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Abstract

Fashion image retrieval based on a query pair of refer-
ence image and natural language feedback is a challenging
task that requires models to assess fashion related informa-
tion from visual and textual modalities simultaneously. We
propose a new vision-language transformer based model,
FashionVLP, that brings the prior knowledge contained in
large image-text corpora to the domain of fashion image re-
trieval, and combines visual information from multiple lev-
els of context to effectively capture fashion-related informa-
tion.While queries are encoded through the transformer lay-
ers, our asymmetric design adopts a novel attention-based
approach for fusing target image features without involving
text or transformer layers in the process. Extensive results
show that FashionVLP achieves the state-of-the-art perfor-
mance on benchmark datasets, with a large 23% relative
improvement on the challenging FashionIQ dataset, which
contains complex natural language feedback.

1. Introduction

The task of feedback-based fashion image retrieval in-
volves fetching images of clothing items that match a cus-
tomer’s needs and preferences. A customer starts with an
initial request to search for a fashion item and participates
in multiple turns of interaction with the conversational as-
sistant until they get the result that they are satisfied with. A
key challenge in this use-case is to retrieve a new candidate
image based on both the previously retrieved image and the
new feedback provided by the customer. Figure 1 shows
examples of feedback-based fashion image retrieval.

Substantial progress [6, 19, 25, 49] has been made on
this topic by designing strong image-text composers us-
ing image and text features from separate neural networks.
Recently, Vision-Language Pre-trained (VLP) transformers
[8,26,28,33,44,45,54,57,59] have been shown to be capa-
ble of learning joint representations for images and text di-
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Figure 1. Fashion image retrieval with textual feedback. The input
query to the system includes a reference image and a comment
specifying changes to be made to the image. The system retrieves
fashion items with the desired changes accordingly.

rectly by training on large-scale image-text corpora. In this
work, we propose a VLP transformer-based model, Fash-
ionVLP, for fashion image retrieval with textual feedback,
which leverages prior knowledge from large corpora and
image features from multiple fashion-related context levels.

Our model is composed of two parallel blocks – one for
processing the reference image and the feedback, and an-
other for processing target images. The reference block
starts with extracting image features at multiple-levels of
context: (1) whole image, (2) cropped image of clothing,
(3) regions around fashion landmarks [32], and (4) regions
of interest determined by a pretrained object detector. These
features along with object tags from the detector and word
tokens from the textual feedback are then fed into a multi-
layer transformer model to compute a final joint represen-
tation for reference. On the target side, features at contexts
(1)–(3) are computed using only image feature extractors
for efficient low-cost inference, and fused using a contex-
tual attention mechanism instead of transformer layers to
generate a target encoding for each candidate image. The
model is trained using cosine similarity and a batch-based
classification loss where the target for each reference im-
age is used as a negative sample for other reference images.
Finally, retrieval is performed by ranking candidates using
cosine similarities between reference and target encodings.
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We evaluate FashionVLP on three common fashion im-
age retrieval datasets: FashionIQ [51], Shoes [3] and Fash-
ion200K [17]. Unlike other datasets, FashionIQ contains
real human comments on specific reference-target image
pairs and is hence much more challenging for the fashion
image retrieval task. Results show that FashionVLP im-
proves the performance on FashionIQ by a significant rel-
ative performance gain of 23%. This validates the capa-
bility of our framework in dealing with complicated real-
life image-feedback pairs when conducting fashion image
retrieval. Our model also surpasses the state-of-the-art on
Shoes and Fashion200K datasets.

Our work makes the following contributions:

• We propose a new transformer-based model that lever-
ages prior knowledge from large image-text corpora for
fashion image retrieval with textual feedback.

• We provide a way for effectively incorporating multiple
levels of fashion-related visual context for both reference
and candidate images within our asymmetric design.

• Our model outperforms previous works on benchmark
datasets, with 23% relative gain on FashionIQ.

2. Related Work

Fashion Image Retrieval with Textual Feedback: The
classic image retrieval task is a long-standing fundamental
problem [9, 47] in computer vision, which requires com-
parison of reference and target images in a scalable way.
Tremendous advances have been made in this field recently
with the development of deep learning based methods [1,
15, 35, 37]. Alternative formulations use natural language
text-based queries for image retrieval [10,34,41,53,55,56].

Fashion image retrieval with textual feedback is differ-
ent from the classic image retrieval problem as it takes both
a reference image and a textual feedback for modifying the
reference as query inputs, as shown in Fig. 1. Intuitively,
this task can be solved via text-based visual relationship
reasoning [21, 36, 40], where text features are injected into
image feature extractors to get modified image encodings,
which are then used for retrieval [36]. However, these meth-
ods do not explicitly combine visual and textual features
into a joint semantic space, leading to poor performance.

In contrast, previous methods developed specifically for
this task typically fuse the image and textual inputs into
joint embeddings for retrieval. For example, TIRG [49]
learns a gated feature and a residual feature for each image-
text query and composes them into a joint encoding. The
CIRPLANT [31] model fuses linguistic and visual infor-
mation using a transformer while VAL [6] learns multiple
transformers for the same at various levels through an at-
tention mechanism. The objective function of VAL is de-
signed to measure the feature similarities in a hierarchi-
cal manner. Hosseinzadeh et al. [20] compose images and

text through locally bounded features (LBF). The state-
of-the-art CosMo [25] models content and style changes
between images and uses deep Multi-modal Non-Local
(DMNL) [50] blocks to compose different types of changes.
Vision-Language Pretrained Transformers: Unlike
transformers used in natural language processing [4,12,38],
image classification [13, 30, 46], object detection [5, 58],
and video understanding [14], Vision-Language Pre-trained
(VLP) transformers are trained through self-supervision
on large image-text corpora to capture prior multi-modal
knowledge contained within them [8, 26–28, 44, 54, 57].

In this work, we apply VLPs to the problem of fashion
image retrieval with textual feedback, so that we can bene-
fit from the rich multi-modal information contained in their
model weights. Our model is based on the state-of-the-art
VLP VinVL [54], but is tailored with architectural additions
for fashion retrieval and trained in a metric learning manner.
Table 1 compares our model with previous works.

Table 1. Comparison of related works. The general VLP model
VinVL is included for reference as our FashionVLP is based on
this model. The columns T, W, C, R, and L refer to the inputs:
text, whole image features, cropped clothing features, RoI fea-
tures, and landmark features, respectively. AttNet refers to our
new attention-based module for generating image encodings by
fusing multiple contextual features.

Reference Target Reference Target
Method T W C R L W C L Fusion Feats.

TIRG ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ Residual CNN
VAL ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ Transformer CNN
LBF ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ Cross-Attn CNN
CosMo ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ DMNL CNN
CIRPLANT ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ VLP CNN

VinVL ✓ ✓ ✗ ✓ ✗ – – – VLP –

FashinVLP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ VLP AttNet

3. FashionVLP
As shown in Table 1, previous works in this domain

are common in two aspects: (1) only the whole image is
used as input, and is represented as global features after
average pooling from convolutional feature-maps, and (2)
customized modules are used for composing reference im-
age and text features. However, both considerations are
somewhat idealistic in the context of fashion image re-
trieval. More precisely, utilizing only whole fashion im-
ages implicitly requires robust feature extractors that gen-
eralize across fashion items with variations in size, rota-
tion, pose, background, etc. Further, the use of global im-
age features assumes that these are themselves sufficient
and contain enough local information for retrieval. Using
custom heuristic modules for image and text composition
further raises concerns about generalization across fashion
item types and variation in textual feedback. In order to ad-
dress both the considerations, we design a novel method for
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Figure 2. FashionVLP Overview. The model processes reference image-feedback pairs and target image candidates using parallel blocks
– Reference and Target. Both blocks extract image features at multiple contextual levels, namely, whole image, cropped clothing, fashion
landmarks, and regions of interest (RoIs), to focus on different fashion-related aspects of images. The Reference block fuses these image
features with feedback inputs to generate joint reference embeddings fref through a transformer module that contains self-attention. The
target block fuses image representations through multiple attention modules to generate target embeddings ftar . The reference and target
embeddings are then compared during training and inference for ranking candidate images for a query reference image and feedback pair.

fashion retrieval with textual feedback.
Our method incorporates a VLP module for multi-modal

information fusion as VLPs are known to generalize well
across several domains [8, 26–28, 44, 54]. The inclu-
sion of VLPs also brings the prior knowledge contained
in large image-text corpora to the feedback-based fash-
ion retrieval domain. Further, the core transformer design
of VLPs allows for composition of additional modalities,
e.g., regions of interest (RoIs) [28, 54]. In order to bet-
ter fit the fashion retrieval task, we introduce a novel over-
complete image representation that fuses multiple levels of
fashion-related contextual information, namely, whole im-
age, cropped clothing region, fashion landmarks, and re-
gions of interest. Intuitively, such a representation provides
direct and explicit inputs that are correlated with words in
the feedback, and thus eases the fusion of linguistic and vi-
sual information, improving generalization.

3.1. Overview

Fashion image retrieval with textual feedback requires
effective fusion of information between visual attributes of
the reference image and linguistic content of the feedback.
The tremendous success of Vision-Language Pre-trained
(VLP) transformers at learning joint representations of such
data makes them extremely suitable for this task. The ef-
ficacy of transformers is attributed to their self-attention
mechanism, which allows information from non-adjacent

inputs to be fused directly, unlike in traditional recurrent
networks. Specifically, a transformer applies linear projec-
tions to its input features X ∈ RN×dmodel to produce rep-
resentations: Q ∈ RN×dk , K ∈ RN×dk and V ∈ RN×dv .
The output of a self-attention module is then computed as:

Attn(Q,K, V ) = softmax(QKT /
√
dk)V ∈ RN×dv (1)

The learning capacity of the attention module can be further
improved by the multi-head design, formulated as:

MultiHead(Q,K, V ) = Concat(h1, h2, . . . , hh)W
O, (2)

hi = Attn(Qi,Ki, Vi). (3)

where WO is a linear layer that projects the concatenated
features back to dmodel dimensionality. The output of the
attention module is post-processed [48] by a Feed-Forward
Network and several Layer Normalization [2] layers.

Multi-layer transformers are built by stacking multiple
transformer blocks sequentially. A typical example is BERT
[12], which is designed for natural language tasks but has
been extended to the multi-modal domain. Many VLP mod-
els are initialized with original BERT weights and further
trained on domain-specific pre-training tasks [26, 28, 33].

In this work, we propose a new VLP model, Fashion-
VLP, for fashion image retrieval with textual feedback. Fig-
ure 2 provides an overview of our framework. The basic
setup of the retrieval task requires learning representations

14107



of (a) the reference image and the textual feedback and (b)
target images in a database in order to compare and search
for candidate images to present to the user. Intuitively, our
model consists of two parallel blocks – the reference block
and the target block for encoding (a) and (b), respectively.

The reference block extracts features at multiple-levels
of context – (1) whole image, (2) cropped image of clothing,
(3) regions around fashion landmarks [32], and (4) regions
of interest determined by a pretrained object detector. These
features are then fused with object tags from the detector
and word tokens from the feedback through a multi-layer
transformer. The transformer output is treated as the final
joint encoding fref for the reference image and feedback
pair. The target block also computes encodings at contexts
(1)–(3) using the same image feature extraction layers, but
these are fused using a contextual attention mechanism in-
stead of the transformer layers to reduce computation costs
at inference, and projected to the dimensionality of fref to
generate representations ftar for target images. This allows
for a scalable design for efficiently computing embeddings
for fast-growing reference databases.

The model is trained using cosine similarity to compare
reference and target embeddings. Subsequently, retrieval is
performed by ranking candidate images using their similar-
ities with the given reference image and textual feedback.
In the following sections, we describe the computation of
text and image features and the training methodology.

3.2. Linguistic Embedding

We tokenize the textual feedback through the pre-trained
Oscar [28] tokenizer from VinVL [54]. The text is repre-
sented as a sequence of word tokens t = {w1, w2, . . . , wT },
where T is the length of the text. We append a special
[CLS] token to the beginning of the sequence. When the
feedback has mulitple sentences, we combine all the tokens
into one sequence but separate sentences using [SEP] to-
kens. The tokens are then mapped to RT×dmodel by an em-
bedding layer. Finally, we add positional encoding to the
sequence to preserve positional information.

3.3. Image Embeddings

Our model employs a ResNet [18] as the backbone fea-
ture extractor for whole, cropped, and landmark represen-
tations. We use a publicly available (https://git.io/JPAO4)
pretrained Cascaded Pyramid Network [7] to extract fash-
ion landmarks from input images. As shown in Figure 3,
these landmarks are different for each clothing category and
capture fashion-related semantics, e.g., hem line, waist line,
etc. Although not trained on shoes, the model is capable of
effectively capturing meaningful points like tip, heel, etc.
Whole Image Representation: We obtain spatial im-
age representations from the last convolutional block of a
ResNet feature extractor with dimg channels by flattening

Figure 3. Fashion landmarks visualization for different cloth-
ing types. Landmarks reflect essential points such as neckline,
armpits, etc., that provide useful visual cues for fashion retrieval.

it into a feature sequence fspat
whole ∈ RHW×dimg . The self-

attention mechanism in the transformer layers of the refer-
ence block allows features from all positions on the feature
map to be modeled simultaneously. Hence, we directly use
this feature sequence as a part of the reference image repre-
sentation. In the target block, however, we fuse these spatial
features into global features. Global features are commonly
computed by average-pooling spatial features, which fails to
preserve location-specific salience. Therefore, we propose
a positional attention module, a 1×1 convolution layer with
dimg filters, to extract global representation fglob

whole ∈ Rdimg

from spatial features fspat
whole ∈ RHW×dimg .

fglob
whole = PositionalAttn(fspat

whole) ∗ f
spat
whole (4)

Cropped Clothing Representation: We use fashion land-
marks to generate cropped clothing images from the given
(whole) images in order to process their “zoomed in” ver-
sions through the feature extractor and better capture fea-
tures from clothing regions. We then compute cropped
clothing encodings in the same way as whole image em-
beddings. Specifically, the reference block computes fspat

crop

to provide as input to the transformer while the target block
further generates fglob

crop using positional attention.
Fashion Landmark Representation: We explicitly incor-
porate fashion semantics in our model by extracting feature
maps corresponding to L fashion landmark positions from
the second convolutional block of the ResNet feature ex-
tractor, which preserves more localized information. We
then project these features to match the number of channels
in the whole and cropped encodings, producing fspat

lmk ∈
RL×dimg . This is then directly used as input to the trans-
former as a part of the image representation in the reference
block. However, in the target block, we use a landmark at-
tention module, another 1×1 convolution with dimg filters,
to combine fspat

lmk ∈ RL×dimg and generate fglob
lmk ∈ Rdimg

RoI-level Representation: Due to the size of image-text
corpora typically used to train VLPs, CNNs are usually not
integrated into the framework. Instead, existing models ex-
tract RoI-level features through a pre-trained object detec-
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tor. The semantic information in RoIs is indeed crucial for
feedback-based fashion image retrieval. For instance, when
a customer asks for changes on sleeves, a model with RoI
information would be able to place higher attention on RoIs
corresponding to arms. Therefore, we include RoI-level
features, fRoI , extracted by a pre-trained object detector as
part of our image representation in the reference block.

We use a publicly available [54] Faster-RCNN-C4 [39]
with ResNeXt-152 [52] backbone (X152-C4) trained on
MSCOCO [29], Visual Genome [23], Objects365 [43], and
OpenImage V5 [24], following [54]. The RoIs are filtered
by a confidence threshold ϵ. In addition, [28, 54] state that
the object category for each region can acts as an anchor
between images and text. We follow the setting in [28] and
append object tags to the end of the linguistic input in the
reference block, separated by the [SEP] token.
Region Position Encoding: In order to preserve positional
information of the extracted RoI features, we encode their
region position into a 6-dimensional vectors as

fpos =

[
x1

w
,
y1
h
,
x2

w
,
y2
h
,
x2 − x1

w
,
y2 − y1

h

]
, (5)

where [x1, y1, x2, y2] denotes the bounding box of the RoI
and h,w are image dimensions. We combine fpos with fRoI

to create position-aware region representations. We sim-
ilarly combine fspat

whole and fspat
crop with their corresponding

position encodings according to their field of view.
Combined Reference Image Representation: The final
image representation fed into the transformer layers in the
reference block consists of (1) fspat

whole, (2) fspat
crop , (3) fROI ,

(4) fspat
lmk , and (5) position encodings for (1)–(3).

Fused Target Representation: We combine fglob
whole, fglob

crop,
and fglob

lmk using a contextual attention module, which is a
1× 1 convolution layer, to get a fused target representation.

3.4. Model Training

The transformer takes three input segments: linguistic
features, object tags, and image features. We take the out-
put hidden state of the [CLS] token from the transformer
as the reference embedding fref . Meanwhile, for target rep-
resentation we extract the fused features and project it into
the joint feature space to get ftar. We then compute the
similarity of fref and ftar by a kernel function κ.

We adopt a batch-based classification loss [49], where
each entry inside a batch acts as a negative sample for all
other entries. This objective function converges faster [42]
than triplet loss, especially on complex datasets. For a batch
of B image-text pairs, the loss is defined as:

L =
1

B

B∑
i=1

− log
exp(κ(f i

mod, f
i
tar))∑B

j=1 exp(κ(f
i
mod, f

j
tar))

. (6)

The kernel κ in Equation (6) can be any metric, but we use
inner product in this work, resulting in cosine similarity.

We train our network by fine-tuning the transformer to-
gether with the feature extractor and the attention modules.
The feature extractors in reference and target blocks share
weights to prevent overfitting. We do not fine-tune the ob-
ject detector as the Region Proposal Network [39] inside
X152-C4 cannot be trained without separate loss functions.

4. Evaluation
We evaluate models on FashionIQ [51], Shoes [3], and

Fashion200K [17]. We compare our model with state-of-
the-art methods: TIRG [49], VAL [6], and CosMo [25]. We
additionally present results of visual reasoning based base-
lines: RN [40], MRN [21], and FiLM [36]. In the following
sections, we describe the experiment setup, present evalua-
tion results, and discuss ablation studies.

4.1. Experiment Setup

Implementation Details: We use ImageNet [11] pretrained
ResNet-50 for FashionIQ and Shoes, and ResNet-18 for
Fashion200K, as image feature extractors following [25].
We employ BERT-base [12] from [54] as the transformer.
We use the Adam [22] optimizer with β = (0.55, 0.999)
and train models for 100 epochs, halving the learning rate
every 10 epochs. We use batch sizes of 80 and 92 for Fash-
ionIQ and Shoes, respectively, with an initial learning rate
of 4e−4 and a warm-up period of 150 iterations. We set
batch size as 200, initial learning rate as 1e−3, and warm-
up period as 500 iterations for Fashion200K due to its large
size. The detection confidence threshold ϵ is set to 0.5.
Inference: During inference, we process queries and can-
didates in the dataset separately. Candidate features are ex-
tracted by the target block containing only image feature
extractors and attention modules, while reference and feed-
back queries are processed by the reference block including
the transformer module as described in Section 3.1. We then
compute cosine similarities for ranking the candidates.
Evaluation Metric: Models are evaluated using the stan-
dard top-K recall metric for image retrieval, denoted as
R@K. Performance is compared specifically on the average
of R@10 and R@50 as a metric of overall performance.

4.2. Results

FashionIQ [51]: This is a fashion retrieval dataset with in-
teractive natural language captions. Items belong to three
types: Dresses, Tops&Tees, and Shirts. It contains 77K im-
ages in total with 46K images for training and 18K image
pairs available. Each pair has two crowdsourced captions
that describe changes from the reference to the target. The
feedback is complicated and sometimes a sentence includes
multiple concepts to be changed, e.g., “is patterned and has
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has a blue and 
white print with 
longer sleeves

A green/white 
plaid with long 
sleeves

is black colored 
and has floral 
pattern

Figure 4. Qualitative results on FashionIQ. We show reference images on the left and top-10 retrievals with descending scores on the right.
Ground-truths are shown with boxes. Feedback in FashionIQ is complex yet realistic and can contain multiple concepts simultaneously.

Table 2. Quantitative results on FashionIQ. Our model surpasses
the state-of-the-art by a large margin on all three sub-categories.
We report results with both the VAL evaluation protocol [6,25] and
the Original evaluation protocol. CT denotes CIRPLANT [31].

Dress Toptee Shirt Overall

Method R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Mean
VAL [6, 25] Evaluation Protocol

RN [40] 15.44 38.08 21.10 44.77 18.33 38.63 18.29 40.49 29.39
MRN [21] 12.32 32.18 18.11 36.33 15.88 34.33 15.44 34.28 24.86
FiLM [36] 14.23 33.34 17.30 37.68 15.04 34.09 15.52 35.04 25.28
TIRG [49] 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39 27.40
CT [31] 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20
VAL [6] 21.12 42.19 25.64 49.49 21.03 43.44 22.60 45.04 33.82
CosMo [25] 25.64 50.30 29.21 57.46 24.90 49.18 26.58 52.31 39.45

FashionVLP 32.42 60.29 38.51 68.79 31.89 58.44 34.27 62.51 48.39
Original Evaluation Protocol

Image Only 4.46 13.19 5.46 13.21 6.13 13.64 5.35 13.35 9.35
Concat 14.92 34.95 14.28 34.73 12.71 30.08 13.92 33.25 23.59
TIRG [49] 14.13 34.61 14.79 34.37 13.10 30.91 14.01 33.30 23.66
CosMo [25] 21.39 44.45 21.32 46.02 16.90 37.49 19.87 42.62 31.25

FashionVLP 26.77 53.20 28.51 57.47 22.67 46.22 25.98 52.30 39.14

a halter neckline”, “is black with floral patterns”, etc. The
complex yet realistic nature of the feedback in this dataset
makes it exceptionally challenging for the retrieval task.

We follow the evaluation protocol of [6, 25], where the
candidate set is constructed by unifying all reference and
target images in the test set. This reduces the number of
images for retrieval, compared with the original test set, re-
sulting in higher performance for all models. We evaluate
models on the reduced set (VAL [6] evaluation protocol) for
fair comparison with previous works, but also report results
for the original evaluation protocol for future reference.

Quantitative results are presented in Table 2. Our model
outperforms the previous state-of-the-art by a large margin
on all metrics. Specifically, for the VAL evaluation proto-
col, our approach achieves a relative improvement of more
than 29% on R@10 and 19% on R@50. Furthermore, we
observe a broad 23% relative improvement over all fash-
ion types, indicating that our model generalizes well across
them. Finally, FashionVLP also shows an overall 25% rela-
tive improvement for the original evaluation protocol.

Figure 4 presents some examples of retrieval. As shown,
feedback sentences in FashionIQ are complex and contain

Table 3. Quantitative results on Fashion200K. Our model achieves
the best results on Recall@50 and mean recall.

Method R@10 R@50 Mean

RN [40] 40.5 62.4 51.4
MRN [21] 40.0 61.9 50.9
FiLM [36] 39.5 61.9 50.7
TIRG [49] 42.5 63.8 53.2
VAL [6] 49.0 68.8 58.9
CosMo [25] 50.4 69.3 59.8

FashionVLP 49.9 70.5 60.2

multiple concepts. Our model is able to capture such diverse
concepts and retrieve good candidate images.
Fashion200K [17]: This is a large-scale fashion dataset
with images from various online shopping websites. It con-
tains more than 200K images (training: 172K, testing: 33K)
and a feedback vocabulary of more than 5K words. Images
are labeled with descriptions like “blue women’s embroi-
dered midi-dress”, and attributes including product infor-
mation and user reviews. In our experiments, we only uti-
lize images and their descriptions. Following [49], we gen-
erate textual feedback through an automated process that
compares attributes between pairs of images. The feedback
is structured in the form of “replace [sth] with [sth]”, which
is much simpler than feedback in FashionIQ and Shoes.

Our results presented in Table 3 show that our model
outperforms the previous state-of-the-art by a relative im-
provement of 1.7% on R@50. Although R@10 is slightly
lower, our model achieves an overall relative improvement
of 0.6%. We attribute smaller gains on Fashion200K to the
fixed unnatural templated nature of feedback in this dataset,
as shown in Figure 5. Such text is closer to attribute-like
feedback [6] than to natural language sentences. As Fash-
ionVLP aims to bring the benefits of strong natural language
priors to the task of fashion retrieval, such knowledge is
not as beneficial for Fashion200K. However, our model still
achieves the best results on this dataset.

Qualitative results in Figure 5 show that multiple images
are considered correct for a query if their captions are iden-
tical. Results show that our model can recognize attribute
changes in the feedback and retrieve images accordingly.
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replace multicolor 
with black

replace gray 
with beige

replace black 
with blue

Figure 5. Qualitative results on Fashion200K. We show reference images on the left and top-10 retrievals with descending scores on the
right. Ground-truths are shown with boxes. Note that a query pair can correspond to multiple valid target images in this dataset. Due to the
lack of human annotated feedback, comments in Fashion200K follow the template: replace [sth] with [sth], and are thus less instructive.

is red leather 
with a white 
sheep

are bronze-
colored 
slingbacks

are mostly tan, 
not floral-
patterned

Figure 6. Qualitative results on Shoes. We show reference images on the left and top-10 retrievals with descending scores on the right.
Ground-truths are shown with boxes. Feedbacks in Shoes are fine-grained and contain concepts belonging to the fashion domain of shoes.

Table 4. Quantitative results on Shoes. Our model achieves the
best results on Recall@50 and mean recall.

Method R@10 R@50 Mean

RN [40] 45.10 71.45 58.27
MRN [21] 41.70 67.01 54.35
FiLM [36] 38.89 68.30 53.59
TIRG [49] 45.45 69.39 57.32
VAL [6] 49.12 73.53 61.32
CosMo [25] 48.36 75.64 62.00

FashionVLP 49.08 77.32 63.20

Shoes [3]: This dataset was originally collected to extract
attribute information from web images. Guo et al. [16]
tagged the images with captions in natural language for
fashion image retrieval. We use the original splits in [16],
which provides 10K training pairs and 4.6K test queries.

Table 4 shows that our model achieves the best results on
this dataset, with relative improvements of 2.2% on R@50,
1.5% on R@10, and 1.9% on average. Qualitative results
in Figure 6 show that our model can perceive both simple
visual changes like color and complex visual properties like
patterns and shoe models for retrieving candidate images.

4.3. Ablation Studies

We present ablation studies to provide insights into how
different contextual image information and model compo-
nents affect performance. We perform these studies on
FashionIQ as it contains complex and realistic feedback.

Table 5. Ablation study on FashionIQ on different contextual im-
age features. PositionalAttn, RoI, Lmk, Crop and Whole refer to
positional attention, RoI encodings, landmark features, and em-
beddings from cropped and whole images, respectively.

Method R@10 R@50 Mean

FashionVLP 34.27 62.51 48.39

w/o PositionalAttn 33.75 61.43 47.59
w/o Lmk 33.28 60.77 47.02
w/o Lmk, Crop 32.60 59.75 46.18
w/o Lmk, Crop, RoI 31.67 60.06 45.86
w/o Lmk, Crop, Whole 31.34 59.84 45.59

Contextual image features: We analyze the effect of pos-
tional attention, landmark, cropped clothing, and RoI fea-
tures on the retrieval performance by evaluating versions of
our model trained without these encodings. Results in Ta-
ble 5 show that excluding these contextual pieces reduces
performance. Specifically, using global average pooling in-
stead of positional attention to combine spatial features re-
sults in a 1.7% relative reduction in mean recall. Remov-
ing landmark features causes a 2.83% relative drop. Addi-
tionally excluding cropped clothing encodings results in a
4.57% drop. Further removing RoI features causes 5.23%
degradation. Excluding whole image encodings instead of
RoI features as in VinVL [54] leads to a 5.79% relative drop.
Fashion landmark features and fusion methods: We first
study the effects of different methods of generating land-
mark features: (1) normalized landmark coordinates, (2)
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is pastel green with 
mesh over spaghetti
strap top 

has blue floral print 
around neck
has blue embroidery
and longer hem

Whole WholeCropLandmarks ROI Reference Target Crop Landmarks

Reference Attention Example Pairs Target Attention
Figure 7. Visualization of attention on relevant words in textual feedback and different contextual image features for two sample pairs.
Words with the highest attention weights are shown in bold. For each level of context in the reference block, we visualize the attention
heatmap of the corresponding most attended word, and observe effective correspondence between bold words and relevant image regions.
On the target side, we visualize attention heatmaps corresponding to our positional and landmark attention modules, showing that these
modules effectively capture important fashion information. Results of attention in the reference (left) and the target (right) blocks further
show that the whole image modality is insufficient – for example, the upper sample’s whole image representation for the target image lacks
any useful information. Further, fashion landmarks provide important for fashion-specific concepts, e.g., strap, hem, etc.

Table 6. Ablation study on FashionIQ on different methods of gen-
erating landmark representations (LmkRep) and combining them.
Conv Block2 and Conv Block3 indicate that features for each land-
mark are extracted from the 2nd and the 3rd convolutional blocks of
the feature extractor, respectively. Norm coords refers to the use of
normalized landmark positions as feature values. For fusion, we
compare the effects of the context (Ctx) and the landmark (Lmk)
attention (Attn) modules with simply concatenating the features.

LmkRep Ctx Attn Lmk Attn R@10 R@50 Mean

Conv Block2
✓ ✓ 34.27 62.51 48.39
✓ ✗ 33.17 61.42 47.29
✗ ✗ 32.15 61.09 46.62

Conv Block3
✓ ✓ 33.63 61.85 47.74
✓ ✗ 32.09 60.48 46.29
✗ ✗ 33.81 61.12 47.46

Norm coords ✓ – 32.82 61.02 46.92
✗ – 32.70 61.10 46.90

indexed features from the third convolutional block of the
ResNet feature extractor, and (3) those from the second con-
volutional block. Results in Table 6 show that using fea-
tures from the lower (second) block achieves the best per-
formance, indicating that the fine-grained local information
provided by this block is useful for fashion retrieval.

We also study the effects of different methods of fus-
ing image features in the target block. Adding contextual
and landmark attention to combine whole, cropped cloth-
ing, and landmark features (second convolutional block)
provides 3.8% relative improvement compared to simply
concatenating the said features. Of this, incorporating the
landmark attention module for fusing landmark features be-
fore the contextual attention provides 2.3% improvement.
Attention Visualization: In order to further analyze the
above two ablation studies, we visualize attention maps
in Figure 7. For reference images, we first extract the most
attended words from query text and then visualize their
corresponding attention on image features. We find that
RoIs features best capture broad concepts,e.g., design and

dress, whereas fashion landmarks are useful for specific at-
tributes,e.g., hem and straps. Cropped clothing features pro-
vide access to zoomed-in regions like neck. Our model is
also able to reason about ambiguous concepts like spaghetti
and focus on relevant parts of image. On target side, adding
spatial attention helps remove irrelevant information and fo-
cus on important regions like cloth design and sleeves.

5. Conclusion
We have presented a new vision-language transformer

based model, FashionVLP, which leverages prior knowl-
edge from large image-text corpora and multiple contex-
tual image features to effectively perform fashion image re-
trieval with textual feedback. Our model also provides a
novel attention based approach for effectively fusing visual
information from diverse visual contexts for learning can-
didate image embeddings. Furthermore, we present an ef-
ficient framework for generating embeddings of candidate
images, which are in the same latent space as the joint en-
codings of reference image and feedback queries, by ex-
cluding the parameter-heavy transformer layers from the
computation process. Results show that our model achieves
state-of-the-art results on benchmark datasets. In particular,
our model achieves more than 23% relative improvement
on FashionIQ, which contains complex yet realistic natural
language feedback for fashion image retrieval.

Despite our novel design, there are still challenges in
implementing it for real-life fashion search applications in-
volving in-the-wild user queries, e.g., a fashion item could
be hung in a closet, folded in a box, etc., with diverse con-
ditions, e.g., old, wet, etc. Moreover, common challenges
like lighting, color distortion, motion blur, etc., still exist.
Finally, the current formulation is limited to a single round
of retrieval based on one reference image and feedback pair,
while real-life use-cases would require multiple iterations of
feedback involving some form of memory management.
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