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Abstract

Space-time video super-resolution (STVSR) is the task of
interpolating videos with both Low Frame Rate (LFR) and
Low Resolution (LR) to produce High-Frame-Rate (HFR)
and also High-Resolution (HR) counterparts. The existing
methods based on Convolutional Neural Network (CNN)
succeed in achieving visually satisfied results while suf-
fer from slow inference speed due to their heavy architec-
tures. We propose to resolve this issue by using a spatial-
temporal transformer that naturally incorporates the spa-
tial and temporal super resolution modules into a single
model. Unlike CNN-based methods, we do not explic-
itly use separated building blocks for temporal interpola-
tions and spatial super-resolutions; instead, we only use a
single end-to-end transformer architecture. Specifically, a
reusable dictionary is built by encoders based on the in-
put LFR and LR frames, which is then utilized in the de-
coder part to synthesize the HFR and HR frames. Com-
pared with the state-of-the-art TMNet [54], our network is
60% smaller (4.5M vs 12.3M parameters) and 80% faster
(26.2fps vs 14.3fps on 720 × 576 frames) without sacri-
ficing much performance. The source code is available at
https://github.com/llmpass/RSTT.

1. Introduction

Space-time video super-resolution (STVSR) refers to the
task of simultaneously increasing spatial and temporal res-
olutions of low-frame-rate (LFR) and low-resolution (LR)
videos, which appears in a wide variety of multimedia ap-
plications such as video compression [36], video stream-
ing [51], video conferencing [45] and so on. In the stage of
deployment, many of them have stringent requirements for
the computational efficiency, and only LFR and LR frames
can be transferred in real-time. STVSR becomes a natural
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Figure 1. Performance of RSTT on Vid4 dataset [21] using
small (S), medium (M) and large (L) architectures compared
to other baseline models. In the top, we plot FPS versus PSNR.
Note that 24 FPS is the standard cinematic frame rate [42]. In
the bottom, we plot the number of parameters (in millions) versus
PSNR. We omit the STARnet here since it is significantly larger
than others while performs the worst; see Table 1 for details.

remedy in this scenario for recovering the high-frame-rate
(HFR) and high-resolution (HR) videos. However, the per-
formance of existing STVSR approaches are far from being
real-time, and a fast method without sacrificing much visual
quality is crucial for practical applications.
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The success of traditional STVSR approaches usually
relies on strong illumination consistency assumptions [29,
39], which can be easily violated in real world dynamic pat-
terns. Ever since the era of deep neural network (DNN),
convolutional neural network (CNN) exhibits promising
results in many video restoration tasks, e.g., video de-
noising [44, 8], video inpainting [18, 47], video super-
resolution (VSR) [21, 17, 59, 49, 14] and video frame inter-
polation (VFI) [16, 1, 6, 33, 32, 30, 31, 11]. One straightfor-
ward way to tackle the STVSR problem is that by treating
it as a composite task of VFI and VSR one can sequen-
tially apply VFI, e.g., SepConv [33], DAIN [1], CDFI [11],
and VSR, e.g., DUF [17], RBPN [14], EDVR [49], on the
input LFR and LR video. Nevertheless, this simple strat-
egy has two major drawbacks: first, it fails to utilize the in-
ner connection between the temporal interpolation and spa-
tial super-resolution [52, 54]; second, both VFI and VSR
models need to extract and utilize features from nearby LR
frames, which results in duplication of work. Additionally,
such two-stage models usually suffer from slow inference
speed due to the large amount of parameters, hence pro-
hibits from being deployed on real-time applications.

To alleviate the above problems, recent learning based
methods train a single end-to-end model [15, 52, 53, 54],
where features are extracted from the input LFR and LR
frames only once and then are upsampled in time and space
sequentially inside the network. However, researches in this
line still consist of two sub-modules: a temporal interpo-
lation network, e.g., Deformable ConvLSTM [52, 53] and
Temporal Modulation Block [54], and a spatial reconstruc-
tion network, e.g., residual blocks used in both Zooming
SloMo [52, 53] and TMnet [54]. One natural question to
ask is that whether we can have a holistic design such that
it increases the spatial and temporal resolutions simultane-
ously without separating out the two tasks.

In this paper, we propose a single spatial temporal trans-
former that incorporates the temporal interpolation and spa-
tial super resolution modules for the STVSR task. This ap-
proach leads to a much smaller network compared with the
existing methods, and is able to achieve a real-time infer-
ence speed without sacrificing much performance. Specifi-
cally, we make the following contributions:

• We propose a Real-time Spatial Temporal Trans-
former (RSTT) to increase the spatial and temporal res-
olutions without explicitly modeling it as two sub-tasks.
To the best of our knowledge, this is the first time that a
transformer is utilized to solve the STVSR problem.

• Inside RSTT, we design a cascaded UNet-style architec-
ture to effectively incorporate all the spatial and temporal
information for synthesizing HFR and HR videos. In par-
ticular, the encoder part of RSTT builds dictionaries at
multi-resolutions, which are then queried in the decoder

part for directly reconstructing HFR and HR frames.

• We propose three RSTT models with different number of
encoder and decoder pairs, resulting in small (S), medium
(M) and larger (L) architectures. Experiments show that
RSTT is significantly smaller and faster than the state-
of-the-art STVSR methods while maintains similar per-
formance: (i) RSTT-L performs similarly as TMNet [54]
with 40% less parameters, RSTT-M outperforms Zoom-
ing SlowMo [52] with 50% less parameters and RSTT-S
outperforms STARNet [15] with 96% less parameters; (ii)
RSTT-S achieves a frame rate of more than 24 per second
(the standard cinematic frame rate) on 720× 576 frames.
It achieves the performance of Zooming SlowMo [52]
with a 75% speedup, and outperforms STARNet [15] with
around 700% speedup (see Figure 1).

2. Related work

2.1. Video frame interpolation (VFI)

VFI aims at synthesizing an intermediate frame given
two consecutive frames in a video sequence, hence the tem-
poral resolution is increased. Conventionally, it is formu-
lated as an image sequence estimation problem, e.g., the
path-based [26] and phase-based approach [27, 28], while it
fails in scenes with fast movements or complex image de-
tails. CNN-based VFI methods can be roughly categorized
into three types: flow-based, kernel-based and deformable-
convolution-based. Flow-based methods [24, 16, 34, 57,
60, 30, 31] perform VFI by estimating optical flow be-
tween frames and then warping input frames with the esti-
mated flow to synthesize the missing ones. Instead of using
only pixel-wise information for interpolation, kernel-based
methods [32, 33, 1, 2] propose to synthesize the image by
convolving over local patches around each output pixel,
which largely preserves the local textual details. Recently,
deformable-convolution-based methods [19, 40, 7, 6, 11]
combine flow-based and kernel-based methods by taking
the advantages of flexible spatial sampling introduced by
deformable convolution [9, 64]. This key improvement ac-
commodates to both larger motions and complex textures.

2.2. Video super resolution (VSR)

VSR aims to recover HR video sequences from LR ones,
hence the spatial resolution is increased. Most deep learning
based VSR methods [22] adopt the strategy of fusing spatial
features from multiple aligned frames (or features), which
highly depends on the quality of the alignment. Earlier
methods [4, 43, 37, 48, 57] utilize optical flow to perform
explicit temporal frames alignment. However, the computa-
tion of optical flow can be expensive and the estimated flow
can be inaccurate. In parallel, TDAN [59] introduces de-
formable convolution to implicitly align temporal features
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and achieves impressive performance, while EDVR [49] in-
corporates deformable convolution into a multi-scale mod-
ule to further improve the feature alignments.

2.3. Space-time video super-resolution (STVSR)

The goal of STVSR is to increase both spatial and tem-
poral resolutions of LFR and LR videos. Dating back two
decades, [38] performs super-resolution simultaneously in
time and space by modeling the dynamic scene as 3D rep-
resentation. However, it requires input sequences of sev-
eral different space-time resolutions to construct a new one.
Due to the recent success of CNN, [15] proposes an end-
to-end network STARnet to increase the spatial resolution
and frame rate by jointly learning spatial and temporal con-
texts. Xiang et. al [52] propose a one-stage framework,
named Zooming SlowMo, by firstly interpolating tempo-
ral features using deformable convolution and then fus-
ing mutli-frame features through deformable ConvLSTM.
Later, Xu et. al [54] incorporate temporal modulation block
into Zooming SlowMo [52], named TMNet, so that the
model is able to interpolate arbitrary intermediate frames
and achieves better visual consistencies in between result-
ing frames. Nevertheless, these approaches either explicitly
or implicitly treat the STVSR problem as a combination of
VFI and VSR by designing separate modules for the sub-
tasks, which is computationally expensive. Zhou et al. point
out in a more recent work [63] that VFI and VSR mutually
benefit each other. They present a network that cyclically
uses the intermediate results generated by one task to im-
prove another and vice versa. While achieving better perfor-
mance, this idea results in a relatively larger network (about
three times larger than Zooming SlowMo [52]). Our work
also makes use of such mutual benefits from VFI and VSR,
while avoids the repeated feature computations, and thus
ends in a light-weight design.

2.4. Vision transformer

Transformer [46] is a dominant architecture in Natural
Language Processing (NLP) and achieves state-of-the-art
performance in various tasks [10, 3, 55]. Recently, trans-
formers gain popularity in computer vision field. The pio-
neering Vision Transformer (ViT) [12] computes attentions
between flattened image patches to solve image classifica-
tion problems and outperforms CNN-based methods to a
large extent. Due to transformer’s strong ability of learn-
ing long dependencies between different image regions,
follow-up work using variants of ViT refreshes the state-
of-the-art results in many applications, such as segmenta-
tion [41, 62], object detection [58, 56] and depth estima-
tion [35]. In the meantime, Liu et al. [23] propose a novel
transformer-based backbone for vision tasks, i.e., Shifted
window (Swin) Transformer, to reduce computational com-
plexity by restricting the attention computations inside local

and later shifted local windows. Thereafter, [50] proposes
a U-shape network based on Swin Transformer for general
image restoration. SwinIR [20] tackles the image restora-
tion task using Swin Transformer and introduces residual
Swin Transformer blocks. In this work, we also use Swin
Transformer as basic building blocks to extract local in-
formation. However, instead of building dictionaries and
queries from identical single frames [23, 5, 50, 20], we com-
pute window and shifted window attentions from multiple
input frames, which are then utilized to build reusable dic-
tionaries to synthesize multiple output frames at once. We
emphasize that this design is the key that leads to the accel-
eration of inference time and reduction of model size.

3. The proposed method

In this section, we first give an overview of the pro-
posed approach in Section 3.1. Then we explain the encoder
and decoder part of our spatial-temporal transformer in Sec-
tion 3.2 and Section 3.3, respectively. Finally, the training
details are given in Section 3.4.

3.1. Network overview

Given (n+1) LFR and LR frames IL = {IL2t−1}n+1
t=1 of

size H×W×3, a STVSR model generates 2n+1 HFR and
HR frames IH = {IHt }2n+1

t=1 of size 4H × 4W × 3, where
t denotes the time stamp of a frame. Note that only frames
with odd time stamp in IH has the LR counterparts in IL.

We propose a cascaded UNet-style transformer, named
Real-time Spatial Temporal Transformer (RSTT), to inter-
polate the LR sequence IL in both time and space simul-
taneously without having explicit separations of the model
into spatial and temporal interpolation modules. One may
shortly observe that this design is a distinct advantage over
the existing CNN-based methods since it leads to a real-time
inference speed while maintains similar performance.

We let f denote the underlying function modeled by
RSTT, which takes four consecutive LFR and LR frames in
IL and outputs seven HFR and HR frames in the sequence:

f : (IL2t−1, I
L
2t+1, I

L
2t+3, I

L
2t+5)

7→ (IH2t−1, I
H
2t , I

H
2t+1, I

H
2t+2, I

H
2t+3, I

H
2t+4, I

H
2t+5)

(1)

As illustrated in Figure 2, RSTT mainly consists of four
encoders Ek, k = 0, 1, 2, 3, and corresponding decoders
Dk, k = 0, 1, 2, 3. In RSTT, a feature extraction block
firstly extracts the features of the four input frames, denoted
by (FL

2t−1, F
L
2t+1, F

L
2t+3, F

L
2t+5); then, a multi-video Swin

Transformer encoder block Tswin takes the features as input:

T0 = Tswin(F
L
2t−1, F

L
2t+1, F

L
2t+3, F

L
2t+5),
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Figure 2. The architecture of the proposed RSTT. The features extracted from four input LFR and LR frames are processed by encoders
Ek, k = 0, 1, 2, 3 to build dictionaries that will be used as inputs for the decoders Dk, k = 0, 1, 2, 3. The query builder generates a vector
of queries Q which are then used to synthesize a sequence of seven consecutive HFR and HR frames. The Multi-Swin transformer encoder
and decoder blocks contain a set of repeated Swin Transformer Blocks, which are illustrated in more details in Figure 3 and 4.

where T0 is the embedded feature generated by Swin Trans-
former. Let Φ denote the convolutional block in E0, E1 and
E2, one can write E0 = Φ(T0). Subsequently, we have

Tk = Tswin(Ek−1), k = 1, 2, 3

Ek = Φ(Tk), k = 1, 2

E3 = T3

(2)

Note that each of the encoders Ek, k = 0, 1, 2, 3, has four
output channels corresponding to the four time stamps of
the input LFR and LR frames. To make it clear, we use

Ek ≡ (Ek,2t−1, Ek,2t+1, Ek,2t+3, Ek,2t+5)

to denote the four output feature maps of each Ek. In fact,
a reusable dictionary is built in each Ek, and the details of
the encoder architecture are presented in Section 3.2.

After computing E3, RSTT constructs a query builder
that generates features for interpolating HFR and HR
frames at finer time stamps. Specifically, we define the
query Q as seven-channel feature maps with

Q :=
(
E3,2t−1,

1
2 (E3,2t−1 + E3,2t+1), E3,2t+1,

1
2 (E3,2t+1 + E3,2t+3), E3,2t+3,

1
2 (E3,2t+3 + E3,2t+5), E3,2t+5

) (3)

As indicated in (3), for odd HFR and HR frames which al-
ready have their LFR and LR counterparts, we just adopt the
learnt features from the encoder E3 as the queries; while for
even frames that have no LFR and LR counterparts, we use
the mean features of their adjacent frames as the queries.

We are now ready to synthesize the HFR and HR frames
by feeding the decoders with the query and the outputs of
encoders. As shown in Figure 2, similar to (2), we have

D3 = Φ−1(T −1
swin(T3, Q)),

Dk = Φ−1(T −1
swin(Tk, Dk+1)), k = 1, 2

D0 = T −1
swin(T0, D1)

(4)

where T −1
swin is the multi-video Swin Transformer decoder

block and Φ−1 denotes the deconvolutional block in D1, D2

and D3. The details of the decoder architecture are pre-
sented in Section 3.3. For the final synthesis, we learn the
residuals instead of the HFR and HR frames themselves.
We simply use a trilinear interpolation of the input frames
to work as a warming start of the output frames.

We remark that the key to the architecture of RSTT is
the reusable dictionaries built in the encoders Ek based on
the input LFR and LR frames, which are then utilized in
decoders Dk combined with queries to synthesize the HFR
and HR frames. This design is advantageous over the du-
plicate feature fusions appearing in many existing methods,
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Figure 3. The basic Swin Transformer encoder block used in
Ek, k = 0,1,2,3 of RSTT; see Figure 2. It first computes
multi-head self attentions in each window partition, and then in
each shifted window partition. Here, LN stands for Layer Nor-
malization, W-MSA is Windowed Multi-Head Self-Attention and
SW-MSA is Shifted Windowed Multi-Head Self-Attention.

e.g., deformable convolutions and ConvLSTM in Zooming
SlowMo [52] and TMNet [54]), and thus accelerates the in-
ference speed to a large extent.

3.2. Encoder

In this subsection, we explain in details the encoder ar-
chitecture of our RSTT. Before moving on, for the feature
extraction module shown in Figure 2, we use a single con-
volutional layer with kernel size 3× 3 to extract C features
from four input LFR and LR RGB frames. This shallow fea-
ture extractor is significantly smaller than the five residual
blocks used in Zooming SlowMo [52, 53] and TMNet [54],
and thus is computationally efficient.

Following the light-weight feature extractor, the encoder
part of RSTT consists of four stages, denoted by Ek, k =
0, 1, 2, 3, each of which is a stack of Swin Transformer
[23] blocks followed by a convolution layer (except E3).
Inside Ek, Swin Transformer blocks take the approach of
shifting non-overlapping windows to reduce the computa-
tional cost while keeping the ability of learning long-range
dependencies. As demonstrated in Figure 3, given a pre-
defined window size M × M , a Swin Transformer block
partitions the input video frames of size N×H×W×C into
N ×⌈H

M ⌉×⌈W
M ⌉×C non-overlapping windows, where we

choose N = 4, M = 4 and C = 96 in our experiments. Af-
ter flattening the features in each window to produce feature
maps of size NHW

M2 ×M2 × C, Layer Normalization (LN)
is applied to the features before Window-based Multi-head
Self-Attention (W-MSA) [23] computes the local attention
inside each window. Next, a Multi-Layer Perception (MLP)
following another LN layer are used for further transforma-
tion. An additional Swin Transformer block with Shifted
Window-based Multi-head Self-Attention (SW-MSA) [23]
is then applied to introduce the cross-window connections.

Figure 4. The basic Swin Transformer decoder block used in
Dk, k = 0,1,2,3 of RSTT; see Figure 2. It takes a query Q
and the output from the corresponding encoder Ek as the input,
and outputs HFR and HR features for spatial-temporal interpo-
lation. Here, MCA stands for Multi-Head Cross-Attention, and
other notations are similar to those in Figure 3.

In this second Swin Transformer block, every module is the
same as the previous block except that the input features are
shifted by ⌊M

2 ⌋ × ⌊M
2 ⌋ before window partitioning. In this

way, Swin Transformer blocks are able to reduce computa-
tional costs while capturing long-range dependencies along
both the spatial and temporal dimension. Finally, the output
of a stack of such Swin Transformer blocks are downsam-
pled by a convolutional layer with stride of two, serving as
the input of the next encoder stage and the decoder stage.

3.3. Decoder

Same as the encoder part, we use four stages of de-
coders followed by a deconvolutional layer for feature up-
sampling. The decoders Dk, k = 0, 1, 2, 3 generate per-
output-frame features in each level of details by repeatedly
querying the dictionaries (the key-value pairs (K,V ) as
shown in Figure 4) constructed from the encoders Ek’s in
the same level. Each decoder consists of several (the same
number as its corresponding encoder) Swin Transformer
blocks, and each of the blocks takes two inputs: one is the
output features from the encoder and the other is a single
frame query, as shown in Figure 2 and Figure 4.

In RSTT, the first stage query Q = {Qi}7i=1 for D3

is interpolated from the the last encoder E3 (see (3)) and
the later queries are the outputs of the previous decoders.
To generate seven HFR and HR output frames, each Swin
Transformer decoder block queries the dictionary seven
times. As a result, for a decoder contains S such blocks, we
need to query 7S times. In practice, the query is performed
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Method Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow FPS Parameters

VFI+(V)SR/STVSR PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ ↑ (Millions) ↓
SuperSloMo [16] + Bicubic 22.84 0.5772 31.88 0.8793 29.94 0.8477 28.37 0.8102 - 19.8

SuperSloMo [16] + RCAN [61] 23.80 0.6397 34.52 0.9076 32.50 0.8884 30.69 0.8624 - 19.8+16.0
SuperSloMo [16] + RBPN [14] 23.76 0.6362 34.73 0.9108 32.79 0.8930 30.48 0.8584 - 19.8+12.7
SuperSloMo [16] + EDVR [49] 24.40 0.6706 35.05 0.9136 33.85 0.8967 30.99 0.8673 - 19.8+20.7

SepConv [33] + Bicubic 23.51 0.6273 32.27 0.8890 30.61 0.8633 29.04 0.8290 - 21.7
SepConv [33] + RCAN [61] 24.92 0.7236 34.97 0.9195 33.59 0.9125 32.13 0.8967 - 21.7+16.0
SepConv [33] + RBPN [14] 26.08 0.7751 35.07 0.9238 34.09 0.9229 32.77 0.9090 - 21.7+12.7
SepConv [33] + EDVR [49] 25.93 0.7792 35.23 0.9252 34.22 0.9240 32.96 0.9112 - 21.7+20.7

DAIN [1] + Bicubic 23.55 0.6268 32.41 0.8910 30.67 0.8636 29.06 0.8289 - 24.0
DAIN [1] + RCAN [61] 25.03 0.7261 35.27 0.9242 33.82 0.9146 32.26 0.8974 - 24.0+16.0
DAIN [1] + RBPN [14] 25.96 0.7784 35.55 0.9300 34.45 0.9262 32.92 0.9097 - 24.0+12.7
DAIN [1] + EDVR [49] 26.12 0.7836 35.81 0.9323 34.66 0.9281 33.11 0.9119 - 24.0+20.7

STARnet [15] 26.06 0.8046 36.19 0.9368 34.86 0.9356 33.10 0.9164 3.85 111.61
Zooming SlowMo [52] 26.31 0.7976 36.81 0.9415 35.41 0.9361 33.36 0.9138 15.59 11.10

TMNet [54] 26.43 0.8016 37.04 0.9435 35.60 0.9380 33.51 0.9159 14.33 12.26
RSTT-L 26.43 0.7994 36.80 0.9403 35.66 0.9381 33.50 0.9147 14.98 7.67
RSTT-M 26.37 0.7978 36.78 0.9401 35.62 0.9377 33.47 0.9143 19.07 6.08
RSTT-S 26.29 0.7941 36.58 0.9381 35.43 0.9358 33.30 0.9123 26.19 4.49

Table 1. Quantitative comparisons on various datasets with the state-of-the-art STVSR methods. PSNR and SSIM are computed on
Y channel only, as same as [52]. Top three numbers of each column are bolded, with the best in red and the second best in blue. FPS is
computed on Nvidia Quadro RTX 6000 machine and on Vid4 dataset, which has the output frame size of 720× 576.

by Windowed Multi-Head Cross-Attention (W-MCA) [23]
and its shifted version (SW-MCA) [23] (see Figure 4). Note
that only the first Swin Transformer decoder block uses Q
as query while the rest S − 1 blocks use the output of the
previous block as query. Importantly, dictionaries provided
by the encoders are pre-computed for reuse in each block.
Suppose we have three Swin Transformer decoder blocks
in each Dk, the spatial-temporal dictionaries built from the
encoders are queried (reused) for 7 × 3 = 21 times, which
is advantageous over the duplication of future fusions in the
existing approaches. This design is both computationally
efficient and helpful in reducing the model size.

Final reconstruction module. The output features of
the last decoder D0 can be further processed by an optional
reconstruction module to generate the final frames (see Fig-
ure 2). We use a module consisting of a 1-to-4 PixelShuffle
operation and a single convolutional layer. This design is
much more light-weight compared to the practices adopted
in Zooming SlowMo [52] and TMNet [54], both of which
use 40 residual blocks to perform the spatial super resolu-
tion. We compare the performance of RSTT with and with-
out such spatial reconstruction module in Section 4.3.

3.4. Training details

We train the proposed RSTT model using Adam with L2

and decoupled weight decay [25] by setting β1 = 0.9 and
β2 = 0.99. The initial learning rate is set to 2×10−4 and is
gradually decayed following the scheme of Cosine anneal-
ing with restart [13] set to 10−7. The restart performs at
every 30,000 iterations. We train our model on two Nvidia
Quadro RTX 6000 with batch size set to 7∼10, depending

on the particular model architecture.
Objective function. The Charbonnier loss is computed

between the estimated frame IH and the ground truth ÎH :

L(ÎH , IH) =

√
∥ÎH − IH∥2 + ϵ2,

where ϵ is set to 10−3 in our experiments.
Training dataset. We train our models on Vimeo-

90K [57], which contains over 60,000 seven-frame video
sequences. Many state-of-the-art methods [52, 53, 54] also
use this dataset for training. For Vimeo-90K, the input LFR
and LR frames are four frames of size 112×64, and the out-
put HFR and HR frames are seven frames of size 448×256
(exactly 4× larger in both height and width).

Evaluation. The models are evaluated on Vid4 [21] and
Vimeo-90K [57] datasets. Vid4 is a small dataset consists
of four video sequences of different scenes with 180× 144
input frames and 720×576 output frames. Vimeo-90K val-
idation set is split into fast, medium and slow motion sets as
in [52] that contains 1225, 4972 and 1610 video clips.

4. Experiments

We train the proposed RSTT for three versions with
small (S), medium (M) and large (L) architectures, corre-
sponding to the number of Swin Transformer blocks used
in each stage of encoder Ek and decoder Dk set to 2, 3
and 4, respectively. We term the three models as RSTT-S,
RSTT-M and RSTT-L, and then compare them with other
existing methods quantitatively and qualitatively.
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Ground-truth Ground-truth StarNet [15] Zooming SlowMo [52] TMNet [54]

Overlaid RSTT-S RSTT-M RSTT-L

Ground-truth Ground-truth StarNet [15] Zooming SlowMo [52] TMNet [54]

Overlaid RSTT-S RSTT-M RSTT-L

Ground-truth Ground-truth StarNet [15] Zooming SlowMo [52] TMNet [54]

Overlaid RSTT-S RSTT-M RSTT-L

Figure 5. Visual comparisons on the Vid4 dataset [21]. RSTT with three different sizes of architectures achieve the state-of-the-art
performance in terms of visual qualities on various scenarios.

4.1. Quantitative evaluation

We use Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) as evaluation metrics for quantita-
tive comparison. We also compare the model inference time
in Frame Per Second (FPS) and model size in terms of the
number of parameters, as shown in Table 1. We do not list
the FPS of methods that sequentially apply separated VFI
and VSR models, since they are much slower than the other
competitors, as reported in [52, 54].

We observe that all the RSTT models achieve state-of-
the-art performance in both Vid4 and Vimeo-90K datasets
with significantly smaller model size and substantially

higher inference speed. Moreover, the performance grows
steadily with increasing number of Swin Transformer
blocks stacked in the architecture, from RSTT-S, -M to
-L. Specifically, in Table 1, one can see that the small-
est model RSTT-S performs similarly as Zooming SlowMo
[52], while RSTT-M outperforms Zooming SlowMo [52] in
Vid4, Vimeo-Medium and Vimeo-Slow with significantly
smaller number of parameters and faster inference speed.
Our largest model RSTT-L outperforms TMNet [54] on
Vimeo-Medium, which is the largest dataset in Table 1,
with 40% smaller model size. We remark that our RSTT-
S achieves a real-time rendering speed (more than 26 FPS)
without sacrificing much performance.
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Method Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow FPS Parameters

VFI+(V)SR/STVSR PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ ↑ (Millions) ↓
RSTT-M-Recon 26.37 0.7988 36.80 0.9400 35.66 0.9381 33.58 0.9160 17.02 7.74

RSTT-M 26.37 0.7978 36.78 0.9401 35.62 0.9377 33.47 0.9143 19.07 6.08
RSTT-S-Recon 26.29 0.7951 36.56 0.9376 35.45 0.9361 33.40 0.9140 22.62 6.15

RSTT-S 26.29 0.7941 36.58 0.9381 35.43 0.9358 33.30 0.9123 26.19 4.49

Table 2. Quantitative comparisons of RSTT with and without the spatial reconstruction block. Top-three numbers of each column
are bolded, with the best in red and the second best in blue.

4.2. Qualitative evaluation

We visually compare RSTT with other state-of-the art
STVSR methods in Figure 5. We choose three different sce-
narios for the purpose of illustration:

• The first row shows the video of a still calendar in front
of a moving camera. We observe that RSTT-S recovers
details around the character. Texture details look more
apparent compared with the result of StarNet [15].

• The second row shows the video taken by a still camera in
the wild with fast moving vehicles. It is clear that RSTT
outperforms StarNet [15] and Zooming SlowMo [52]
with better contours of the moving vehicle.

• The third row illustrates a difficult case, where both the
camera and the foreground objects are moving, especially
the fast-flying pigeon. From the overlaid view, one can
see that the pigeons in consecutive frames are barely over-
lapped. Our models give relatively better motion interpo-
lations in this case compared with other state-of-the-arts.
In addition, with the increasing sizes of our models, from
RSTT-S to RSTT-L, we observe better interpolations.

4.3. Advantages of RSTT

We analyze the effectiveness of the Swin Transformer
blocks used in encoders and decoders by comparing with
using an optional spatial reconstruction block in Figure 2
with 10 residual blocks (see Table 2). This block is similar
to but smaller than the 40 residual blocks used in Zooming
SlowMo [52] and TMNet [54]. We observe that the addi-
tional reconstruction block only slightly changes the eval-
uation results. There are hardly any differences in perfor-
mance (±0.02db in psnr) on Vid4, Vimeo-Fast and Vimeo-
Medium datasets between RSTT models with and without
adding reconstruction blocks. However, both the inference
time and the network size are largely increased. Further-
more, RSTT-M (6.08M parameters) exhibits non-negligible
improvement over RSTT-S-Recon (6.15M parameters) in
all of the datasets (≥0.2db in PSNR on Vimeo-Fast) with
an even smaller model size. This reveals the effectiveness
of our design, indicating larger spatial reconstruction block
is unnecessary to RSTT. Note that we do not train a model
with such additional block on RSTT-L due to the limited
time, but we believe a similar pattern holds.

4.4. Limitations of RSTT

Long training time. Like other transformer-based meth-
ods [12], the required training time of RSTT is relatively
long. It takes more than twenty-five days for convergence
with the usage of two Nvidia Quadro RTX 6000 cards.

Lack the flexibility to interpolate at arbitrary time
stamps. Unlike TMNet [54], RSTT lacks the flexibility of
interpolating an intermediate frame at arbitrary time stamps
since the Query Q defined by (3) is fixed. However, we re-
mark that this can be achieved by slightly rephrasing Query
Q for Decoder D3. Suppose we would like to interpo-
late n − 1 frames (at n − 1 time stamps) between two
frames, e.g., E3,2t−1 and E3,2t+1, we just need to make
queries on { i

nE3,2t−1 + (1 − i
n )E3,2t+1}n−1

i=1 instead of
1
2E3,2t−1 +

1
2E3,2t+1 where n = 2 as a special case in (3).

One might need to retrain the model to adopt such modifi-
cations, and we leave it as future work.

5. Conclusion
We presented a real-time spatial-temporal transformer

(RSTT) for generating HFR and HR videos from LFR and
LR ones. We considered to solve the space-time video
super-resolution problem with a unified transformer archi-
tecture without having explicit separations of temporal and
spatial sub-modules. Specifically, LFR and LR spatial-
temporal features extracted from different levels of en-
coders are used to build dictionaries, which are then queried
many times in the decoding stage for interpolating HFR and
HR frames simultaneously. We emphasize that the key in-
novation of the work is the novel holistic formulation of
self-attentions in encoders and cross-attentions in decoders.
This holistic design leads to a significantly smaller model
with much faster (real-time) inference speed compared with
the state-of-the-art methods without noticeable difference in
model performance.

Future directions along this line include but are not lim-
ited to: fusions of dictionaries built in different levels of
encoders to make computations more efficient; controllable
temporal super-resolution with the flexibility to interpolate
frames at arbitrary time stamps; and sophisticated training
loss functions that helps to improve the visual quality.
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