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Abstract

Existing self-supervised 3D human pose estimation
schemes have largely relied on weak supervisions like con-
sistency loss to guide the learning, which, inevitably, leads
to inferior results in real-world scenarios with unseen
poses. In this paper, we propose a novel self-supervised
approach that allows us to explicitly generate 2D-3D pose
pairs for augmenting supervision, through a self-enhancing
dual-loop learning framework. This is made possible via in-
troducing a reinforcement-learning-based imitator, which is
learned jointly with a pose estimator alongside a pose hal-
lucinator; the three components form two loops during the
training process, complementing and strengthening one an-
other. Specifically, the pose estimator transforms an input
2D pose sequence to a low-fidelity 3D output, which is then
enhanced by the imitator that enforces physical constraints.
The refined 3D poses are subsequently fed to the hallucina-
tor for producing even more diverse data, which are, in turn,
strengthened by the imitator and further utilized to train the
pose estimator. Such a co-evolution scheme, in practice,
enables training a pose estimator on self-generated motion
data without relying on any given 3D data. Extensive exper-
iments across various benchmarks demonstrate that our ap-
proach yields encouraging results significantly outperform-
ing the state of the art and, in some cases, even on par with
results of fully-supervised methods. Notably, it achieves
89.1% 3D PCK on MPI-INF-3DHP under self-supervised
cross-dataset evaluation setup, improving upon the previ-
ous best self-supervised method [16, 26] by 8.6%.

1. Introduction
Video-based 3D human pose estimation aims to infer 3D

pose sequences from videos, and therefore plays a crucial
role in many applications such as action recognition [47,
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Figure 1. Overview of our PoseTriplet framework. The pose
estimator, imitator, hallucinator are trained jointly in a dual-loop
strategy. In the first loop, the estimator provides physically im-
plausible motion information, which is then enhanced by the im-
itator via enforcing physical constraints to generate physically
plausible motion. In the second loop, the hallucinator generates
more diverse motion patterns given motion sequence from previ-
ous loop, and sends them to the imitator again for further refine-
ment. This dual-loop paradigm facilitates tight co-evolution of the
three components and enables iterative self-improving training of
the estimator with the generated diverse and plausible motion data.

58], virtual try-on [31], and mixed reality [5, 20, 34]. Ex-
isting methods [22, 33, 37, 38, 48] mainly rely on the fully-
supervised paradigms, in which the ground truth 3D data
are given as input. However, capturing 3D pose data is
cost-intensive and time-consuming, as it typically requires
a multi-view setup or a motion capturing system [17, 34],
making it infeasible under in-the-wild scenarios.

To this end, two categories of methods have been intro-
duced to alleviate the 3D data availability issue. The first
category explores the semi-supervised settings, in which
only a small amount of the 3D annotations are given [30,36,
68]. The second category, on the other hand, assumes no 3D
data are available at all and only 2D poses are provided. Un-
der this setup, state-of-the-art methods have mainly focused
on imposing weak supervision signals to guide the training,
such as aligning the projection of an inferred 3D pose with
a 2D pose [4, 16, 61]. Due to the lack of 3D data and hence
the missing of 2D-3D pairs, these methods are, by nature,
brittle to the challenging scenarios such as unseen poses in-
herent to the in-the-wild tasks.
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In this paper, we propose a novel self-supervised ap-
proach termed as PoseTriplet, which allows for explicitly
generating physically- and semantically-plausible 2D-3D
pose pairs, so that full supervisions can be imposed and
further significantly strengthen the self-learning process.
This is made possible through introducing a reinforcement-
learning-based imitator, which is jointly optimized with
the pose estimator alongside a pose hallucinator. Specifi-
cally, the imitator takes the form a of physics simulator with
non-differentiable dynamics to ensure physically plausibil-
ity. The hallucinator helps generate more diverse motion
with generative motion completion. These three key com-
ponents are integrated into a self-contained framework and
co-evolve via a dual-loop strategy as the training proceeds.
With only 2D pose data as input, PoseTriplet progressively
generates, refines and hallucinates 3D data, which in turn
reinforces all components in the loop. Once trained, each
component of PoseTriplet can be readily taken out and
serves as an off-the-shelf tool for its dedicated task, such
as pose estimation or imitation.

The key motivation behind co-evolving the pose estima-
tor, imitator and hallucinator, lies in their complementary
natures. In particular, pose estimator takes 2D poses as in-
put and generates 3D poses with reasonable semantics (e.g.,
nature behaviors) but implausible dynamics; such derived
3D poses are then refined through the physics-based im-
itator that enforces physical constraints. Conversely, the
reinforcement-learning-based imitator is possible to gener-
ate unnatural behaviors (e.g., overly energetic movements),
which can be rectified through the pose estimator to ensure
the semantic plausibility. Pose hallucinator, on the other
hand, enhances the data diversity by producing realistic 3D
pose sequences under both the semantic and physical guid-
ance, which further strengthens data synthesizing and hence
improves generalization performance.

We show the overall workflow of PoseTriplet in Fig. 1,
which effectively aligns with aforementioned motivation.
Unlike prior endeavors that rely on self-consistency-based
supervisions or 3D sequences as input, PoseTriplet, through
the dual-loop scheme, turns the input 2D poses into de-
pendable 3D poses of realistic semantics and dynamics,
thereby lending itself to much stronger supervisions and
consequently the co-evolution of the pose estimator, imi-
tator and hallucinator. Experimental results across H36M,
3DHP, and 3DPW datasets demonstrate that, PoseTriplet
gives rises to pose estimation results significantly superior
to the state-of-the-art self-supervised methods, and some-
times even on par with results from fully-supervised ones.
Notably, it achieves 89.1% 3D PCK on MPI-INF-3DHP un-
der self-supervised cross-dataset evaluation setup, improv-
ing upon the previous best self-supervised method [16, 26]
by 8.6%.

Our contribution is therefore a novel scheme dedicated

for self-supervised 3D pose estimation, achieved by the
co-evolution of a pose estimator, imitator, and hallucina-
tor. The three components complement and benefit one an-
other, together leading to a self-contained system that en-
ables realist 3D pose sequences and further the 2D-3D aug-
mented supervisions. By taking only 2D poses as input,
PoseTriplet delivers truly encouraging results across vari-
ous benchmarks, largely outperforming the state of the art
and even approaching full-supervised results.

2. Related works
3D pose estimation 3D pose estimation have been wildly
explored under fully supervised, semi-supervised, self-
supervised. Various approaches have been explored under
fully supervised setting [22, 33, 34, 37, 38, 48, 52, 53, 59, 60,
66]. Through offering impressive results, those approaches
highly rely on accurate motion capture data, which are hard
to collect. To address high cost of data collection, semi-
supervised methods [30, 36, 68] are proposed to utilize the
information from unlabeled data. Besides semi-supervised
approach, augmentation based methods [9,29] are proposed
to enlarge the data amount through evolution strategy [29]
or learnable approach [9].

Different from the above schemes, self-supervised meth-
ods, with multi-view data, explore the intrinsic supervi-
sion for model training, without requiring ground truth 3D
pose [18,23,51]. For instance, Kocabas et al. [23] utilize the
epipolar geometry to generate pseudo label, [18,51] utilize
the 3D pose consistency across different views. Though be-
ing effective, those approaches require synchronized mul-
tiple cameras, which are not usual in real scenarios. Other
methods [4,7,16,61] explore the more challenge single view
setting. For example, Drover et al. [7] utilize the prior that a
random projection of a plausible 3D pose estimation will be
plausible in 2D pose distribution through adversary training.
Chen et al. [4] improves this idea by adding cycle consis-
tency. Yu et al. [61] further introduces the scale steps for
2D poses to resolve the ambiguity issue. Zhang et al. [65]
applies self-supervised learning on test data to adapt model
to new scenarios.

Our method belongs to the self-supervised approaches
under single view setting. Different from previous self-
supervised approaches which implement weak supervision
signal through consistency [4] or adversary [7, 61], our
method directly uses the strong supervision signal from
self-generated data, results in more accurate and stable
model performance. The pseudo label strategy [30] un-
der semi-supervised category is close to our approach.
However, our approach does not require ground truth data
for model pretraining, and our method introduces phys-
ical plausibility refinement and diversity enhancement to
achieve better performance, which are absent in [30].
Physics-based pose estimation The above methods are all
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Kinematics based. Though providing impressive results,
they do not consider physical constrains, thus suffering
physical implausible artifacts (e.g., foot skating and ground
penetration). To ensure physical plausibility, recent works
explore physical constraints. Rempe et al. [43] introduces
physical law to the foot contact and human dynamic, while
its iterative optimization is high time costly (e.g., 30 min-
utes for 2s clip). Later, [45, 46, 57] propose differentiable
physical constrain to reduce the time cost. But they only
consider foot contact, making them less effective in scenar-
ios with other important contact (e.g., lay down, sitting with
chair).

Different from optimization based approaches, physics
simulation based methods use physics simulators to provide
realistic physical constrains. DeepMimic [40] tries to im-
itate various motion from reference mocap data in physics
engine via reinforcement learning. SFV [41] proposes to re-
fine the low fidelity motion data from video-based pose esti-
mation through imitation learning. However, their adopted
imitation learning requires days of training for just one
clip. Later, SimPoe [64] addresses this issue by introduc-
ing RFC [63] to effectively reduce the time consumption by
training one policy for all motion clips. Our method is built
upon SimPoe [64] for better generalization and low time
cost. However, different from those methods only using
physical constraints for post processing, our method pro-
pose to involve it in the learning loop. As such, no mocap
data for pose estimation training and imitation learning is
required.
Motion synthesis Motion synthesis includes non-learning
based and learning based approaches. In non-learning based
approaches, the motion graph method [25] first builds tran-
sition edges between different motion points based on their
similarity, and then generates new motion data through
traversing the graphs. Motion matching [35] searches
proper future frames in motion data based on motion states
in real time. In learning based approaches, motion perdi-
tion based methods [1, 10, 28, 32, 39, 62, 67] aim to predict
future poses conditioned on previous poses. Action gener-
ation [2, 3, 55] aims to generate pose sequence conditioned
on action labels. Motion completion [8, 11–14, 21] gener-
ates realistic transitions between key frames, which most
relevant to our work in their aims. The pose hallucina-
tion in our framework also aims to generate novel motion
sequence, where motion graph and motion match methods
are not applicable due to tight restriction in their generated
data. We therefore choose motion completion considering
it can generate longer sequence with continuously input key
frames.

3. Methodology
Given a 2D pose sequence x1:T = (x1, ...,xT ) of length

T , where xt ∈ RJ×2 is the 2D spatial coordinate of J body

joints at time t, our goal is to estimate the 3D pose sequence
X1:T = (X1, ...,XT ), where Xt ∈ RJ×3 is the corre-
sponding 3D joint position under the camera coordinate sys-
tem. Conventionally, a pose estimator P : x1:T 7→ X1:T

with parameter θ is trained with a large set of paired 2D and
3D pose data {x1:T ,X1:T } through fully-supervised learn-
ing approaches [22, 33, 34, 38, 48]:

min
θ
LP(Pθ(x1:T ),X1:T ). (1)

Here LP denotes the loss function which is typically de-
fined as mean square errors (MSE) between predicted and
ground truth 3D poses sequences. However, ground truth
3D pose data is expensive to capture, which limits the ap-
plicability of these approaches. To avoid using 3D data,
previous self-supervised approaches typically apply weak
2D re-projection loss [4, 7, 16, 61] to learn the estimator:

min
θ
LP(Π(Pθ(x1:T )),x1:T ), (2)

where Π is the perspective projection function. The re-
projection loss only provides weak supervision which tends
to induce unstable or unnatural estimations. In this work,
we aim to design a self-supervised learning framework
of which the core is an iterative self-improving paradigm.
Specifically, we propose to enhance the current estimation
with some specifically designed transformation T (e.g., to
produce more smooth and diverse motion):

X ′
1:T = T (Pθn(x1:T )) (3)

The enhanced estimates are then projected to 2D pose to
obtain paired training data {x′

1:T ,X
′
1:T }, which are used to

improve the pose estimator:

θn+1 ← min
θ
LP(Pθ(x

′
1:T ),X

′
1:T ) (4)

Here θn and θn+1 denote the parameters of the current esti-
mator and improved estimator. The improved estimator can
then be utilized to start a new iteration of data enhancement
and training. Build on this self-improving paradigm, we can
train a superior pose estimator starting from only a set of
2D pose sequences {x1:T }.

3.1. PoseTriplet

To construct an effective self-improving framework, we
identify two challenging aspects for enhancing the 3D mo-
tion sequence: 1) the pose estimation from the estimator
may not be physically plausible due to ignorance of force,
mass and contact modeling; 2) existing 2D motion may be
limited in diversity and thus the learned model cannot gen-
eralize well. To address these challenges, we introduce a
pose imitator based on the reinforcement learning aided hu-
man motion modeling and a pose hallucinator based on gen-
erative motion interpolation accordingly to refine and diver-
sify the 3D motion. The former helps correct the physi-
cal artifacts while the latter generates novel pose sequences
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Figure 2. Detail of our PoseTriplet framework. Given available 2D pose sequence x1:T , the pose estimator P transforms it to low-fidelity
3D pose sequence X̄1:T . X̄1:T is then served as semantic guidance signal (i.e., reference motion) for imitator I to obtain physically
plausible motion X̃1:T . The hallucinator H then generates novel and diverse motion X̀1:T from X̃1:T , which is then refined by the
imitator I to obtain the final enhanced diverse and plausible motion X̂1:T . X̂1:T is then projected to 2D-3D pairs to train the estimator.
The improved estimator takes the available 2D pose sequence x1:T and start another round of dual-loop optimization.

based on the existing estimates. We find these two aspects
in motion are complementary and thus combine them to-
gether. The resulting pipeline helps obtain 3D motion data
{x′

1:T ,X
′
1:T } with significantly improved physical plausi-

bility and motion diversity. Nevertheless, we find naive two-
step combination of the two approaches generate inferior-
quality 3D pose sequence. The reason is that performing
motion diversification first could be ineffective due to im-
plausible estimate while conducting motion diversification
later could introduce physical artifacts. Therefore, we fur-
ther introduce a dual-loop scheme and unify the two com-
ponents with pose estimator into a novel self-supervised
framework named PoseTriplet.
Dual-loop architecture Concretely, as shown in Fig. 2, our
PoseTriplet introduces a dual-loop architecture to integrate
the three modules: a pose estimator P , a pose imitator
I, and a pose hallucinator H. Given the set of available
2D pose sequence x1:T , the pose estimator first transforms
them to low-fidelity 3D pose sequence:

X̄1:T = P(x1:T ) (5)

{X̄1:T } is converted to low-fidelity reference motions and
served as semantic guidance signal to the pose imitator,
which imposes the physical human motion dynamic mod-
eling and obtains physically plausible motion sequence:

X̃1:T = I(X̄1:T ) (6)

By learning a generative motion completion model, the pose
hallucinator then generates novel and diverse motion se-
quences {X̀1:T } based on the improved plausible motion
from the imitator:

X̀1:T = H(X̃1:T ) (7)

Afterwords, instead of closing the loop by treating {X̀1:T }
as augmented data to the estimator, we introduce another
loop. We feed {X̀1:T } back into the imitator to correct
the induced physical artifacts and obtain the final expected
plausible and diverse motion sequences:

X̂1:T = I(X̀1:T ) (8)

{X̂1:T } is then projected to 2D to obtain paired data
{x̂1:T , X̂1:T } for training the pose estimator.

By jointly optimizing this dual-loop architecture, the
three components form a tight co-evolving paradigm: 1)
the estimator benefits from the diverse and plausible aug-
mented data to learn more accurate estimation. 2) the imita-
tor learns more robust and physically natural motion based
on the improved estimation and diverse data generated from
the hallucinator. 3) the hallucinator generates diverse pose
sequence of higher quality based on the improved data from
the imitator.
Loop starting Another challenging aspect of this self-
improving learning paradigm is the loop starting. Without
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access to 3D motion data, the whole framework cannot start
learning. Recall our pose imitator employs physics-based
human motion model, we thus develop a zero-data generat-
ing strategy that produces initial 3D pose sequence for start-
ing the dual-loop learning. Specifically, we generate root
trajectory signal in horizontal plane with random direction
and proper velocity. This trajectory is then used for guid-
ance signal for RL agent. By control the agent to follow
the generated trajectory, we can generate motion sequences
that are physically plausible. These motion sequences is
then projected to obtain 2D-3D pose pairs and used to train
a initial pose estimator. In this way, the whole dual-loop
learning can be started.

3.2. Module detail

3.2.1 Pose estimator

The pose estimator estimates the 3D pose sequence X1:T

from the input sequence x1:T . Specifically, we adopt a sim-
ilar estimator architecture as VideoPose [38], which pre-
dicts both root trajectory and root-relative joint locations.
The trajectory can be used as additional movement signal
to pose imitator. Meanwhile, the noise in root movement
can be corrected by the pose imitator and in turn help the
pose estimator. We use Mean Square Error (MSE) loss for
the root-related pose estimation and Weighted L1 loss for
the trajectory estimation following [38].
Projection for training estimator Given the generated mo-
tion sequence data {X̂1:T }, we project them to 2D to obtain
paired training data. We consider two strategies for the pro-
jection: 1) Heuristic random projection. We set the virtual
camera with certain elevation, azimuth range, height and
distance range to match the indoor capture environment.
This is similar to the projection strategy for 3D pose data
synthesis as Chen et al. [6]; 2) Generative adversarial learn-
ing based projection [9]. A generator is used to regress the
camera orientation and position for each motion sequence.
The regression is learned through a discriminator by dis-
tinguishing the real and the projected 2D pose sequences
with the generated camera parameters. In this way, reason-
able camera viewpoint distribution can be extracted from
real 2D pose data, improving the plausibility of generated
2D-3D paired data. The two strategies are combined in our
framework to ensure the diversity of camera viewpoints.
3.2.2 Pose imitator

The 3D pose sequences {X̄1:T } predicted from pose es-
timator P , due to lack of physical constrain, would suffer
unnatural artifacts such as foot skating, floating, floor pene-
tration. Those artifacts prevent it from being used as train-
ing data directly for estimator P or hallucinator H. To ad-
dress the issue, motivated by [40, 41, 64], we introduce a
reinforcement learning based pose imitator I to imitate the
low fidelity 3D pose sequence {X̄1:T } from pose estima-

tor to generate more physically plausible motion sequence
{X̃1:T }.
Background The imitation process can be seen as a Markov
decision process. Given a reference motion and current state
st ∈ S, the agent interacts with the simulation environment
with action at ∈ A and receive reward rt. the action is de-
termined by a policy π(at|st) conditioned on state st ∈ S;
the reward is determined based on how similar the agent be-
haves like the reference motion. When an action is taken,
the current state st changes to next state st+1 through tran-
sition function T (st+1|st,at). The goal is to learn a policy
that maximizes the average cumulative rewards

∑∞
i=1 γ

irt
(i.e., performing similar behavior in physics simulator as
reference motion), where γ is the discounting factor. The
state, action and rewards are detailed below.
State includes current pose qt, current velocity q̇t, and tar-
get pose q̃t+1 from reference motion. To deal with the noisy
reference motion from the pose estimator, we introduce an
extra encoded feature ϕ by concatenating and fusing the
past and future motion information. In this way, the con-
trol policy is aware of past and future reference motion, and
is thus more robust to the noise.
Action involves two kinds of forces: internal force and ex-
ternal force. The internal force is applied by actuator on
the non-root joints (e.g., elbow, knee). Following previous
work [42], we use PD (proportional–derivative) control for
internal force control. The external force ηt is a virtual
force applied on root joint(i.e., hip) [63] for extra interac-
tion (e.g., sitting on the chair) and is regressed by the policy
network.
Rewards measure the motion differences between the agent
and reference motion. These differences capture pose re-
lated (pose, velocity), root related (root height, root veloc-
ity) and body end factors (position, velocity). Besides, a
regulation loss on virtual force is applied to avoid unneces-
sary external force following [63]. As we find that the agent
is hard to move with the above setting due to the noisy ref-
erence motion, we further introduce a feet relative position
into the motion characteristics to enhance the feet motion.

3.2.3 Pose hallucinator

The pose hallucinator aims to generate novel and diverse
motion sequence based on the refined data from pose imita-
tor. In this work, we choose motion interpolation technique
to generate novel pose motions. Specifically, we sample
key-frames from the refined pose sequence, and interpolate
the missing frames via neural networks to generate new mo-
tion data. In details, the pose hallucinator is constructed by
a recurrent neural network (RNN) structure. The inputs are
the sampled temporal key-frames (we sample key-frames
with a certain frame interval). Conditioned on these sam-
pled key-frames, the model predicts the intermediate frames
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in sequential manner. A reconstruction loss and an adver-
sary loss is used to train this model. The reconstruction
loss measures the L2 distance between the ground truth and
predicted poses. The adversary loss provides temporal su-
pervision to avoid RNN collapse (i.e., predicting average
motion). In the inference stage, we randomly select frames
from different motion clips and generate novel motion se-
quences based on these sampled key-frames.

4. Experiments

We study three questions in experiments. 1) Is
PoseTriplet able to improve performance of video pose
estimator for both intra- and cross-dataset scenarios? 2)
How does the performance improves with the round of co-
evolving process? 3) How does the amount of training data
affects model performance? We conduct experiments with
H36M (source dataset) and 3DHP/3DPW (for cross-dataset
evaluation). Throughout the experiments, we adopt Video-
Pose [38] (T=27) as our pose estimator. We report results
from estimator for comparison. Please refer to supplemen-
tary for more implementation details.

4.1. Dataset

H36M [17] is the most popular 3D pose benchmark cap-
tured by marker-based motion capture system. It contains
3.6 million video frames for 11 subjects and 15 scenarios.
Following previous works [4, 61], we use the 2D poses of
subject S1, S5, S6, S7, S8 as our training set and evaluate
the performance on S9 and S11. The two standard met-
rics Mean Per Joint Position Error (MPJPE) in millimeters
and Procrustes Aligned Mean Per Joint Position Error (PA-
MPJPE) are used for evaluation.
3DHP [34] is a large 3D pose dataset. It contains both in-
door and outdoor scenarios. Following previous works [4,
24], we report the metrics of MPJPE, Percentage of Correct
Keypoints (PCK) and Area Under the Curve (AUC) after
scale and rigid alignment for evaluation. We only use its
test set to evaluate the model’s generalization performance.
3DPW [50] is a more challenging in-the-wild dataset. It
contains more complicated activities and scenarios. Same
as 3DHP, we only use its test set to evaluate model’s gen-
eralization performance. Follow previous work [24], we re-
port MPJPE and PA-MPJPE for 3DPW.

4.2. Quantitative results

Results on H36M We compare our PoseTriplet with other
state-of-the-art self-supervised methods [4, 16, 26, 44, 61]
under GT (ground truth 2D poses) and Det (detected 2D
poses) settings as shown in Table 1. Among which,
[4, 26, 44] implement weak supervision (i.e., consistency
supervision), [16, 61] utilize temporal information through
adversary learning [61] and smoothness constrains [16].

Our method outperforms the best of them by a large mar-
gin in MPJPE for both GT (85.3 vs. 68.2) and Det (82.1
vs. 78.0) settings. The result verifies that our method
with co-evolving strategy and augmented supervision per-
forms better compared with previous approaches. More-
over, our method also outperforms some weakly-supervised
approaches [15, 18, 30, 56] which involve ground truth data
during training. Especially, comparing with Li et al. [30]
which implements low rank representation and temporal
smoothing for pseudo 3D label generation, our approach,
utilizing the advantage of physics simulator, provides bet-
ter refinement and outperforms [30] by a large margin in
MPJPE (88.8 Vs 78.8) even it use ground truth data (i.e.,
subject 1). This verifies the effectiveness of our co-evolving
strategy on reducing reliance on 3D data.

Mode Method GT Det
P1 (↓) P2 (↓) P1 (↓) P2 (↓)

Full Martinez et al. [33] 45.5 37.1 62.9 47.7
Full Pavllo et al. [38] 37.2 27.2 46.8 36.5
Weak 3DInterpreter [56] - 88.6 - 98.4
Weak AIGN [15] - 79.0 - 97.4
Weak Drover et al. [7] - 38.2 - 64.6
Weak Li et al. [30] - - 88.8 66.5
Weak Umar et al. [18] - - - 55.9
Self Rhodin et al. [44] - - 131.7 98.2
Self Chen et al. [4] - 51.0 - 68.0
Self Kundu et al. [26] - - - 62.4
Self Kundu et al. [27] - - - 63.8
Self Yu et al. [61] 85.3 42.0 92.4 52.3
Self Hu et al. [16] - - 82.1 -
Self Wandt et al. [51]∗ - - 81.9 53.0
Self Ours 68.2 45.1 78.0 51.8

Table 1. Results on H36M in terms of MPJPE (P1) and PA-
MPJPE (P2). ∗ uses multi-view setting. Best results are shown
in bold under self supervised setting.

Results on 3DHP We then evaluate the generalization per-
formance of our method on cross dataset 3DHP. We com-
pare our PoseTriplet with state-of-the-art methods, includ-
ing fully supervised, weakly supervised, and self super-
vised approaches [4, 24, 26, 27, 34, 49, 61]. As shown in
Table 2, under cross-data evaluation, our method overruns
previous self-supervised methods [4,26,61] significantly in
PCK (82.2 vs. 89.1) and MPJPE (103.8 vs. 79.5). The re-
sult indicates that the diverse and plausible motion gener-
ated by our PoseTriplet improves generalization. Exception
is that Kundu et al. [26], which uses extra data and unpaired
3D poses for model training and thus achieves slightly
better performance in AUC (56.3 vs. 53.1). Our method
also outperforms self-supervised methods [4, 26, 27, 61]
trained on 3DHP dataset directly. In addition, our method
achieves better performance than weakly supervised ap-
proaches [24, 49] in all metrics, even though they use un-
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paired images and 3D poses for supervision during the train-
ing process. Notably, our method even achieves comparable
performance with fully supervised approaches [24,34,49]).
In summary, the cross-dataset performance of our self-
supervised framework PoseTriplet is comparable with the
intra-dataset result from fully/semi-supervision. This indi-
cates a good generalization performance of our PoseTriplet.

Mode Method CE PCK (↑) AUC (↑) MPJPE (↓)
Full VNect [34] 83.9 47.3 98.0
Full HMR [49] 86.3 47.8 89.8
Full SPIN [24] 92.5 55.6 67.5
Weak HMR [49] 77.1 40.7 113.2
Weak SPIN [24] 87.0 48.5 80.4
Self Chen et al. [4] 71.1 36.3 -
Self Kundu et al. [27] 80.2 44.8 97.1
Self Kundu et al. [26] 84.6 60.8 93.9
Self Yu et al. [61] 86.2 51.7 -
Self Chen et al. [4] ✓ 64.3 31.6 -
Self Kundu et al. [26]∗ ✓ 82.1 56.3 103.8
Self Yu et al. [61] ✓ 82.2 46.6 -
Self Ours ✓ 89.1 53.1 79.5

Table 2. Results on 3DHP in terms of PCK, AUC, and MPJPE.
CE denotes cross-data evaluation. ∗ uses extra unpaired 2D/3D
dataset for training. Best results are shown in bold.

Results on 3DPW We further evaluate the generalization
performance of our method on in-the-wild 3DPW dataset.
Note that there is few works evaluated on 3DPW under the
self-supervised cross dataset setting. Therefore, we com-
pare to the supervised approaches [24, 38, 49, 54] directly.
From Table 3, we can observe our method achieves com-
parable results with the fully supervised baseline without
relying on any 3D data. This demonstrates that our method
performs well on complicated and challenging in-the-wild
scenarios.

Mode Method CE MPJPE (↓) P-MPJPE (↓)
Full Wang et al. [54] ✓ 124.2 -
Full DSD-SATN [49] ✓ - 69.5
Full CRMH [19] ✓ 105.3 62.3
Full BMP [66] ✓ 104.1 63.8
Full VideoPose [38] ✓ 101.8 63.0
Self Ours ✓ 115.0 69.5

Table 3. Results on 3DPW in terms of MPJPE and PA-MPJPE.
CE denotes cross-data evaluation.

4.3. Qualitative results

While previous self-supervised methods rely on weak
supervision signal (e.g., consistency loss), our method trains
the pose estimator with augmenting supervision from the
self-generated data, resulting in more stable, plausible, and

Figure 3. Result on UID [16] comparison with Hu et al. [16].
The figure includes: input (left), ours (middle), Hu et al. [16]
(right).

Figure 4. Result on H36M comparison with Yu et al. [61]. The
figure includes: input (left), ours (middle), Yu et al. [61] (right).
Red skeleton is prediction, green skeleton is ground truth.

accurate estimation1. As shown in Fig. 3, although Hu et
al. [16] implements temporal smoothness prior during the
training process, jittering effect is still obvious. While
our result, learned from co-evolving approach, is much
smoother. Yu et al. [61] introduce a scale estimation strat-
egy for 2D pose to reduce the scale ambiguity. Through
the weak supervision from the bone length consistency and
scale distribution, his result still contains scale ambiguity
(i.e., the body size varies) as shown in Fig. 4. Ours result
maintains stable and accurate in term of body size com-
pared with it. We further demonstrate the result from 3DHP
(Fig. 5) and 3DPW (Fig. 6). These results demonstrate that
our method perform well on unseen poses for in-the-wild
scenarios. More in-the-wild examples can be viewed in the
supplementary material in video format.

4.4. Ablation study

4.4.1 Ablation on round of co-evolution

We then analysis how the co-evolving round improves the
performance of each component (estimator P , imitator I,
hallucinator H). To demonstrate the improvement, we se-
lect three evaluation metrics for each component. For es-
timator, we evaluate the trained model P on H36M test set
and report the MPJPE as evaluation metric. For imitator, we
evaluate the trained policy I on GT 3D reference motion
(H36M) to measure the number of termination (e.g., fall
down) as evaluation metric. For hallucinator, we evaluate
the trained modelH on GT 3D data (Walking scenario [12]
in H36M) for intermediate pose completion. We measure

1Fig.3-8 are video figure in arxiv version that are best viewed in Adobe
Reader (click and play), and videos are in supplementary materials.
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Figure 5. Result on 3DHP compared with Ground Truth. The
figure includes: input (left), ours (middle), ground truth (right).

Figure 6. Result on 3DPW compared with Ground Truth. The
figure includes: input (left), ours (middle), ground truth (right).

Figure 7. Results on co-evolving for imitator I. The figure in-
cludes: video source (left), our co-evolving result (middle), oracle
trained with ground truth data(right).

the MPJPE of pose and root position as evaluation metric.
We involve an oracle by training each model using the GT
data directly as showed in the last row of Table 4. Through
iterative co-evolving, the performance of estimator P , im-
itator I, hallucinator H are improved and getting closer to
the result which is trained with GT data. We further pro-
vide visualization result for imitator I (Fig. 7), hallucinator
H (Fig. 8). This result shows that the imitator I and hallu-
cinator H co-evolved by our PoseTriplet without using 3D
data achieve a comparable performance compared with the
oracle trained with GT 3D data.

Round P I H
Num. P1 (pose) Termination Num. P1 (pose) P1 (root)

0 193.6 - - -
1 112.2 928 - -
2 77.8 280 71.4 62.6
3 68.2 132 67.3 54.0

Oracle 37.2 81 53.0 33.7

Table 4. Results on co-evolving for estimator P , imitator I,
hallucinator H. Note that round 0 is the Loop starting, and we
involve hallucinator H after round one to ensure the quality of
initial pose estimation.

Figure 8. Results on co-evolving for hallucinator H. The figure
includes: ground truth (left), our co-evolving result (middle), ora-
cle trained with ground truth data(right).

4.4.2 Ablation on amount of data usage

To study how the amount of data affects the performance,
we construct an ablation experiment with limited 2D pose
data. As shown in Table 5, we gradually involve more data
in our method, (i.e., S1, S1+S5, S1+S5+S6+S7+S8). Result
shows that the performance of PoseTriplet can be improved
gradually by adding more 2D pose data in both intra and
cross-dataset scenarios.

Mode Sub H36M 3DHP 3DPW
Self S1 89.2 94.0 135.8
Self S1,S5 81.9 83.5 128.6
Self S1,S5,S6,S7,S8 68.2 79.5 115.0

Table 5. Results on ablation amount of data in terms of MPJPE.

5. Conclusion
In this work we present a novel framework PoseTriplet

for self-supervised 3D pose estimation, which is achieved
by a co-evolution strategy of a pose estimator, imitator,
and hallucinator. These three components, complement and
strength one another through a dual-loop strategy as the
training procedure. The framework enables generating di-
verse and plausible motion data, which help train superior
pose estimator. Experiments on varies benchmarks demon-
strate that PoseTriplet yields encouraging results. It out-
performs the state of the art self-supervised approaches and
even competes with fully-supervised approaches.
Limitations The major limitation is that our pipeline suf-
fers low training efficiency, e.g., it takes 7 days to train for
3 rounds on a machine with a Intel Xeon Gold 6278C CPU
and a Tesla T4 GPU. The reason is that the imitator (I) is
implemented with CPU-based reinforcement learning (RL)
and the hallucinator (H) is instantiated with RNN architec-
ture. In the future, we will explore GPU-based RL imple-
mentation and more efficient hallucinator architecture (e.g.,
transformer) to speed up the training process.
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ulty Research Committee Grant (WBS: A-0009440-00-00)
and NUS Advanced Research and Technology Innovation
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