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Abstract

Generative Adversarial Networks (GANs) are the driv-
ing force behind the state-of-the-art in image generation.
Despite their ability to synthesize high-resolution photo-
realistic images, generating content with on-demand condi-
tioning of different granularity remains a challenge. This
challenge is usually tackled by annotating massive datasets
with the attributes of interest, a laborious task that is not
always a viable option. Therefore, it is vital to introduce
control into the generation process of unsupervised gener-
ative models. In this work, we focus on controllable image
generation by leveraging GANs that are well-trained in an
unsupervised fashion. To this end, we discover that the rep-
resentation space of intermediate layers of the generator
forms a number of clusters that separate the data accord-
ing to semantically meaningful attributes (e.g., hair color
and pose). By conditioning on the cluster assignments, the
proposed method is able to control the semantic class of
the generated image. Our approach enables sampling from
each cluster by Implicit Maximum Likelihood Estimation
(IMLE). We showcase the efficacy of our approach on faces
(CelebA-HQ and FFHQ), animals (Imagenet) and objects
(LSUN) using different pre-trained generative models. The
results highlight the ability of our approach to condition
image generation on attributes like gender, pose and hair
style on faces, as well as a variety of features on different
object classes.

1. Introduction
Generative Adversarial Nets (GANs) [8] have demon-

strated photo-realistic generation quality by utilizing the rich
corpus of available image datasets. Despite their success,
the value they can add as data generation tools is currently
limited by the lack of control in the synthesized content. In
the typical GAN setting an image is synthesized by sampling

a vector from a latent distribution and performing a forward
pass through a generator network. However, random sam-
pling from the latent distribution provides no control over
semantic attributes in the image space. Such control over the
generated characteristics is vital for tasks like autonomous
driving [39] or (inverse) reinforcement learning [12].

A common solution to the problem of controllable gen-
eration is to introduce supervision in the form of class la-
bels [1, 5, 28]. This process requires the annotation of the
training set, which can be a resource-intensive task, in addi-
tion to being impractical for a continually-growing number
of attributes of interest. Additionally, even with a rich and
diverse annotated dataset, training a conditional generative
model that can balance control and photo-realism is a non-
trivial task that requires tailored engineering tricks (e.g.,
truncation trick [1]).

In this work, we introduce a method that can be imple-
mented on top of any pretrained GAN to introduce control
without the need for labels and supervision. The method
relies on the clusters that are formed in the intermediate
representation space of a generator. We posit that the rep-
resentational capacity of the network allows for semantic
attributes, like hair color and pose, to be disentangled in this
representation space. Hence, each of the formed clusters cor-
responds to a different semantic attribute. This assumption
enables us to control image generation by conditioning on
the cluster assignment. Latent sampling from these clusters
is achieved via Implicit Maximum Likelihood Estimation
(IMLE). The proposed framework is summarized in Figure
1. We benchmark the method against GANs that learn clus-
tering in the latent space as well as methods for interpretable
directions in pretrained GANs. The results highlight the
efficacy of our method in consistently generating images of
desired attributes.
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Figure 1. Conditional generation using an unsupervised generator. The training phase (depicted on the left) includes the following steps: (a)
latent codes are sampled from the latent space of the generator, and then (b) passed through the first n layers of the generator. The resulting
representations are then clustered using k-means. Thus, we can assign each sampled latent code to a cluster (in the representation space). (c)
Sequentially, we can learn a mapping from an auxiliary distribution ec to the subspace of each cluster in the latent space of the generator. In
the testing phase (depicted on the right), we can sample from the auxiliary distributions and use the corresponding mappings (T1 or T2) to
synthesize images that have specific semantic attributes, e.g., male or female.

2. Related work

Generative Adversarial Nets (GANs) [8] are able to syn-
thesize diverse and photo-realistic images [1, 17, 18]. Intro-
ducing structure in the latent space of the generator is an
active area of research. Different distributions have been
proposed to enforce this structure. Specifically, a Cauchy dis-
tribution [22], a mixture model [9], a parametric distribution
based on tensor decompositions [7, 20], or non-parametric
distributions [37] have been used in this context. The goal is
to primarily improve either the training of GANs [9] or the
synthesized image quality [22, 37]. Our method relies on a
trained generator instead, hence it could utilize any of the
aforementioned modifications on the latent space.

Disentanglement of the latent space: The topic of dis-
entangling the factors of variation in the latent space has
sparked the interest of the community. InfoGAN [4] is the
first effort to augment GAN to achieve unsupervised disen-
tanglement. InfoGAN uses auxiliary codesψ and maximizes
the mutual information of the codes with the synthesized im-
age. The idea has since been extended in [25, 26]. However,
in [25] the authors explain why the success of disentangle-
ment relies heavily on design choices and inductive biases
in the network, making ideas such as InfoGAN sensitive
to the choice of the architecture. The works of [15, 21, 24]
also rely on modifying the GAN architecture with codes ψ.
In [24], they rely on pairwise differences between elements

ψi; in [21] a beta-VAE [11] provides the codes ψ, while
in [15] the codes are provided by a tree-structure.

Due to the challenging nature of unsupervised disentan-
glement often some (weak) labeling is used. In [36], the
authors use bounding boxes as a weak supervision signal to
disentangle the background from the foreground information
in synthesized images. Supervised disentanglement has also
been used in various tasks [38, 45]. However, in our work
we do not utilize any type of labels for training.

Interpretable directions in GANs: Beyond the afore-
mentioned methods, the discovery of interpretable latent
directions in a pretrained generator is an active area of study.
A dataset of trajectories in the latent space is created in [33].
Such trajectories correspond to known transformations in the
data space; the method searches for simple transformations
encoded. In [41], they use two latent codes (one is shifted
version of the other); the authors synthesize the two images
and then learn a dense layer to predict the shift in the codes.
Harkonen et al. [10] and Shen et al. [35] find the principal
directions of variation using Principal Component Analy-
sis (PCA), either in the latent space or the weights of the
first layer. Similarly, Tensor Component Analysis is utilized
in [31] to better separate style and geometry. The drawbacks
of such methods is that they provide interpretable directions
relative to the input image; that is given a single latent code,
they can find some directions that transform (e.g., rotate) the
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generated image. Similarly, Jahanian et al. [13] propose to
use self-supervision to learn directions for simple automati-
cally obtained transformations (e.g., shifts, zoom, rotation),
while Collins et al. [6] utilize clustering across only the chan-
nel dimension in order to discover and edit semantic regions
in the pixel-space. On the contrary, our method learns to
directly sample an image with a desired attribute from noise
without editing.

Clustering in the latent space: A long line of research
takes advantage of the clusters that are formed in the feature
space of convolutional representations. The majority of such
works focus on unsupervised/self-supervised techniques for
discriminative tasks, e.g., [2, 3, 42, 43, 46], while a number
of works apply similar techniques to generative modelling
[7, 27, 29]. More closely related to this work, clustering has
been utilized in the latent space of GANs [27,29] to generate
diverse images. Mukherjee et al. [29] utilize an auxiliary
encoder to predict the cluster assignments. On the other
hand, Liu et al. [27] use the features from the discriminator
to cluster the images. The proposed approach is orthogonal
to these methods since it works on a pretrained generator
and is not trained end-to-end.

3. Method
In this section, we motivate our approach and present

the proposed method that enables conditional generation
using GANs that are not trained with attribute supervision.
Firstly, we introduce briefly image synthesis using GANs.
We continue by motivating our assumption regarding the
clustering that occurs in the representation space. Lastly,
we present our method for performing conditional image
generation using IMLE.

3.1. Image synthesis with GANs

Generative Adversarial Networks (GANs) [8] utilize a set
of images S = [x1,x2, . . . ,xN ] to synthesize new images
that resemble the data in S. Image synthesis is enabled by
sampling a latent code z ∼ N (0, I), where I is the identity
matrix, and passing the code though a generator network G.
In GANs, in addition to the generator, an auxiliary “discrim-
inator” network is used for the optimization. Specifically,
GANs are trained using a minimax formulation between the
generator G and the discriminator D. The discriminator is
trained to distinguish the synthetic images x̃ = G(z) from
the real images in S . Concretely, we denote with pS the data
distribution and with pz the distribution for sampling the
latent codes (e.g., a normal distribution). Then the learning
objective can be formulated as:

min
wG

max
wD
LGAN (G,D) = Ex∼pS [logD(x;wD)]+

Ez∼pz [log(1−D(G(z;wG);wD))]
(1)

where thewG and thewD are the learnable parameters of the
generator and the discriminator networks respectively. After
training, image synthesis is performed by sampling from
pz and passing the code through G, which progressively
increases the higher frequency content at each layer.

3.2. Clustering in the representation space

The core operation behind state-of-the-art GANs is con-
volution. This is due to the inductive bias of the operator
that allows for great generalization power of these networks
in the image domain. This inductive bias is so effective that
even randomized convolutional neural networks (CNNs) can
produce useful image representations (classification accu-
racy of 12% on Imagenet in [30], while random chance is
at 0.1%). A number of works [2, 3] focus on leveraging the
clustering that occurs in the representation space of CNNs
for downstream tasks. Contrary to this line of research, this
work focuses on the clustering that separates the representa-
tion space of intermediate layers of generative CNNs (i.e.,
GANs).

In particular, we posit that images are clustered in the
representation space of the generator according to seman-
tic attributes, e.g., geometric features. In the same vein,
for a generator G with a hierarchical architecture (e.g., Pro-
gressive GAN [16]) different layers should capture different
attributes. To this end, we perform clustering on the repre-
sentationG[:n](z) of the nth layer and separate the space into
C ∈ N clusters. In this work, we use k-means, although any
clustering technique would perform in a similar manner. By
manually assigning a semantic attribute to each cluster, we
can perform synthesis of a specific attribute by conditioning
image generation on a specific cluster.

3.3. Implicit Maximum Likelihood Estimation

Given the latent vector z, the transformation G[:n](z) to
the clusters in the representation space is deterministic, thus
we have a direct assignment of each latent vector z into
a cluster c with c ∈ {1, 2, . . . , C}. We denote the latent
vector corresponding to cluster c as zc. The codes zc do not
form clear clusters in the latent space nor do they follow a
known probability distribution. Hence, sampling from zc

to perform conditional generation is non-trivial. This step
is crucial in order to effectively sample from the observed
clusters in the representation space, and proceed with the
forward pass to an image of defined attributes. To this end,
we utilize an auxiliary (normal) distribution ec and obtain
a mapping ec 7→ zc using Implicit Maximum Likelihood
Estimation (IMLE).

IMLE is a non-adversarial method that learns a mapping
T between two distributions. Li et al. [23] show that the
method is equivalent to maximizing the likelihood under
some assumptions. We utilize IMLE to learn a mapping
from the auxiliary distribution (which is known, e.g., a Gaus-
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Figure 2. The mappings that are learned for clusters in different layers correspond to different semantic attributes. At each level of the
PGAN generator we learn the two depicted clusters. Naturally, some of the semantic attributes are entangled, e.g., hair tone and background.

sian distribution) to the subspace spanned by all the latent
vectors zc corresponding to a specific cluster c. By learning
a mapping Tc for every cluster c, we are able to sample from
the auxiliary Gaussian distribution, and obtain a synthesized
image with the semantic attribute of cluster c.

Next, we elaborate on the training procedure for the map-
pings Tc, which includes the following steps:

1. Firstly, we sample Γ ∈ N vectors ec from the auxiliary
distribution for cluster c and apply the transformation
Tc to obtain the latent codes z̃c, i.e., z̃cγ = Tc(e

c
γ) for

γ = 1, 2, . . . ,Γ.

2. For each latent vector zci , we aim to minimize the Eu-
clidean distance of zci and z̃cγ , i.e., we perform a nearest
neighbor search on the vectors ecγ . That is expressed
as:

eci = arg min
ecγ ,γ=1,2,...,Γ

‖zci − Tc(ecγ)‖22. (2)

3. The last step consists in optimizing the mappings Tc.
The approximate matches of the last step are used to
optimize the transformations. Concretely:

T̃c = arg min
Tc

∑
i

‖zci − Tc(eci )‖22. (3)

The steps are repeated until convergence of all mappings
Tc.

After training the mapping functions for each cluster,
conditional sampling for each semantic attribute can be
performed by utilizing the corresponding mapping, i.e.,

G(z, c) = G(Tc(e
c)). The training and testing phases of

the proposed framework are summarized in Figure 1 and
Algorithm 1.

Algorithm 1: Algorithm for the proposed method
Result: A set of mappings {T1, . . . , TC}
z← Sample from the latent distribution of GAN
y← G[:n](z)
Initialize parameters θc of Tc, c ∈ {1, . . . , C}
for c in 1. . . C do

for number of epochs do
ec ← Sample from the normal distribution

for cluster c
zc ← Latent codes belonging to cluster c
for zci in zc do

eci ← arg minec ‖zci − Tc(ec)‖22
end
for number of batches do

// SGD
θc = θc − λtOθMSE(Tc(e

c
i ), z

c
i ).

end
end

end

Using IMLE to learn the mapping from the auxiliary dis-
tribution to the latent codes of the generator yields a number
of benefits. For example, using a GAN for this task would
suffer from unstable training as well as mode-collapse. On
the other hand, IMLE ensures support for every point in
the training set. However, using IMLE to generate images
directly with an L2 loss would result in blurry images. We
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Figure 3. Each row depicts images synthesized from a different
cluster in the representations of StyleGAN. The semantic attribute
of each cluster is denoted on the left of the image. Note that besides
primitive features like pose, the method captures several high-level
attributes such as hat or bald.

mitigate this by using the pretrained generator to synthe-
size high resolution photo-realistic images from the mapped
latent codes.

4. Experimental evaluation
In this section, we validate the proposed method on a va-

riety of architectures across different datasets. In particular,
we utilize PGAN [16] on LSUN [44] and CelebA-HQ [16],
StyleGAN [18] on FFHQ and BigGAN [1] on Imagenet [34].
Our evaluation demonstrates that the proposed clustering
works when trained in different objects, such as faces or cars.
We verify that these clusters contain semantically-relevant
images by showcasing state-of-the-art attribute classification
results compared to four baselines.

4.1. Experiments on faces

To highlight the effect of our method on representations
of different layers, we utilize PGAN trained on CelebA-HQ.
Conditional image synthesis for binary attributes is presented

Figure 4. Fine-grained attribute synthesis for attributes female and
blond hair.

in Figure 2. For this experiment, the representation space
was separated into 2 clusters for each layer. The results
highlight that different semantic features are captured in
different layers. Indicatively, the first layer captures gender,
while geometric and color features are encoded in the later
layers.

The results of our method in Figure 3 showcase that the
representation forms multiple clusters based on attributes
like pose, hair style and age.

4.2. Experiments on objects

In addition to faces, we demonstrate in this section how
our method generalizes on the object classes of LSUN. We
notice that by using our method we obtain direct control
of the rotation of cars, as well as other high level features
of different classes. Most of the recovered clusters show
considerable variation, e.g., one vs many chairs, the land-
scape behind a bridge and the architecture of the church.
The results on Figure 5 show that our method can introduce
control of significant modes of variation without loss of
photo-realism.

4.3. Fine-grained attribute synthesis

As showcased in Figure 2, different semantic features are
captured in different layers of PGAN. A logical extension
would be to attempt to combine such features to form fine-
grained attributes in a hierarchical manner. We indeed verify
this assumption in Figure 4 where we sample blond female
faces using PGAN on CelebA-HQ. Forming the cluster for
fine-grained attributes requires two steps. First, we sample
latent codes from the latent distribution, perform a forward
pass and learn the clusters on the representation space of
the first attribute (e.g., the first layer for gender). Then
we perform a forward pass using only the samples of the
specified cluster (e.g., female faces) onto the later layers
(e.g., the fifth layer for hair tone). After clustering again, the
resulting cluster will only correspond to blond female faces.
The rest of the sampling procedure is trained using IMLE as
discussed above.
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4.4. Generalization across classes

We further explore the generalization of the mappings that
are learned from IMLE across different classes of objects.
In particular, we are interested in determining whether a
mapping Tc that is responsible for a specific attribute for one
class (e.g., pose of a dog) can be used on a different class
(e.g., a cat) to facilitate the same attribute. To this end, we
utilize BigGAN [1] trained in Imagenet. BigGAN is already
a conditional model, however it only allows for object class
labels (e.g., dog breed). However, when our method is used
in conjunction with the model, we can control generalizable
geometric attributes like pose. In Figure 6 we train the two
mapping networks (one for each pose) on one object class
(in the first row) and use them to sample images of different
animals. The results highlight that the geometric features
are encoded in the same layers for similar classes and hence,
the same mapping can be used across different classes. This
finding indicates that the generator learns to disentangle
shape from appearance for classes with similar geometry
(e.g., different cat breeds). In particular, the network learns
generalisable low-level primitives for similar looking classes,
e.g., pose. However, the same does not hold for higher-level
class-specific attributes, such as type of car.

4.5. Comparison to end-to-end training

One of the advantages of the proposed method is that it
can be used on any pretrained GAN, without the need for
retraining the generator. However, we compare against SC-
GAN [27] and ClusterGAN [29] that learn a clustering that
separates the latent space during training. We showcase re-
sults on CelebA for 2 and 4 clusters respectively in Figure 7.
In the case of 2 clusters, the method mostly learns to separate
female from male faces, entangled with pose. In contrast,
in the case of 4 clusters we do not notice a clear separation
of semantic attributes other than image statistics (e.g., dark
background) for SCGAN. We further quantify the inconsis-
tency of attributes in each cluster in Table 1. In particular,
we classify hair color and gender (using Microsoft Azure1)
in each cluster and present the percentage corresponding to
‘dark hair’ and ‘female’. In this setting, we binarize the hair
color as the data form clusters based on light and dark hair
tone. The results highlight that in some cases the distribution
may even be almost uniform, indicating attribute inconsis-
tency. Similarly, we calculate the yaw of the faces. The
inconsistency in pose is demonstrated by the large standard
deviation.

4.6. Quantitative comparison

To evaluate our method quantitatively, we generate sam-
ples for the attributes ‘yaw’ and ‘gender’ and evaluate them

1https://azure.microsoft.com/en-gb/services/
cognitive-services/face/

using Microsoft Azure. We compare against GANSpace [10]
and SeFA [35] by identifying the attributes above in their
basis of interpretable directions. Similarly, we also compare
against ClusterGAN and SCGAN by identifying the clusters
where each studied attribute is more prevalent. The results in
Table 2 show that the images generated using the proposed
method consistently contain the target attributes. On the
other hand, ClusterGAN and SCGAN are not able to find
clusters that separate the pose.

4.7. Implementation details

The mapping networks consist of 3 fully connected layers
without biases, as well as batch-normalization between each
layer 2. The networks were optimized using Adam [19] on
Pytorch [32]. We train each model for 400 epochs on a Titan
X GPU with 12 GB in less than an hour. Both k-means
and the nearest neighbour algorithms are implemented using

Model Hair Gender Yaw (deg)
SCGAN, k=4, c=1 79% 94% -6.79 ± 5.19
SCGAN, k=4, c=2 85% 45% -13.4 ± 4.93
SCGAN, k=4, c=3 65% 86% 11.46 ± 7.51
SCGAN, k=4, c=4 73% 95% -9.04 ± 5.72
SCGAN, k=2, c=1 72% 92% -2.64 ± 5.86
SCGAN, k=2, c=2 82% 35% -24.30 ± 7.59
ClusterGAN, k=4, c=1 69% 89% -1.72 ± 5.88
ClusterGAN, k=4, c=2 54% 76% -2.42 ± 6.49
ClusterGAN, k=4, c=3 67% 73% -14.58 ± 7.81
ClusterGAN, k=4, c=4 67% 75% 7.50 ± 7.60
ClusterGAN, k=2, c=1 56% 80% -11.59 ± 7.77
ClusterGAN, k=2, c=2 72% 69% 5.30 ± 9.5

Table 1. Attribute predictions for the images of each cluster for
ClusterGAN [29] and SCGAN [27], trained for 2 and 4 clusters.
For the attribute ‘hair’ we report the percentage of ‘dark’ hair
(classified as ‘brown’ or ‘black’). For the attribute of gender we
report the percentage of faces classified as ‘female’. For ‘yaw’, we
report both the mean and standard deviation of the degrees.

Gender Yaw
ClusterGAN 51% 24%
SCGAN 95% 58%
GANSpace 98% 89%
SeFA 98% 94%
Ours 100% 95%

Table 2. Classification accuracy for multiple attributes using the
baseline methods and ours. For gender, we sample images with
the ‘female’ attribute and for yaw with the ‘pose right’ (at least 10
degrees from frontal). If a face is not found in the generated image,
we deem it to be misclassified.

2https://www.math.ias.edu/~ke.li/projects/
imle/
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Figure 5. Synthesized images on LSUN with Progressive GAN (PGAN). The proposed approach can identify different sources of variation
in each cluster, for instance rotation in the car, or multitude of objects in the chairs, background context in the bridges, and even architectural
style in the churches.

Figure 6. Generalization to different classes. The two mappings are learned in the representation space of the class depicted in the first row
(i.e., red rectangle). Then, we demonstrate how the learned mappings transfer to other ImageNet classes without training them. Note that the
transformation generalizes beyond other dog breeds, e.g., it applies to rabbits and seals.
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Figure 7. Results of SCGAN [27] and ClusterGAN [29] trained on CelebA for k = 2 and k = 4 total number of clusters. For SCGAN
k = 2, we notice that the separated attribute is gender entangled with pose, while for SCGAN k = 4 there is no clear disentangled attributed
except for the c = 1 cluster, which captures face with dark backgrounds. On the other hand, the clusters produced by ClusterGAN do not
demonstrate consistent attributes.

FAISS [14]. To enable reproducibility of our work, we utilize
open-source code for the pretrained GANs (the links can be
found in the supplementary material).

5. Limitations and broader impact

Limitations: The qualitative results in the previous section
highlight the efficacy of the proposed method in conditioning
unconditional GANs. However, the generated attributes can
be entangled and are dependent on the variation present in
the training set (e.g., bald people are always male in Figure
3). It should be noted that similar limitations are faced by
most unsupervised methods (e.g., [10]). Furthermore, the
number of clusters used for k-means has an effect on the
resulting attributes. In this work, we treat the number of
clusters as a hyper-parameter but there are several heuris-
tics in the literature that deal with this issue (e.g., elbow
method or eigengap for subspace clustering [40]). However,
calculating the number of clusters is beyond the exploratory
purpose of this work. Lastly, since the mapping learned by
IMLE is approximate, the generation quality of the samples
is not always similar to the ones sampled from the latent
distribution, which is a trade-off for controllable synthesis.

Broader impact: Our method is built on top of a pre-
trained GAN. As such, it inherits all the biases of the training
data used to train the GAN, e.g., issues with CelebA-HQ.
Our method can be used to control the low-level features
(e.g., pose) for on-demand generation. If the dataset includes
biases, those could be reflected in the clusters and invari-
ably in the on-demand generation. On the other hand, our
method can be viewed as a tool for investigating such biases,
since the clusters will reflect the primary variations of the

dataset. We also emphasize that the high-fidelity GANs we
utilize [1, 16, 18] are publicly available. As the generation
quality improves further, we believe methods like ours can
be used as a ‘semantic debugging tool’ to uncover the biases
of the GAN model. Thus, we believe our work aids towards
transparency and explainability in generative models.

6. Conclusion

In this work, we introduce a method for controllable gen-
eration using unconditional GANs. The proposed method fo-
cuses on learning semantic attributes without supervision and
conditioning the GAN generator using such attributes. Our
method is lightweight and can work on top of any GAN gen-
erator as demonstrated by our experiments with three strong-
performing generators, i.e., Progressive GAN, StyleGAN
and BigGAN. We explore how those semantic attributes dif-
fer across classes and even illustrate how learned attributes
in one class can transfer to different classes. A future step
would be to explore automatic selection of the number of
clusters.
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