely, Multiple Choice Questions (MCQ), which prop-
erly bridges texts with videos in all their feature levels. A
new module termed BridgeFormer, makes it possible, as
illustrated in Fig. 1. Based on the backbone of a “dual-
encoder” framework, BridgeFormer is trained to answer the
“questions” generated by the text features via visual reason-
ing with the video features. MCQ enhances local feature
learning within each modality as well as the fine-grained
semantic associations cross modalities, and BridgeFormer
can be readily removed when transferring to downstream
tasks without the loss of representation discriminativeness.

Specifically, we construct the “questions” by erasing a
content phrase from the raw text, and the correct “answer”
should be the erased phrase itself. Motivated by the obser-
vation that noun and verb phrases in a text carry rich se-
mantic information [40], which can reflect the local objects
and object motions in the video respectively, we randomly
choose nouns or verbs as our content phrases. Bridge-
Former is then trained to select the correct answer from
multiple choices (all the erased content phrases in a batch)
in the form of contrastive learning by resorting to the local
features from the video encoder. Such a proxy training ob-
jective enforces the video encoder to capture accurate spa-
tial content (to answer nouns) and temporal dynamics (to
answer verbs), promoting the discriminativeness of the lo-
cal features and the semantic associations between the local
video patches and the text phrases.

BridgeFormer connects local features of videos and texts
in all feature levels (low-, mid-, and high-level), i.e., tak-
ing each stage’s features from the video and text encoders
as input. The regularization will be directly imposed on
the video and text features, which is different from the
video-text feature aggregation by the conventional “joint-
encoder”. Therefore, the proxy BridgeFormer only serves
for the pre-training step and can be seamlessly removed
for downstream retrieval, rendering a flexible and efficient
model like the conventional “dual-encoder” methods, i.e.,
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Figure 2. Comparison between existing paradigms and ours for
video-text pre-training. Previous dominant methods either (a)
adopt two separate encoders to contrast video-level and sentence-
level representations, ignoring local associations between videos
and texts, or (b) use a joint encoder to interact fine-grained features
of videos and texts through concatenating them as inputs, result-
ing in low efficiency for retrieval. (c) We propose a novel pretext
task that uses a BridgeFormer to promote local feature learning
and fine-grained video-text associations. For downstream retrieval
task, the proxy BridgeFormer is removed.

the similarity between video and text representations can be
directly measured via dot product.

Our contributions are three-fold. (1) We introduce a
novel pretext task, Multiple Choice Questions (MCQ), for
video-text pre-training to receive the benefits of both “dual-
encoder” and “joint-encoder” methods, i.e., enhancing fine-
grained semantic associations between video and text fea-
tures at the same time preserving high retrieval efficiency.
(2) We propose a parametric module, dubbed as Bridge-
Former, to realize the pretext task of MCQ, with which the
video encoder is trained to be more aware of regional ob-
jects and temporal dynamics, and the associations between
local video-text features are established. Since the Bridge-
Former will be removed on downstream tasks, we do not
increase any additional parameters or computational over-
head for retrieval compared to vanilla backbones. (3) Ex-
tensive results on text-to-video retrieval with different se-
tups ( i.e., zero-shot and fine-tune) on five datasets, includ-
ing the large-scale HowTo100M [25] (1 million videos),
demonstrate the large superiority of our method (see Fig. 3
(a)). Furthermore, we evaluate zero-shot action recogni-
tion, which can be cast as a video-to-text retrieval task.
Our method significantly surpasses its competitive counter-
parts by a large margin, as demonstrated in Fig. 3 (a). As
a bonus, we find our method also benefits single-modality
video representations as shown in Fig. 3 (b), where the
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Figure 3. (a) Comparison between recent video-text pre-
training methods for zero-shot text-to-video retrieval on MSR-
VTT (R@1), HowTo100M (R@50) and zero-shot action recog-
nition (video-to-text retrieval) on HMDB51 (top-1) and UCF101
(top-1). (b) Video length for pre-training and the top-1 accuracy
of action recognition with linear evaluation, where “-X” denotes
the modality used for pre-training besides videos, i.e., optical flow
(OF), motion vector (MV), audio (A), and text (T).

top-1 accuracy of action recognition with linear evaluation
is reported. Despite those considerably longer videos be-
ing used in state-of-the-art pre-training methods (e.g., 11×
longer in MMV [2] than ours), our method still compares
favorably with them.

2. Related Work

Pre-training for video-text retrieval. Dominant pre-
training methods for video-text retrieval can be classified
into two categories. Methods in the first category [6, 11,
13, 22, 24, 27, 30, 38, 40] adopt two individual encoders to
embed video features and text features, and project them
into the same latent space. Contrastive objectives [16, 26]
are used here to distinguish paired video-text data with un-
paired data. This kind of methods is more favored by large-
scale retrieval applications due to its high efficiency. How-
ever, simply imposing the regularizations on the final fea-
tures ([CLS] tokens) from two modalities leads to the insuf-
ficient interaction between local video-text representations.
Methods in the second category [20, 21, 23, 35, 37, 41] en-
semble texts and videos as inputs to a joint encoder for the
cross-modality fusion, followed by a binary classifier which
is trained to predict whether videos and texts are aligned
or not. Despite they can build local associations between

video-text tokens, each pair of video and text candidates
needs to be fed into the model for similarity calculation dur-
ing inference, resulting in extremely low efficiency.

The pretext task of masked word prediction. Previous
cross-modality pre-training work [17,23,41] use the pretext
of masked word prediction (MWP), which randomly masks
a proportion of words in the sentence and regularize the net-
work to predict the masked words from a fixed vocabulary
under the condition of visual inputs. Our introduced MCQ
pretext task differs from MWP in two ways: (1) Predict-
ing words in MWP imposes the regularizations on low-level
word tokens, which may harm the interacted representation
learning since the network also needs to serve as a text de-
coder. In contrast, contrasting answers with content phrases
in our MCQ focuses on high-level semantics, showing sig-
nificantly better results than MWP (will be discussed in ex-
periments). (2) MCQ erases noun and verb phrases to con-
struct informative questions, which reflects salient semantic
information in visual features, while MWP randomly masks
words (e.g., function words without content).

3. Method

We adopt the “dual-encoder” structure for video-text pre-
training to realize highly efficient retrieval, and propose a
new pretext task, Multiple Choice Questions (MCQ), with
a parametric module BridgeFormer, to enhance fine-grained
semantic associations between videos and texts. In this sec-
tion, we first revisit the dual-encoder in Sec. 3.1. We then
introduce the pretext task MCQ in Sec. 3.2 and the pre-
training objectives in Sec. 3.3. At last, we describe the ar-
chitecture of three components including a VideoFormer, a
TextFormer, and a BridgeFormer in Sec. 3.4.

3.1. Dual-encoder for Video-text Pre-training: a
revisit

As shown in Fig. 4, we adopt a dual-encoder structure,
which consists a VideoFormer for learning video repre-
sentations from raw video frame pixels, and a TextFormer
for encoding text representations from natural languages.
Given a video and its corresponding text description (e.g.,
“A girl in shorts and a hat is dancing on the green grass”),
we first embed their respective representations from Video-
Former and TextFormer, which are projected to a common
embedding space as fv and ft via two separate linear layers.
The similarity between the video and the text is calculated
via the dot product between fv and ft. A contrastive objec-
tive [16, 26] is utilized to maximize the similarity between
fv and ft of positive pairs while minimizing the similarity
between fv and ft of negative pairs (A video and its corre-
sponding text description is regarded as a positive pair, and
otherwise as a negative pair). The independent dual encoder
pathways require only the dot product between video and
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text representations for similarity calculation in retrieval,
which ensures the high efficiency.

3.2. Multiple Choice Questions

As shown in Fig. 1, the pretext task MCQ is per-
formed using a parametric module BridgeFormer, which
associates all-level intermediate tokens from VideoFormer
and TextFormer to answer multiple choice questions. Given
the observation that noun and verb phrases in a text carry
rich semantic information, which can reflect the local ob-
jects and object motions in the video respectively, we ran-
domly erase a noun or verb phrase to construct noun or verb
questions. BridgeFormer is then trained to select the cor-
rect answer from multiple choices (all the erased phrases in
a batch) by resorting to the local tokens of VideoFormer in
the form of contrastive learning. MCQ involves the objec-
tives of answering noun questions and verb questions.

Answer Noun Question. Given a video and its correspond-
ing text description (e.g., “A girl in shorts and a hat is danc-
ing on the green grass”), we randomly erase a noun phrase
(e.g., “green grass”) as a noun question (e.g., “A girl in
shorts and a hat is dancing on the [?]”). As shown in Fig. 4,
the noun question is fed into TextFormer for intermediate
text tokens {z}noun q . The intermediate video tokens are
extracted from VideoFormer as {z}v . BridgeFormer takes
the noun question tokens {z}noun q as the query, and video
tokens {z}v as the key and value to obtain the noun an-
swer representations through cross-modality attention. The
erased noun phrase is fed into TextFormer for noun repre-
sentations. Similarly, the noun answer representations and
the noun representations are projected into a common em-
bedding space as fnoun a and fnoun via two separate linear
layers, and their similarity is calculated via dot product. We
adopt a contrastive objective to maximize the similarity be-
tween fnoun a and fnoun, when fnoun is the representations
of the correct noun phrase, and minimize the similarity be-
tween fnoun a and fnoun, when fnoun is the representations
of other (wrong) noun phrases. Training BridgeFormer to
select the correct noun phrase by resorting to video tokens
enforces VideoFormer to capture accurate spatial content.

Answer Verb Question. Similarly, we randomly erase a
verb phrase (e.g., “dancing”) of the text description as a verb
question (e.g., “A girl in shorts and a hat is [?] on the green
grass”). As shown in Fig. 4, BridgeFormer takes verb ques-
tion text tokens {z}verb q from TextFormer as the query,
and video tokens {z}v as the key and value to obtain the
verb answer representations. The erased verb phrase is fed
into TextFormer for verb representations. The verb answer
representations and the verb representations are projected
into a common embedding space as fverb a and fverb. A
contrastive objective is adopted to maximize the similarity
between fverb a and fverb, when fverb is the representations

TextFormer VideoFormer
𝑄 𝐾, 𝑉

𝑓! 𝑓"𝑓!"#!_%
𝑓&'()_%𝑓&*()

𝑓!"#!

{𝑧}&{𝑧}!+,!_-

BridgeFormer

Text, 
Verb，
Noun

…

Contrastive

𝑄{𝑧}&*()_-

“[CLS] A girl in shorts
and a hat is [?]/dancing 
on the [?]/green grass”

Figure 4. Our pre-training pipeline, which (1) contrasts video
representations fv with text representations ft, (2) trains Bridge-
Former to select the correct noun answer by contrasting noun an-
swer representations fnoun a with noun representations fnoun, (3)
trains BridgeFormer to choose the correct verb answer by contrast-
ing verb answer representations fverb a with verb representations
fverb. Note that BridgeFormer receives all-level tokens as the in-
put, but we only draw one pathway here for brevity.

of the correct verb phrase, and minimize the similarity be-
tween fverb a and fverb, when fverb is the representations
of other verb phrases. Training BridgeFormer to choose the
correct verb phrase through seeking help from video tokens
forces VideoFormer to capture detailed temporal dynamics.

3.3. Pre-training Objectives
We adopt the Noise-Contrastive Estimation (NCE) [16,

26] as the contrastive objective and combine three objec-
tives to optimize the entire model in an end-to-end manner
as follows,

L = Lvanilla + Lnoun + Lverb (1)

where Lvanilla is the NCE loss between video representa-
tions fv and text representations ft, Lnoun is the NCE loss
between noun answer representations fnoun a and noun rep-
resentations fnoun, Lverb is the NCE loss between verb an-
swer representations fverb a and verb representations fverb.
We formulate NCE loss as below,

NCE(xi, yi) = −log
exp(xT

i yi/τ)∑B
j=1 exp(xT

i yj/τ)
(2)

where B is the number of the batch size and the temperature
hyper-parameter τ is empirically set to 0.05 per [6].

3.4. Model Architecture

3.4.1 VideoFormer

Input. VideoFormer takes a video V ∈ RM×3×H×W

as input containing variable M frames. The input video
is first divided into M × N patches, and are further fed
into a linear projection head to get a sequence of tokens
{z}v ∈ RM×N×D, where D is the number of embedding
dimensions. Following BERT [9], a learnable [CLS] token
is concatenated to the beginning of the token sequence, and
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Figure 5. The detailed architecture of TextFormer, Video-
Former and BridgeFormer, which contain a stack of TextBlocks,
VideoBlocks and BridgeBlocks, respectively. Tokens from all-
level VideoBlock and TextBlock are fed into the corresponding
BridgeBlock to perform cross-modal attention and then are added
to the output tokens of the previous BridgeBlock (if any).

learnable spatial positional embeddings are added, resulting
in final token sequence {z}0v ∈ R(1+M×N)×D.

VideoBlock. The input video token sequence {z}0v is fed
into VideoFormer, which consists of a stack of VideoBlocks
as shown in Fig. 5, adopting the structure of ViT [10]. We
make a minor modification to the original ViT to allow for
the input of video frames with variable length, which will
be explained in the appendix.

3.4.2 TextFormer

Input. TextFormer takes three kinds of nature languages as
inputs, including a complete text description, noun or verb
questions with a noun or verb phrase erased, and the erased
noun or verb phrase. A [CLS] token is concatenated to the
beginning of the input for final text representations.

TextBlock. We adopt a multi-layer bidirectional trans-
former encoder [31] as TextFormer, which consists of a
stack of TextBlocks as shown in Fig. 5.

3.4.3 BridgeFormer

Input. BridgeFormer takes noun question or verb question
tokens from TextFormer as the query, and video tokens from
VideoFormer as the key and value to obtain the answer rep-
resentations with cross-modality attention.

BridgeBlock. BridgeFormer is built upon a vision trans-
former with a stack of BridgeBlocks as shown in Fig. 5.

Specifically, given noun question or verb question text to-
kens {z}l−1

q ∈ RL×D from TextBlock as the query, and
video tokens {z}l−1

v ∈ RM×(N×D) (without the [CLS] to-
ken) from VideoBlock as the key and value, BridgeBlock-
l obtains the interacted tokens {z}lqv through performing
multi-head attention, which calculates the cross-modality
attention between the question text tokens and video patch
tokens within each frame. The interacted tokens {z}lqv
added with the output {z}l−1

a from the previous Bridge-
Block further go through the attention block for temporal
and spatial self-attention as shown in Fig. 5 to obtain the an-
swer tokens {z}la. The answer representations are extracted
from the [CLS] token of the final block.

4. Experiments
4.1. Pre-training Datasets

Following the recent work [6], we jointly pre-train our
model on an image dataset Google Conceptual Captions
(CC3M) [32] with 3.3M image-text pairs, and a video
dataset WebVid-2M [6] with 2.5M video-text pairs. We
do not pre-train our model on the large-scale video-text
dataset HowTo100M [25] with 136M video-text pairs con-
sidering the enormous computation cost. Instead, we use
HowTo100M as a large-scale zero-shot text-to-video re-
trieval benchmark for evaluation, which is in line with real-
world applications.

4.2. Downstream Tasks

Text-to-Video Retrieval. (a). MSR-VTT [39] contains
10K YouTube videos with 200K descriptions, which is
split into 9K videos for training and 1K videos for test.
(b). MSVD [8] consists of 1,970 videos from YouTube
with 80K descriptions, which is split into 1200, 100
and 670 videos for training, validation and testing. (c).
LSMDC [29] consists of 118,081 video clips from 202
movies. The validation set and the test set contain 7,408
and 1,000 videos. (d). DiDeMo [5] contains 10K Flickr
videos with 40K sentences, where the test set contains 1,000
videos. We concatenate all sentence descriptions for a video
as a single query following [6]. (e). HowTo100M [25] con-
tains 1.22M videos with 136M descriptions. All sentence
descriptions for a video are concatenated as a single query.
To our knowledge, it is the first time that downstream text-
to-video retrieval is evaluated on the large-scale dataset, i.e.,
HowTo100M. Two setting are explored for evaluation, in-
cluding zero-shot and fine-tune.

Action Recognition. (a). HMDB51 [19], which contains
6,766 videos with 51 categories. (b). UCF101 [33], which
contains 13,320 videos with 101 action classes. Three set-
ting are explored for evaluation, including linear, where pa-
rameters of the learned video encoder are frozen and only
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Table 1. Experiments of text-to-video retrieval on MSR-VTT test set with 1K videos, where higher R@k and lower MedR (Median Rank)
indicate better performance. Video Encoder Input: 3D features from the architectures (Raw Videos means training on raw video frame
pixels without using pre-extracted features). # Pairs PT: the number of video-text pairs for pre-training. We show results with zero-shot
evaluation (top) and fine-tuning evaluation (bottom).

Method Year Video Encoder Input PT Dataset #Pairs PT R@1 R@5 R@10 MedR
ActBERT [41] 2020 ResNet-3D HowTo100M 120M 8.6 23.4 33.1 36.0

MMV [2] 2020 Raw Videos HowTo100M, AudioSet 138M 9.3 23.0 31.1 38.0
MIL-NCE [24] 2020 Raw Videos HowTo100M 120M 9.9 24.0 32.4 29.6

VATT [1] 2021 Raw Videos HowTo100M, AudioSet 138M - - 29.7 49.0
NoiseEst [4] 2021 ResNeXt-101 HowTo100M 110M 8.0 21.3 29.3 33.0
TACo [40] 2021 I3D, S3D HowTo100M 120M 9.8 25.0 33.4 29.0

VideoCLIP [38] 2021 S3D HowTo100M 110M 10.4 22.2 30.0 -
MCN [7] 2021 ResNeXt-101 HowTo100M 120M 10.5 25.2 33.8 -

SupportSet [27] 2021 R(2+1)D-34 HowTo100M 120M 12.7 27.5 36.2 24.0
Frozen [6] 2021 Raw Videos CC3M, WebVid-2M 5.5M 18.7 39.5 51.6 10.0

AVLnet [30] 2021 ResNeXt-101 HowTo100M 120M 19.6 40.8 50.7 9.0
Ours 2021 Raw Videos CC3M, WebVid-2M 5.5M 26.0 46.4 56.4 7.0

ActBERT [41] 2020 ResNet-3D HowTo100M 120M 16.3 42.8 56.9 10.0
UniVL [23] 2020 S3D HowTo100M 110M 21.2 49.6 63.1 6.0
MMT [11] 2020 S3D HowTo100M 120M 26.6 57.1 69.6 4.0
HERO [21] 2021 SlowFast TV and HowTo100M 120M 16.8 43.4 57.7 -
NoiseEst [4] 2021 ResNeXt-101 HowTo100M 110M 17.4 41.6 53.6 8.0
ClipBert [20] 2021 Raw Videos COCO, VisGenome 5.6M 22.0 46.8 59.9 6.0
AVLnet [30] 2021 ResNeXt-101 HowTo100M 120M 27.1 55.6 66.6 4.0
VLM [37] 2021 S3D HowTo100M 110M 28.1 55.5 67.4 4.0
TACo [40] 2021 I3D, S3D HowTo100M 120M 28.4 57.8 71.2 4.0

SupportSet [27] 2021 R(2+1)D-34 HowTo100M 120M 30.1 58.5 69.3 3.0
VideoCLIP [38] 2021 S3D HowTo100M 110M 30.9 55.4 66.8 -

Frozen [6] 2021 Raw Videos CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0
Ours 2021 Raw Videos CC3M, WebVid-2M 5.5M 37.6 64.8 75.1 3.0

a linear classifier is optimized, fine-tune, where the video
encoder is fine-tuned with the linear classifier, and zero-
shot, which performs video-to-text retrieval through using
the names of the action classes as the text description.

4.3. Implementation Details

Videos are resized to 224 × 224 as input. We divide a
video into M equal segments, and randomly sample a single
frame from each segment for training while uniformly sam-
ple a frame from each segment for testing. VideoFormer
contains 12 blocks with patch size P = 16, and sequence
dimension D = 768. It is initialized with ViT [10] weights
trained on ImageNet-21k following [6]. TextFormer adopts
the architecture of DistilBERT [31] pre-trained on English
Wikipedia and Toronto Book Corpus. The dimension of
the common feature space is set to 256. The temperature
hyper-parameter of the contrastive objective is set to 0.05.
The above implementation details follow the recent work
[6] for fair comparison. BridgeFormer contains 12 blocks.
We first pre-train our model on the image dataset CC3M and
video dataset WebVid-2M using 1 frame for 10 epochs with
the batch size of 2048 and the learning rate of 1×10−4. We
then pre-train our model on the video dataset WebVid-2M
using 4 frames for 4 epochs with the batch size of 800 and
the learning rate of 3 × 10−5. Pre-training takes a total of
25 hours. For downstream tasks, 4 frames for text-to-video
retrieval and 16 frames for action recognition are uniformly
sampled following the setting of previous work [6, 24].

4.4. Main Results

4.4.1 Text-to-Video Retrieval

Table. 1 lists the results on MST-VTT [39]. First of all, our
method outperforms all previous work by a large margin.
The significantly higher performance of our model under
the zero-shot evaluation demonstrates the stronger gener-
alization ability of our pre-trained model. Fine-tuning our
pre-trained model on the training set of MSR-VTT also sur-
passes its counterparts overwhelmingly, showing its advan-
tage in using task-specific data for optimization. Second,
while previous work mostly pre-train on HowTo100M [25]
with the magnitude exceedingly large than our pre-training
dataset CC3M [32] and WebVid-2M [6] (20x larger in the
number of video-text pairs), our method still achieves the
highest performance with much lower computation cost (i.e.
VATT [1] takes 3 days using 256 TPUs while ours takes 25
hours using 40 A100.) Third, previous work rely on pre-
extracted features from “expert” models as the input of the
video encoder (i.e. SupportSet [27] uses features from a 34-
layer, R(2+1)-D model [36] pre-trained on IG65M [12] as
the input), while our model takes raw video frame pixels as
inputs and achieves significant performance gain. Finally,
compared with previous work [20, 21, 23, 37, 41] that adopt
a joint encoder to concatenate videos and texts as inputs
and thus every text-video combination needs to be imputed
to the model for retrieval, our model only contains a video
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Table 2. Experiments of text-to-video retrieval on different datasets, where higher R@k and lower MedR (Median Rank) indicate better
performance. We show results with zero-shot evaluation (top) and fine-tuning evaluation (bottom).

(a) MSVD test set with 670 videos.

Method R@1 R@5 R@10 MedR
NoiseEst [4] 13.7 35.7 47.7 12.0

SupportSet [27] 21.4 46.2 57.7 6.0
Frozen [6] 33.7 64.7 76.3 3.0

Ours 43.6 74.9 84.9 2.0

NoiseEst [4] 20.3 49.0 63.3 6.0
SupportSet [27] 28.4 60.0 72.9 4.0

Frozen [6] 45.6 79.8 88.2 2.0
Ours 52.0 82.8 90.0 1.0

(b) LSMDC test set with 1K videos.

Method R@1 R@5 R@10 MedR
AVLnet [30] 1.4 5.9 9.4 273.5
NoiseEst [4] 4.2 11.6 17.1 119.0
Frozen [6] 9.3 22.0 30.1 51.0

Ours 12.2 25.9 32.2 42.0

NoiseEst [4] 6.4 19.8 28.4 39.0
MMT [11] 12.9 29.9 40.1 19.3
Frozen [6] 15.0 30.8 39.8 20.0

Ours 17.9 35.4 44.5 15.0

(c) DiDeMo test set with 1K videos.

Method R@1 R@5 R@10 MedR
VideoCLIP [38] 16.6 46.9 - -

Frozen [6] 21.1 46.0 56.2 7.0
Ours 25.6 50.6 61.1 5.0

HERO [21] 2.1 - 11.4 -
CE [22] 16.1 41.1 82.7 8.3

ClipBert [20] 20.4 48.0 60.8 6.0
Frozen [6] 31.0 59.8 72.4 3.0

Ours 37.0 62.2 73.9 3.0

Table 3. Experiments of zero-shot text-to-video retrieval on the
large-scale HowTo100M, where higher R@k and lower MedR
indicate better performance. “Video Num” denotes the number of
sampled videos for evaluation, where 1M denotes the whole set.

Video Num Method R@50 R@200 R@500 MedR

10K
ClipBert [20] 15.8 33.6 49.8 506.0

Frozen [6] 28.0 46.6 61.5 244.0
Ours 31.6 50.9 65.2 189.0

50K Frozen [6] 13.4 25.0 36.2 1247.0
Ours 15.9 28.6 40.2 965.0

0.1M Frozen [6] 9.4 18.5 27.5 2519.0
Ours 11.5 21.7 31.2 1907.0

0.5M Frozen [6] 4.0 8.5 13.4 12501.0
Ours 5.0 10.3 15.9 9449.0

1M Frozen [6] 2.6 5.9 9.5 24597.0
Ours 3.4 7.3 11.6 18612.0

and a text encoder for downstream retrieval, which requires
only the dot product between the video and text represen-
tations, thus greatly improves efficiency. We further show
text-to-video retrieval results on MSVD [8], DiDeMo [5]
and LSMDC in Table. 2. We can observe that our model
achieves the best performance on these three datasets with
both zero-shot and fine-tuning evaluation.

Besides evaluating text-to-video retrieval on a relatively
small number of videos following previous work (e.g. 1K
videos in MSR-VTT test set), we evaluate our model on the
large-scale HowTo100M with 1 million videos, which is a
more challenging and realistic scenario. Table. 3 shows that
our pre-trained model surpasses SOTA Frozen [6], rang-
ing from 10K videos to 1M videos. Since our method and
Frozen both adopt two encoders (built on ViT [10] and Dis-
tilBERT [31]) for retrieval and are pre-trained on the same
datasets, the superior performance of ours proves the ef-
fectiveness of our pretext task MCQ in learning powerful
representations for text-to-video retrieval.

4.4.2 Action Recognition

We conduct zero-shot action recognition on HMDB51 [19]
and UCF101 [33], which can be treated as video-to-text re-
trieval and it is not evaluated in recent methods. As shown
in Table. 4, our model significantly surpasses its competitive

counterparts. The top-1 accuracy of our model averaged on
three splits improves 16.3% and 9.9% on HMDB51, 25.3%
and 7.2% on UCF101 than the recently proposed ClipBert
and Frozen, which shows the great advantage of our model
in learning joint representations between videos and lan-
guages that enable zero-shot action recognition.

We further evaluate the single-modality video repre-
sentations of our model via action recognition with linear
and fully fine-tuning evaluation as shown in Table. 5, where
the representations from VideoFormer are extracted as the
input of a trainable linear classifier. Our method achieves
higher accuracy than some previous work that pre-train their
model on datasets with considerably longer video time (e.g.
14× longer in XDC [3], 10× longer in MIL-NCE [24]
and VATT [1]), showing the effectiveness of our method in
learning transferable video representations for action recog-
nition. Despite MMV [2] performs better than our method
when pre-training on datasets 11× longer than ours with
multiple modalities including audio and text besides video,
its performance lags far behind ours when only audio and
video or text and video are used. We can conclude that our
method utilizes the language modality more efficiently to
learn stronger video representations with fewer video hours.

4.5. Ablation Studies

In this section, we discuss the effectiveness of our design
on the pretext task MCQ through evaluating different mod-
els for zero-shot text-to-video retrieval on MSR-VTT, and
zero-shot action recognition on HMDB51 and UCF101.

Is MCQ effective? Yes. As shown in Table. 6, pre-training
a model without MCQ pretext task drops performance sig-
nificantly, where only two separate encoders are adopted to
contrast video-level and sentence-level features.

Does it help to answer noun and verb questions? Yes.
As shown in Table. 6, training the BridgeFormer through
answering noun questions only or verb questions only both
harm performance. Randomly erasing words to construct
questions also achieves worse results.
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Table 4. Experiments of zero-shot action recognition (video-to-
text retrieval) on HMDB51 and UCF101, in terms of top-1 ac-
curacy. “S” denotes different test splits and “Mean” reports the
results averaged on three splits.

Method HMDB51 UCF101
S1 S2 S3 Mean S1 S2 S3 Mean

ClipBert [20] 20.0 22.0 22.3 21.4 27.5 27.0 28.8 27.8
Frozen [6] 27.5 28.3 27.7 27.8 45.4 44.7 47.7 45.9

Ours 38.0 36.1 39.1 37.7 51.1 54.3 53.8 53.1

Table 5. Experiments of action recognition on HMDB51 and
UCF101 with linear evaluation (Lin) and fully fine-tuning eval-
uation (Full). The evaluation metric is top-1 accuracy. “Mod”
denotes the modality used for pre-training besides videos, i.e., op-
tical flow (OF), motion vector (MV), audio (A), text (T). “Len”
denotes the total duration of videos for pre-training in kilo hours.

Method Mod Len (K) HMDB UCF
Lin Full Lin Full

CCL [18] - 1.8 29.5 37.8 54.0 69.4
CBT [34] - 1.8 29.5 44.5 54.0 79.5

MemDPC [14] OF 1.8 30.5 54.5 54.1 86.1
CoCLR [15] OF 1.8 52.4 62.9 77.8 90.6

MVCGC MV 1.8 53.0 63.4 78.0 90.8
XDC R [3] A 188.3 49.9 61.2 80.7 88.8
XDC K [3] A 188.3 56.0 63.1 85.3 91.5

MIL-NCE [24] T 134.5 54.8 59.2 83.4 89.1
Frozen [6] T 13.0 61.3 66.3 87.8 89.8
VATT [1] A, T 139.8 63.3 - 89.2 -
ELO [28] A, OF 115.0 64.5 67.4 - 93.8
MMV [2] A 134.5 53.6 - 77.1 -
MMV [2] T 134.5 55.1 - 86.8 -
MMV [2] A, T 139.8 67.1 75.0 91.8 95.2

Ours T 13.0 65.8 69.8 89.1 92.3

Do videos help to answer questions? Yes. As shown in Ta-
ble. 7, when the noun-question and verb-question select an-
swers only through calculating the similarity between ques-
tion representations and phrase representations from text
encoder without resorting to video tokens through Bridge-
Former, the results decrease sharply.

Multiple Choice Questions vs. Masked Word Prediction.
Training the BridgeFormer to predict the answer in the form
of word tokens (similar to existing masked work prediction
(MWP)) rather than select the correct answer in a batch of
phrases in our MCQ actually hurts performance as shown in
Table. 6, which is even lower than the baseline (w/o MCQ).

All-level features vs. highest-level features for Bridge-
Former. When BridgeFormer takes the highest-level fea-
tures from the text and video encoders as inputs (a cascad-
ing structure) instead of all-level features (a parallel struc-
ture), we observe the performance drops as shown in Ta-
ble. 6 due to the lack of regularization on intermediate fea-
tures. Even so, using only the highest-level features can
also slightly outperform our baseline (w/o MCQ), indicat-
ing the effectiveness of our MCQ pretext task. Actually,
such a cascading structure is similar to those used in pre-

Table 6. Ablation studies on different components of MCQ. Re-
sults of zero-shot text-to-video retrieval on MSR-VTT and zero-
shot action recognition on HMDB51 and UCF101 are reported.

MSR-VTT HMDB51 UCF101
Method R@1 R@5 R@10 Top-1 Top-1

w/o MCQ 22.3 43.8 52.0 33.2 45.7
Answer Random 23.0 45.5 55.5 36.9 50.7

Answer Noun 24.9 46.2 58.0 36.2 51.8
Answer Verb 23.3 46.7 57.5 36.3 51.5

MWP 20.6 39.7 50.1 29.0 38.7
Highest-level 23.3 46.0 56.4 36.5 47.7

Ours 26.0 46.4 56.4 37.7 53.1

Table 7. Ablation study on the effects of video information when
answering the questions. Results on WebVid-2M validation set for
noun or verb questions are reported.

Answer Noun Answer Verb
R@1 R@5 R@10 R@1 R@5 R@10

w/o Video 6.6 17.5 24.3 4.5 12.3 17.7
with Video 58.6 81.1 87.2 40.7 64.0 73.2

vious works [20, 23, 35] where two separate encoders fol-
lowed by a cross transformer are adopted. However, the
cross transformer in these works cannot be easily removed
in the same way as our BridgeFormer for downstream re-
trieval, e.g., evident 6.7% decreases were observed in [23]
in terms of R@1 on text-to-video retrieval, further indicat-
ing the flexibility and feasibility of our novel MCQ.

5. Conclusion

In this work, we introduce a novel pretext task, Multiple
Choice Questions (MCQ) for video-text pre-training, which
strengthens fine-grained semantic associations between lo-
cal video and text features, and at the same time preserves
high efficiency for retrieval. A parametric module Bridge-
Former is trained to answer questions constructed by text
features via resorting to video features, and can be readily
removed for downstream tasks. Extensive evaluations on
the text-to-video retrieval and zero-shot action recognition
clearly show the great superiority of our method.

Limitation. (1) Off-the-shelf NLP models can not extract
completely accurate noun and verb phrases for us to con-
struct questions. (2) The text descriptions and correspond-
ing videos may be actually misaligned in existing video-text
datasets, leading to noisy supervision.

Negative Social Impacts. Since we do not filter out possi-
ble inappropriate videos (e.g., of blood and violence) in the
pre-training dataset, our model can be used to search terri-
ble videos for spreading. Utilizing the pre-trained model to
filter out those videos and re-training a model can help.
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