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Abstract

Image prediction methods often struggle on tasks that

require changing the positions of objects, such as video

prediction, producing blurry images that average over the

many positions that objects might occupy. In this paper, we

propose a simple change to existing image similarity met-

rics that makes them more robust to positional errors: we

match the images using optical flow, then measure the vi-

sual similarity of corresponding pixels. This change leads

to crisper and more perceptually accurate predictions, and

does not require modifications to the image prediction net-

work. We apply our method to a variety of video predic-

tion tasks, where it obtains strong performance with sim-

ple network architectures, and to the closely related task

of video interpolation. Code and results are available

at our webpage: https://dangeng.github.io/

CorrWiseLosses

1. Introduction

Recent years have seen major advances in image predic-

tion [6, 11, 38, 46, 71], yet these methods often struggle to

successfully alter image structure. Consequently, tasks that

involve modifying the positions or shapes of objects, such

as video prediction and the closely related problem of video

interpolation, remain challenging open problems.

Often, there is fundamental uncertainty over where ex-

actly an object should be. When this happens, models tend

to produce blurry results. This undesirable behavior is often

encouraged by the loss function. Under simple pixel-wise

loss functions, such as the L1 distance, each incorrectly po-

sitioned pixel is compared to a pixel that belongs to a differ-

ent object, thereby incurring a large penalty. Models trained

using these losses therefore ªhedgeº by averaging over all

of the possible positions an object might occupy, resulting

in images with significantly lower loss.

We take inspiration from classic image matching meth-

ods, such as Hausdorff matching [4, 36] and deformable

parts models [21, 22, 26], that address this problem by al-

lowing input images to undergo small spatial deformations

before comparison. Before measuring the similarity of an
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Figure 1. Correspondence-wise losses. We propose a similar-

ity metric that provides robustness to small positional errors, and

apply it to image generation. We put the predicted and ground

truth images into correspondence via optical flow, then measure

the similarity between each pixel p and its matching pixel F(p).
Our metric leads to crisp predictions; it penalizes blurry, hedged

images, like the one shown here, since they cannot be easily put

into correspondence with the ground truth.

image and a template, these methods first geometrically

align them, thereby obtaining robustness to small variations

in position or shape.

Analogously, we propose a simple change to existing

losses that makes them more robust to small positional er-

rors. When comparing two images, we put them into cor-

respondence using optical flow, then measure the similarity

between matching pairs of pixels. Comparisons between

the images therefore occur between pixel correspondences,
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rather than pixels that reside in the same spatial positions

(Figure 1), i.e. the loss is computed correspondence-wise

rather than pixel-wise.

Despite its simplicity, our proposed ªloss extensionº

leads to crisper and more perceptually accurate predictions.

To obtain low loss, the predicted images must be easy to

match with the ground truth via optical flow: every pixel in

a target image requires a high-quality match in the predicted

image, and vice versa. Blurry predictions tend to obtain

high loss, since there is no simple, smooth flow field that

puts them into correspondence with the ground truth. The

loss also encourages objects to be placed in their correct po-

sitions, as positional mistakes lead to poor quality matches

and occluded content, both of which incur penalties.

Since optical flow matching occurs within the loss func-

tion our approach does not require altering the design of

the network itself. This is in contrast to popular flow-based

video prediction architectures [27, 39, 58, 106] that produce

a deformation field within the network, then generate an im-

age by warping the input frames.

We demonstrate the effectiveness of our method in a

number of ways:

• We show through experiments on a variety of video pre-

diction tasks that our method significantly improves per-

ceptual image quality. Our evaluation studies a variety

of loss functions, including L1 and L2 distance and per-

ceptual losses [28, 42]. These losses produce better re-

sults when paired with correspondence-wise prediction

on egocentric driving datasets [13, 29].

• We obtain video prediction results that outperform a

flow-based state-of-the-art video prediction method [95]

on perceptual quality metrics for KITTI [29] and

Cityscapes [13], despite using a simple, off-the-shelf

network architecture.

• We apply our loss to the closely-related task of video

interpolation [45], where we obtain significantly better

results than an L1 loss alone.

• We show that our method also improves performance of

stochastic, variational autoencoder (VAE) video predic-

tion architectures [15, 88].

2. Related Work

Video prediction. Early work in video prediction used re-

current networks to model long-range dependencies [44,64,

65, 80, 83]. More recent work has focused on photoreal-

istic video prediction using large convolutional networks.

Lotter et al. [60] proposed a predictive coding method and

applied it to driving videos. Wang et al. [92] predicted fu-

ture semantic segmentation maps then translated them into

images. Other work has improved image quality using ad-

versarial losses [50, 52, 92], multiscale models [62], and re-

current networks with contextual aggregation [8]. These

methods are complementary to ours, as our loss is archi-

tecture agnostic. Other work uses video prediction methods

for model-based reinforcement learning [23, 30, 68]. Re-

cently, Jayaraman et al. [40] proposed time-agnostic pre-

diction, which gives a model flexibility to predict any of the

future frames in a video. Our method proposes a similar

mechanism, but in space, rather than time.

Another line of work has addressed the challenges of

uncertainty in video prediction through stochastic mod-

els, such as variational autoencoders (VAEs) [48], that

learn the full distribution of outcomes which is then sam-

pled [1, 15, 100]. Notably, Denton and Fergus [15] in-

troduced a recurrent variational autoencoder that used a

learned prior distribution. This work was later extended by

Villegas et al. [88], which introduced architectural changes

and significantly increased the scale of the model, obtain-

ing impressive results. CastrejÂon et al. [10] also observed

that high capacity models improve generation results. Other

work has introduced compositional models [102] and sparse

predictions [31, 33, 91]. Our approach is complementary

to this line of work; in our experiments we obtain benefits

from using our loss in VAE-based video prediction [15,88].

Flow-based video prediction. Rather than directly out-

putting images, many video prediction methods instead pre-

dict optical flow for each pixel and then synthesize a result

by warping the input image. In early work, Patraucean et

al. [72] predicted optical flow using a convolutional recur-

rent network. Liu et al. [58] predicted a 3D space-time flow

field. Gao et al. [27] regressed motion using optical flow

as pseudo-ground truth, inpainted occlusions, and used se-

mantic segmentation. Later, Wu et al. [95] extended this

approach, conditioning predictions on the trajectories of ob-

jects that their model segments and tracks. Recent work

has used other motion representations, such as factorizing a

scene into stationary and moving components [14, 87, 89],

per-pixel kernels [24,49,67,74,90], or Eulerian motion [57].

Work in 3D view synthesis has adopted a similar approach,

known as appearance flow [69, 69, 106]. Since these meth-

ods can only ªcopy and pasteº existing content, they re-

quire special architectures to account for disocclusion and

photometric changes. For example, state-of-the-art meth-

ods [27, 95] have motion estimation layers, internally per-

form warping via spatial transformers [39], and use sep-

arate inpainting modules [55, 103] to handle disocclusion.

Since our approach only changes the loss function, it could

in principle be combined with these architectures.

Perceptual losses. One way of reducing blur, commonly

used in video prediction [11, 27, 95], is to use percep-

tual losses [28, 42]. These methods exploit the invari-

ances learned for object recognition to provide robustness

to small positional errors. However, because object recog-

nition models learn only partial invariance, when positional

errors are more than a few pixels they result in the same

blurring artifacts seen in simpler, pixel-based losses. In our
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experiments we show that this blurring can be reduced when

applying our method.

Optical flow. Our method uses optical flow to obtain

per-pixel correspondences. To solve this task, Lucas and

Kanade [2, 61] make a brightness constancy assumption

and solve a linearized model. Horn and Schunck [34]

then proposed a smoothness prior for predicting flow. This

approach was extended to use robust estimation meth-

ods [7, 20, 53, 81]. More recent methods use CNNs trained

with supervised [25, 35, 37, 73, 82, 84, 101] or unsuper-

vised learning [5, 43, 56, 75, 94, 104]. Teed and Deng [84]

proposed an architecture for incrementally refining a flow

field. While these works find space-time correspondences

between frames, we instead use it to find correspondences

between generated and ground truth images. In this way,

our work is related to methods that use optical flow for other

tasks, such as matching scenes [54], features [97], or ob-

jects [66, 77, 105].

Deformable matching. Our approach is inspired by

classic work in image matching, particularly Chamfer [4]

and Hausdorff [36] matching. These methods align a tem-

plate to an image before comparison, providing robustness

to small positional errors. A similar approach has been

used in image retrieval [85], and part-based object detec-

tion [21, 22, 26, 107]. Single-image depth estimation has

used analogous invariances to scale or space in its loss func-

tions [18, 19]. Like these works, we allow images to un-

dergo deformations before comparison, but we do so for

synthesis instead of matching or detection.

Video frame interpolation. Frame interpolation shares

many of the same challenges as video prediction, since the

position and motion of objects are often uncertain. To tackle

this problem, various models have been proposed that rely

on optical flow [3, 41, 51, 70, 98], depth [3], or image ker-

nels [12, 51]. Recently, Kalluri et al. [45] proposed a 3D

CNN for interpolation. We augment this architecture with

our loss and show improvements in performance.

3. Correspondence-wise Image Prediction

Our goal is to solve image prediction tasks where there is

uncertainty in the positions of objects. To address this prob-

lem, we propose a ªloss extensionº that provides robustness

to small positional misalignment. Given two images x and

x̂, a traditional pixel-wise loss (e.g., L1 distance between

images) can be written as:

LP (x, x̂) =
1

|P|

∑

p∈P

L(xp, x̂p), (1)

where L is a base loss (e.g., L1 for a pair of pixel intensi-

ties), xp is the pixel color at location p in x, and P is the set

of all pixel indices.

Algorithm 1 Pseudocode in a PyTorch-like style for training an

image prediction method with a correspondence-wise L1 loss.

# Load a minibatch with source and target images
for (im_src, im_tgt) in loader:
# Predict image using a network
im_est = predict_image(im_src)

# Estimate optical flow in both directions
F_est = optical_flow(im_tgt, im_est)
F_tgt = optical_flow(im_est, im_tgt)

# Regularize the flow
F_est = (1 - epsilon) * F_est
F_tgt = (1 - epsilon) * F_tgt

# Warp using bilinear filtering
warp_est = warp(im_est, F_est)
warp_tgt = warp(im_tgt, F_tgt)

# Bidirectional loss with existing loss function
loss1 = l1_loss(im_tgt, warp_est)
loss2 = l1_loss(im_est, warp_tgt)
loss = loss1 + loss2

loss.backward()

warp: bilinear warping with an optical flow field.

In our approach, instead of comparing pixels at the same

indices as in pixel-wise losses, we first compute pixel-to-

pixel correspondences between the images, F(x, x̂), using

optical flow. Then we compare each pixel xp to its corre-

sponding pixel x̂F (p), where F (p) is the pixel in x̂ matched

by the flow field. This loss can be written:

LC(x, x̂) =
1

|P|

∑

p∈P

L(xp, x̂F (p)), (2)

We call the resulting loss a correspondence-wise loss. For

example, when L = L1, we call it a correspondence-wise

L1 loss. The loss is illustrated in Figure 1.

We first detail the implementation of the loss in Sec-

tion 3.1 and 3.2, and then investigate its properties in Sec-

tion 3.3. Pseudocode for the full method, including all of

the following implementation details, is provided in Alg. 1.

3.1. Regularization

Flow scaling. Models that minimize Equation 2 can fall

into local optima during training, especially in the early

stages when images are out-of-domain for the flow network.

In addition, the warping process ªsnapsº objects to their ex-

act ground truth positions, making it hard for the model to

infer where to place objects in the generated image.

To address these issues, we introduce a small multi-

plicative decay to the flow field: FR(x1,x2) = (1 −
ϵ)F(x1,x2). This reduces long-range matching while en-

couraging the model to place objects closer to their true lo-

cations in the target image. In each training step, a model

can decrease its loss if it moves an incorrectly placed object

slightly closer to its true location. We use ϵ = 0.1 and call

this regularization strategy flow scaling.

Alternative methods. We also considered an alternative

regularization strategy, inspired by Chamfer distance [4]

and optical flow smoothness [43, 81] that directly penalizes
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L1

Corr. L1

20% Motion Range 30% Motion Range

(a) Average image under different losses (b) Loss vs. Object Offset

Figure 2. The effect of positional errors on different losses. (a) We show images that minimize the expected error for a toy video

prediction task. The car’s location is sampled uniformly about the center at random (either 20% or 30% of the image width). The full range

of the car’s locations is indicated by the black bars. Note that the L1 loss predictions are blurry, in particular for the 30% setting, whereas

the correspondence-wise L1 loss predictions are crisp in both cases. (b) We examine how the loss changes as a function of positional error

(i.e., how far the predicted object is from its true location). Correspondence-wise losses increase smoothly with magnitude of the error.

the distance that each pixel moves in the flow field. When

using this scheme, our regularization term is

Lreg(u) = λ1||u||
2 + λ2Ledge(∇u), (3)

where Ledge is the edge-aware first-order smoothness

penalty of Jonschkowski et al. [43], ∇u are the flow gra-

dients, and λi are weights. While we found this approach to

be effective in some applications, we found that flow scaling

generally performed better, and requires fewer hyperparam-

eters (see Section 4.1.3).

3.2. Implementation details

Finding correspondences. In order to find F(x, x̂), we

use RAFT [84], an optical flow network which predicts

dense correspondences. In addition we have found that

other models work, such as PWC-Net [82] (see Sec-

tion 4.1.3).

Warp formulation. Equation 2 can be evaluated by iterat-

ing over pixel locations, calculating F(p), taking distances,

and then averaging. However, in practice, we implement

our method as an image warp, followed by a pixelwise loss:

LC(x, x̂) ≈ L(x,warp(x̂, F (x, x̂))), (4)

where warp(x̂,u) is a backward warp of x̂ using the defor-

mation field u. Intuitively, the warp operation aligns pixels

with their correspondences, after which we can apply an

existing loss function. This formulation makes it straight-

forward to turn existing loss functions (e.g., perceptual

losses [42] that operate on patches) into correspondence-

wise losses, by warping and then applying the loss.

Symmetry. Following common practice for matching-

based loss functions [36], we make the loss symmetric using

Lsym = LC(x, x̂) + LC(x̂,x). This discourages models

from generating superfluous content that has no correspon-

dence in the target image.

3.3. Analyzing Correspondence-wise Prediction

To help understand how correspondence-wise losses ad-

dress the challenges of positional uncertainty, we analyze

its behavior on several simplified toy prediction tasks.

Motion uncertainty. We create a simple prediction task

with inherent uncertainty in position. In the example shown

in Figure 2, an object moves horizontally at unknown speed

to a position uniformly distributed in a region near the im-

age center. We ask what the optimal prediction is under var-

ious losses. For a loss L, this is the image x that minimizes

the expected loss Ex∼D[L(x,x)], where D is the image dis-

tribution. We find x using stochastic gradient descent.

For L = L1, the resulting image suffers from blurring1.

By contrast, our correspondence-based L1 loss leads to a

sharp prediction, with the object located in the center of the

distribution. More generally, our loss tends to favor crisp

predictions that commit to a single position over blurry

ones. This is for two reasons: (i) blurry predictions are

harder to match than sharper images via a smooth flow field,

and (ii) images far from their correct position are harder to

match. The same behavior occurs for perceptual losses and

on other scenes (see appendix).

Effect of positional error. Next, we asked how sensitive

the loss is to position. For instance, could a lazy prediction

method simply place objects in incorrect positions, nonethe-

less obtaining low loss when optical flow ªfixesº the mis-

take, e.g., a video prediction model that merely repeats the

1We note that there is an analytical solution for the L1 loss, namely the

median, which our SGD results obtain.
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Figure 3. Next-frame prediction with and without a correspondence-wise loss. We show both L1 + Lp and L1 results, indicated by

the left most column, on KITTI and Caltech. We highlight a noteworthy part of each result. Using a correspondence-wise loss results in

sharper details (e.g., crisper road lines) and more robustness to large motions.

last frame? We visualize the loss as a function of an object’s

positional error in Figure 2, i.e. the loss incurred if the ob-

ject were predicted a given offset from its true position. To

reduce the effect of the background, we averaged the results

over a large number of backgrounds (see appendix for de-

tails). We see that our loss, in fact, steadily increases with

positional offset. Moreover, the global minimum remains

the same. Three reasons we found for this are: (i) Almost

any incorrect prediction will have occluded or extraneous

content that incurs a large loss. (ii) When flow regulariza-

tion is used, the model is explicitly penalized for incorrect

predictions. (iii) The implicit smoothness prior in optical

flow estimation trades off reconstruction error for small,

simple motions; flow methods will tend to choose matches

that incur large reconstruction error over those with large

flow values.

4. Results

Our goal is to understand how correspondence-wise

losses differ from their pixelwise counterparts, and to eval-

uate their effectiveness. To do this we perform experiments

on video prediction, as well as frame interpolation. We ab-

late pixelwise and correspondence-wise losses across vari-

ous tasks, datasets, architectures, and metrics. In addition,

we compare models trained with our loss to the state-of-the-

art methods.

KITTI Cityscapes Caltech

Base Loss Corr. SSIM ↑ LPIPS ↓ 2AFC ↑ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

L1 - 0.563 0.438 13.52 0.820 0.231 0.733 0.250

L1 ✓ 0.586 0.359 14.25 0.819 0.198 0.734 0.216

L2
2 - 0.544 0.499 13.36 0.801 0.291 0.701 0.330

L2
2 ✓ 0.563 0.403 15.16 0.812 0.212 0.707 0.249

L1 + Lp - 0.545 0.213 14.46 0.816 0.092 0.717 0.139

L1 + Lp ✓ 0.548 0.191 20.19 0.810 0.090 0.702 0.141

Table 1. Pixel-wise vs. correspondence-wise losses. We compare

correspondence-wise losses to their pixelwise counter parts, show-

ing its efficacy on KITTI, Cityscapes, and Caltech. The second

column indicates the usage of a correspondence-wise loss. 2AFC

is the rate at which humans chose the generated video over the true

video in a real-or-fake study.

4.1. Video Prediction

Models. We consider both deterministic and stochastic

video prediction architectures. For simplicity, our deter-

ministic model is based on the widely-used residual net-

work [32, 42] from Wang et al. [93], except we replace 2D

convolutions by 3D convolutions [9,86] to process temporal

information, and we replace transposed convolutions with

upsampling followed by 2D convolutions to avoid checker-

board artifacts (see appendix for full network architecture).

Multi-frame prediction is performed by recursively feeding

output images back into the model, as in [27, 60, 95].

The stochastic model we use is the SVG model intro-

3369



duced by Denton and Fergus [15], a CNN with a learned

prior and LSTM layers. In addition, we adopt extensions

to the SVG model proposed by Villegas et al. [88], result-

ing in a model we call SVG++. This is a large-scale model

that offers architectural improvements over SVG, and which

obtains strong performance on the KITTI dataset. Follow-

ing Villegas et al. we modify SVG by adding convolutional

LSTM layers [78], although we keep the L2 loss from [15]

(see appendix for details). Since our goal is to understand

the influence of a correspondence-wise loss, rather than to

obtain state-of-the-art performance, we base our model on

a medium-sized variant with hyperparameters K = 2 and

M = 2 [88], which obtains strong performance yet is train-

able on ordinary multi-GPU computing infrastructure.

For optical flow estimation, we use RAFT [84], with

the publicly available checkpoint that was trained on Flying

Chairs [17] and FlyingThings [63]. While our results may

be improved by using a version trained on driving videos

from KITTI [29], we choose not to do so in our experiments

to avoid the use of domain-specific supervision.

Losses. We use three base losses: 1) the L1 loss, 2) the

MSE loss (L2
2), and 3) the L1 loss in equal weight with a

perceptual loss, Lp, (L1+Lp) that uses VGG-19 pretrained

with ImageNet features [42, 76, 79].

Metrics. To evaluate predictions, we use SSIM, LPIPS,

and a two alternative forced choice human study (see ap-

pendix for details).

Datasets. We evaluate on three standard video predic-

tion datasets: KITTI [29], Caltech Pedestrian [16], and

Cityscapes [13] (see appendix for details).

4.1.1 Pixelwise vs. Correspondence-wise losses

To understand the effect of our extension of pixelwise

losses, we train video prediction models to predict three fu-

ture frames from three previous frames with both losses, us-

ing three separate base losses: L1, L2
2 (MSE), and L1+Lp.

We evaluate at a resolution of 512 × 256 on the KITTI

dataset, 384×288 on Caltech, and 512×256 of Cityscapes,

all with three frames of input. For consistency with the

KITTI experiments, we sample the Caltech dataset at 10

Hz, as in Lotter et al. [60]. In addition, for the L1+Lp loss,

we warm start with a pixelwise loss for an epoch, which

significantly improves convergence.

The results can be found in Table 1. The

correspondence-wise variants of the loss outperform their

pixelwise counterparts on almost all metrics, datasets, and

losses. In addition, we see significant improvements in the

qualitative results across all scenarios, as seen in Figure 3.

4.1.2 Comparison to State-of-the-Art Methods

We follow the evaluation protocol of Wu et al. [95],

using the KITTI and Cityscapes datasets, and com-

pare with a number of recent video prediction methods:

Voxel Flow [58], a motion-synthesis method based on

3D space-time flow, MCnet [89], a convolutional LSTM

model that decomposes stationary and moving components,

Vid2Vid [92], a two-stage method that first synthesizes se-

mantic masks and then translates the masks to real images,

and OMP [95], a state-of-the-art method that combines

copy-and-paste prediction with inpainting, object tracking,

occlusion estimation, and adversarial training. We also

show results with PredNet [60], a convolutional pixel-

based architecture inspired by predictive coding. We note

that these architectures are specialized to the video predic-

tion task, and can be relatively complex. For example, OMP

uses off-the-shelf instance segmentation and semantic seg-

mentation networks [96, 108], an inpainting network [103],

and a background-prediction network. It also takes opti-

cal flow as input [82], tracks objects, and uses adversarial

training. By contrast, we are interested in seeing how well

a simple image prediction network can do when using our

loss.

Following Wu et al. [95], we use 832 × 256 images on

KITTI and 1024× 512 on Cityscapes, using the same train-

test split and data augmentation, and condition our mod-

els on four frames of an input video and predict five future

frames on KITTI and 10 on Cityscapes. We use our ResNet

variant with an L1 + Lp correspondence-wise loss.

Despite our method’s simplicity, we found that it signif-

icantly outperformed previous methods with complex flow-

based architectures on both metrics (Table 2). Our simple

architecture, trained with a correspondence-wise loss, ob-

tained higher scores on both SSIM and LPIPS consistently

across all time steps.

In Figure 4, we show three informative qualitative results

generated by our model, as compared to frames generated

by OMP. We have highlighted challenging regions in each

video. In contrast to our model, OMP works by deforming

an input image using a predicted optical flow field, result-

ing in warping artifacts when there are errors. Here, OMP

suffers when there are small objects undergoing large mo-

tions (e.g., the poles in the first video) and irregular geome-

try (e.g., second video). Interestingly, both models produce

errors in disoccluded regions (e.g., car in first video).

4.1.3 Additional Ablations

We present additional ablations on network architecture,

regularization scheme, and flow method for the video pre-

diction task.

Stochastic models. We demonstrate the versatility of our

loss by evaluating its performance with stochastic video

prediction architectures on KITTI in Table 3. Evaluation

metrics on both the SVG and SVG++ significantly improve

when we use a correspondence-wise reconstruction loss.

Effect of regularization. In Section 3.1 we introduced

two methods of regularization. Table 4 evaluates these two
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Figure 4. Comparison with state-of-the-art multi-frame video prediction. We show the result of our method and OMP [95] on predicting

frame t = 5. Areas marked with a box are challenging examples.

KITTI Cityscapes

Next Frame Next 3 Frames Next 5 Frames Next Frame Next 5 Frames Next 10 Frames

Model SSIM ↑ LPIPS↓ SSIM ↑ LPIPS↓ SSIM ↑ LPIPS↓ SSIM ↑ LPIPS↓ SSIM ↑ LPIPS↓ SSIM ↑ LPIPS↓

PredNet [60] 0.563 0.553 0.514 0.586 0.475 0.629 0.840 0.260 0.752 0.360 0.663 0.522

MCNET [89] 0.753 0.240 0.635 0.317 0.554 0.373 0.897 0.189 0.706 0.373 0.597 0.451

Voxel Flow [58] 0.539 0.324 0.469 0.374 0.426 0.415 0.839 0.174 0.711 0.288 0.634 0.366

Vid2Vid [92] - - - - - - 0.882 0.106 0.751 0.201 0.669 0.271

OMP [95] 0.792 0.185 0.676 0.246 0.607 0.304 0.891 0.085 0.757 0.165 0.674 0.233

Ours 0.820 0.172 0.730 0.220 0.667 0.259 0.928 0.085 0.839 0.150 0.751 0.217

Table 2. Comparisons with other methods. We compare with state-of-the-art methods on multi-frame KITTI and Cityscapes video

prediction, as well PredNet, an older non-flow based method. Note that in keeping with previous works, we present the average of the first

N frames and we use the linear variant of LPIPS. We take baseline numbers directly from Wu et al. [95].

Next Frame Next 5 Frames Next 10 Frames

Model Corr. SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

SVG [15]
- 0.389 0.478 0.342 0.509 0.312 0.527

✓ 0.400 0.389 0.348 0.382 0.313 0.386

SVG++ [88]
- 0.848 0.079 0.626 0.196 0.489 0.287

✓ 0.849 0.072 0.628 0.186 0.490 0.276

Table 3. Stochastic model evaluation. We show results with

and without our correspondence-wise loss (ªCorr.º) while using

stochastic video prediction architectures.

KITTI Caltech Cityscapes

Base Loss Reg SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

L1 Scale 0.586 0.359 0.734 0.216 0.819 0.198

L1 Mag. 0.573 0.407 0.723 0.249 0.826 0.227

L1 + Lp Scale 0.548 0.191 0.702 0.141 0.810 0.090

L1 + Lp Mag. 0.548 0.206 0.707 0.149 0.823 0.098

Table 4. Regularization for correspondence-wise losses. We

ablate the flow scaling and flow magnitude penalty regularization

methods, ªScaleº and ªMag.º in the table respectively. These ex-

periments correspond to the ones in Table 1.

approaches. The magnitude penalty approach outperforms

the scaling approach in some circumstances. However, we

found that having to tune each of its weighting parameters

Metric Pixelwise Affine Hom. PWC-net RAFT

LPIPS ↓ 0.438 0.393 0.393 0.364 0.359

SSIM ↑ 0.563 0.568 0.569 0.586 0.586

Table 5. Influence of flow method. We show image quality as a

function of flow method with an L1 base loss on KITTI (the setup

in the first two rows of Table 1).

was challenging, and that it often had poor convergence,

which we addressed by training with a warm start from a

base loss for 5 epochs.

Quality of flow method. In Table 5 we test the influence

of the quality of the flow method by comparing RAFT [84]

and PWC-Net [82]. In addition, we simulated less pow-

erful flow methods by simply fitting a homography or an

affine transformation to the predicted RAFT flow, and using

these fitted transforms as our flow. We found that using a

correspondence-wise loss with better quality flow methods

produces better downstream image generation performance.

4.2. Video Frame Interpolation

To further evaluate our loss’s ability to handle spatial

uncertainty, we conduct frame interpolation experiments.

Given two frames of context, the goal is to predict the inter-

mediate frame. We use the FLAVR architecture [45] with

both an L1 loss and an L1 correspondence-wise loss and
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Overlay L1 Loss Corr. L1 Loss Ground Truth

Figure 5. Frame interpolation qualitative results. We visualize frame interpolation results from Vimeo-90K for a FLAVR model trained

on an L1 loss and a correspondence-wise L1 loss. The leftmost column shows the two context frames, overlaid on top of each other. We

highlight a noteworthy region of each result.

Method Frames LPIPS (↓) PSNR (↑) SSIM (↑)

DVF [59] 2 - 27.27 0.893

SuperSloMo [41] 2 - 32.90 0.957

SepConv [67] 2 - 33.60 0.944

CAIN [12] 2 - 33.93 0.964

BMBC [70] 2 - 34.76 0.965

AdaCoF [51] 2 - 35.40 0.971

FLAVR [45] 4 0.0248 36.30 0.975

FLAVR [45] 2 0.0297 34.96 0.970

FLAVR + Ours 2 0.0268 35.13 0.970

Table 6. Frame interpolation evaluation. We replace the L1

loss in FLAVR with a correspondence-wise L1 loss. We report

baseline PSNR and SSIM numbers from Kalluri et al. [45].

we evaluate using SSIM, PSNR, and LPIPS on the Vimeo-

90K septuplet dataset [99]. These results, along with var-

ious two-frame baselines and a FLAVR model trained on

four frames, are presented in Table 6.

We trained our model using the publicly released code

from FLAVR, replacing their loss with our correspondence-

wise loss. To be more consistent with the baselines and to

study a scenario with more uncertainty, we use two context

frames instead of four. Specifically we use the two middle

frames, closest to the ground truth, in the septuplets. We

train for 120 epochs, use a batch size of 32, and learning

rate of 0.0002 with Adam [47]. These hyperparameters are

the same for all FLAVR models.

The FLAVR model trained with our correspondence-

wise L1 loss outperforms the model with only L1 loss on

LPIPS and PSNR, ties on SSIM, and leads to crisper inter-

polations (Fig. 5). In addition, the model outperforms all

but one baseline and is even competitive with the FLAVR

model trained on four frames.

5. Discussion

Limitations. One drawback of our method is that it adds

overhead at training time, since it requires evaluating an op-

tical flow network twice per example. In our ablation exper-

iments, corresponding to Table 1, we found an increase of

approximately 30%-50% wall time. However, test time in-

ference speed is unaffected as our method is a loss function.

Additionally, our method requires the optical flow model to

successfully match the predicted and ground truth images,

which may not be possible in some tasks.

Conclusion. In this paper we have proposed a

correspondence-wise loss for image generation, and

applied it to the task of video prediction and frame interpo-

lation. We show through extensive ablations that our loss

improves image quality over pixelwise losses on various

metrics, architectures, datasets, and tasks. Despite the

simplicity of our approach, it outperforms several recent,

highly engineered video prediction methods when used

with simple off-the-shelf architectures.

We see our work opening two directions. The first is

to unify ªcopy-and-pasteº synthesis methods [72, 106] and

correspondence-wise methods by designing architectures

that can obtain the benefits of both techniques. The sec-

ond is to use correspondence-wise image prediction in other

tasks where positional uncertainty currently leads to blurry

results, such as viewpoint synthesis and image translation.
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