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Figure 1. Given a monocular portrait video of a person, we reconstruct a Neural Head Avatar. Such a 4D avatar will be the foundation of

applications like teleconferencing in VR/AR, since it enables novel-view synthesis and control over pose and expression.

Abstract

We present Neural Head Avatars, a novel neural repre-

sentation that explicitly models the surface geometry and

appearance of an animatable human avatar that can be

used for teleconferencing in AR/VR or other applications in

the movie or games industry that rely on a digital human.1

Our representation can be learned from a monocular RGB

portrait video that features a range of different expressions

and views. Specifically, we propose a hybrid representa-

tion consisting of a morphable model for the coarse shape

and expressions of the face, and two feed-forward networks,

predicting vertex offsets of the underlying mesh as well as

a view- and expression-dependent texture. We demonstrate

that this representation is able to accurately extrapolate to

unseen poses and view points, and generates natural ex-

pressions while providing sharp texture details. Compared

to previous works on head avatars, our method provides a

disentangled shape and appearance model of the complete

human head (including hair) that is compatible with the

standard graphics pipeline. Moreover, it quantitatively and

qualitatively outperforms current state of the art in terms of

reconstruction quality and novel-view synthesis.

* Both authors contributed equally to the paper
1
philgras.github.io/neural_head_avatars/neural_head_avatars.html

1. Introduction

Reconstructing and reenacting human heads has been a

long studied research problem and will be a key driver for

future applications in VR/AR, teleconferencing, games and

the movie industry. For those applications, it is of particular

interest to get an accurate 3D shape and appearance model

that provides 3D consistency and strong identity preserva-

tion under novel view points, poses and expressions. Re-

constructing such a model, especially from monocular input

data (e.g., from a webcam), is difficult due to the complex

geometry of facial dynamics and the missing 3D informa-

tion [86]. Indeed, several state-of-the-art methods for talk-

ing head synthesis avoid explicit geometry reconstruction

and rely on image or feature-based warping for motion con-

trol and generative networks for image synthesis [64,74,82].

These methods are generalized and deliver impressive reen-

actment results even with only a single input image of the

subject. However, the quality of the approaches drops sig-

nificantly for larger changes in pose or view point as no 3D-

consistent geometry representation is used. Shape proxies

such as a 3D morphable model [9,26] can be utilized to im-

prove the 3D consistency of synthetic faces [15, 40, 69, 71]

since the facial information is embedded on the proxy sur-

face. Besides image- or surface-based representations, vol-

umetric representations are used [29, 46]. While they show

promising results without an explicit surface prior, these

methods still lack a consistent full head shape reconstruc-
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tion from single view inputs and are not compatible with

the standard rasterization pipelines.

In this work, we present Neural Head Avatars, an ex-

plicit shape and appearance representation of the complete

human head (including hair) which can be used in exist-

ing graphics pipelines that use triangular meshes. Specifi-

cally, we employ coordinate-based multi-layer perceptrons

(MLPs) to predict the 3D meshes and dynamic textures, de-

pending on the facial expression and pose of real humans.

These networks are embedded on the surface of the FLAME

morphable head model [43] which also serves as a coarse

shape and expression proxy. We show that one can opti-

mize such an explicit head representation based on a short

monocular RGB video sequence. Using color-dependent

and color-independent energy terms during optimization,

we disentangle the reconstruction of surface geometry and

color detail. The resulting controllable 4D avatar (3D model

+ motion) is subject-specific and generates novel poses and

expressions while preserving high photo-realism. More-

over, it demonstrates great visual quality under large view

point changes and, therefore, addresses one of the main

drawbacks of related approaches.

In summary, our contributions are:

• Neural Head Avatars, a novel, subject-specific repre-

sentation for articulated human heads that explicitly re-

constructs the full head geometry and produces photo-

realistic results even under large view point changes,

• A fully differentiable optimization pipeline to optimize

Neural Head Avatars from a short, monocular RGB

video with color-dependent and color-independent en-

ergy terms that allow for the disentanglement of the

surface shape and color detail.

2. Related Work

Reconstructing controllable 4D head or facial avatars is

an actively studied field at the intersection of computer vi-

sion and computer graphics. For an extensive review of

methods, we refer to the state of the art report of Zollhöfer

et al. [86].

Image-based models. Image-based models synthesize

the face of a subject without relying on any (explicit or

implicit) representation in 3D space. These methods ei-

ther utilize (learned) warping fields [6, 64] to deform an

input image to match new poses or expressions, or deploy

encoder-decoder architectures, where the encoder extracts

an identity code from a given source image and a decoder

synthesizes the output image [51, 73, 82, 84]. The decoder

may be conditioned by facial landmarks [51,82], facial con-

tours [73], or parsing maps [84]. Even though these meth-

ods produce high-quality results and even allow for real-

time synthesis [82], they suffer from artifacts for strong

pose and expression changes, and lack geometric and tem-

poral consistency. This is mainly due to the fact, that the ap-

pearance of deformations in three-dimensional space (e.g.,

yaw opening, head rotation) must be learned in 2D by these

models.

Implicit models. Implicit models represent the geome-

try using implicit surface functions (e.g., signed distance

functions) or by volumetric representations. A common ap-

proach is to represent the appearance of a target person in a

discrete latent feature voxel grid that can be deformed to

synthesize dynamic deformations [46, 74]. Motivated by

their recent success in 3D scene reconstruction [67], neu-

ral radiance fields (NeRF) in combination with volumet-

ric rendering [49] have been used to replace the discrete

feature voxel grids [5, 29, 39, 44, 52–54, 56, 57, 60, 65, 80].

Articulated head avatars can be synthesized by condition-

ing the NeRF on low-dimensional parameters of a face

model [29, 76] or audio signals [35]. Pixel-aligned Volu-

metric avatars [60] are generalized across subjects and can

generate novel views, based on single or multiple input im-

ages. Even though solving geometric and temporal incon-

sistencies, the proposed methods either fail to disentangle

pose and expression [74], are limited to static reconstruc-

tions [39, 60, 61, 75] or fail to generalize to unseen poses

and expressions [29].

Explicit models. The majority of head reconstruction

methods relies on explicit scene representations, i.e., tri-

angular meshes [7, 8, 13, 18, 19, 21, 30–32, 36, 37, 40, 42,

68–72, 78, 79, 86]. For these methods, morphable models

are used as a prior to reconstruct the face from incomplete

(e.g., partially occluded) or noisy data (e.g., from depth

maps). Morphable models are computed from a population

of 3D head scans [26], and provide statistical information

on physiologically plausible head shapes and facial move-

ments [12, 24, 43, 55]. In addition to the geometry, these

models can provide a statistical linear model for the texture

[3,9,10,27,55] which can be used to reconstruct faces from

RGB data only [9, 71, 86]. Recent work utilizes generative

adversarial networks (GAN) [34, 50] to generate and opti-

mize albedo and normal maps for specific subjects [33, 41].

Other approaches utilize 2D neural rendering [66, 67], to

learn how to render photo-realistic imagery of a specific

subject from a short training dataset [40, 68, 69]. These ap-

proaches are based on deep neural networks which can be

conditioned on coarse RGB renderings based on a linear

texture model [40], uv-maps [15], latent feature maps [69]

or point clouds [59]. While these methods produce geo-

metrically consistent avatars that can be easily controlled,

they either are limited to craniofacial structures and do not

include the synthesis of hair [33, 41] or suffer from tempo-

ral and spatial inconsistencies due to their loose bound to
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Figure 2. Overview of our method. Given an RGB input frame, we use an adaption of the real-time face tracker [71] to estimate low-

dimensional shape, expression, and pose parameters of the linear head model FLAME [43]. We adapt the geometry generated by FLAME

with a geometry refinement network G. The resulting mesh is rasterized with a standard computer graphics pipeline. The texture network

T synthesizes the mesh texture of the rasterized surface. Conditioning T on the canonical surface position, a local normal patch, and flame

parameters enables the synthesis of view- and expression-dependent effects. The networks and FLAME parameters are optimized in an

analysis-by-synthesis fashion with color-dependent and color-independent energy terms that allow for the disentanglement of the surface

shape and color detail. The reconstructed Neural Head Avatar can be animated using the expression and pose parameters ψ, θ, and can be

rendered under novel viewpoints.

the geometric backbone [15, 59, 69]. Other methods model

mesh displacements to reconstruct fine detail wrinkles and

hair [4, 17, 28], therefore, maintaining a close bound to the

underlying geometry. However, none of them produces

photo-realistic outputs under novel views.

In contrast to previous work, we jointly optimize a

photo-realistic dynamic texture together with subject spe-

cific geometry that includes facial detail and hair structure,

stored in a coordinate-based, fully connected neural net-

work. By deploying a texture-based approach, we tightly

link appearance and underlying geometry which ensures

spatial consistency and generalization to unseen poses and

expressions. Articulated jaw, neck, and eyes allow for intu-

itive avatar control. We demonstrate that an avatar can be

optimized from a short monocular RGB sequence without

the need of special (multi-view) camera setups as in [45,48].

3. Method

Given an RGB video sequence of a talking person con-

sisting of N consecutive frames I1, I2, ..., IN , we recon-

struct a 4D neural avatar based on an explicit representation

that allows for pose- and expression-dependent novel view-

point synthesis. Specifically, our model outputs a classical

triangle mesh, i.e., vertices V = (v1, v2, ..., vn), vi ∈ R
3,

connecting faces F and a texture function T that assigns

an RGB color value to each point on the surface defined

by V and F (see Section 3.1). Thus, the standard graphics

pipeline can be utilized to obtain a rendered image Î assum-

ing a full perspective camera projection. Based on this im-

age formation model, we optimize our avatar representation

in an analysis-by-synthesis-based fashion (see Section 3.2).

An overview of our method is depicted in Figure 2.

3.1. Explicit Neural Head Representation

Our explicit surface representation is embedded on the

FLAME [43] template surface and shares its topology F .

Specifically, we employ a multi-layer perceptron (MLP) G
which models the pose-dependent offsets w.r.t. the tem-

plate surface. To generate the view-, pose-, and expression-

dependent texture of the face, we use an MLP T which pre-

dicts a color value at any surface point of the mesh.

Template Model. We deploy the parametric FLAME

head model [43] as a geometric backbone of our method:

Vflame : R
300,R100,R3k → R

16227×3

β, ψ, φ 7→ Vflame(β, ψ, φ)

where β, ψ and φ describe shape, expression and k = 4
joint pose parameters, respectively. We perform minor ad-

justments to the FLAME topology, namely, we uniformly

subdivide the faces (four-way subdivision), remove the

faces belonging to the lower neck region and add additional

faces to close the mouth cavity. This increases the original

number of vertices from 5023 to 16227.

Geometry Refinement Network G. To model facial de-

tail and hair which is not represented by the FLAME head

model, we introduce a pose-dependent offset function for

geometry corrections:

G : R3k → R
16227×3

φ 7→ G(φ).

Using this offset function, the mesh geometry is given by:

V (β, ψ, φ) = Vflame(β, ψ, φ) + G(φ).
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(a) Landmarks [16] (b) Semantic Labels [85] (c) Normals [1]

Figure 3. Our optimization is based on the color data of a short

video sequence, the corresponding detected facial landmarks (a),

predicted semantic labels (b) and predicted normal maps (c).

Texture Network T . While [27] provides a linear tex-

ture space for the FLAME head model, due to its Gaus-

sian nature it lacks fine detail and photo-realism. We intro-

duce a novel appearance model T which generates a photo-

realistic texture, including the synthesis of expression and

view dependent effects. In order to predict the color of a

point on the mesh, T receives the 3D coordinates of that

point on the canonical FLAME template mesh, the expres-

sion and pose of the current frame, and a local patch of

the rendered normals as input, and returns the estimated

color value. This conditioning of T enables the synthesis of

expression- and view-dependent effects (compare Figure 8

(b)). Formally, T performs the mapping:

T : R3,R100,R3k,Rn×n×3 → R
3

pi, ψ, φ, N̂i 7→ ci

with ci denoting the predicted color at pixel i, N̂i a local

patch of the rendered normal map around i and pi being

the 3D location on the canonical FLAME template mesh

depicted in i.

We approximate both functions G and T using

two subject-specific, coordinate-based multi-layer percep-

trons [20]. Please refer to the supplemental material for

additional implementation details.

3.2. Optimization based on Monocular RGB Data

The joint optimization of head geometry and texture is

a highly underconstrained optimization problem for short

monocular video sequences. Besides the data terms that are

based on the RGB inputs, we employ regularization strate-

gies that ensure smooth reconstructed surfaces, and view-

consistent texture synthesis. The objective of the joint opti-

mization Ejoint is defined as:

Ejoint = Egeom + Eapp, (1)

where Egeom measures the data and regularization terms

w.r.t. the geometry and Eapp contains the terms w.r.t. the

appearance, i. e., texture and color reproduction.

Geometry Objective Egeom. To disentangle appearance

and geometry, we define a geometry energy term which is

independent of the actual appearance:

Egeom = wlmk · Elmk + wnormal · Enormal

+ wsemantic · Esemantic + wreg,geom · Ereg, geom.
(2)

The landmark energy Elmk measures the ℓ1 distance of

detected 2D facial landmarks [16, 47] and the projected

counterparts on the mesh surface. Besides the absolute po-

sitions of the landmarks, it also measures the relative dis-

tances of the eye landmarks at the upper and lower lid to

improve the reconstruction of eye lid closure [28] (see abla-

tion study in Figure 8 (c)).

The energy termEnormal is based on pseudo-normal maps

N ∈ R
H×W×3 using the pretrained model of Abrevaya et

al. [1]. Based on these predictions, we formulate a recon-

struction energy term for fine geometric detail. As our focus

lies on high-frequency geometry detail, instead of minimiz-

ing the absolute difference between pseudo-normals N and

our predicted normals N̂ , we instead match their image-

space Laplacians λ(·):

Enormal = |λ(N̂)− λ(N)|1.

We employ Esemantic, to match the semantic regions Sk

of the input and Ŝk of the reconstructed mesh for facial skin

and neck, eyes, ears, and hair:

Esemantic =

4∑

k=1

Sk ⊕ Ŝk,

where ⊕ denotes an xor on the region. The respective se-

mantic maps Sk are computed using [81, 85] (see Figure 3

(b)).

Besides the data terms, we employ a regularization term

Ereg, geom which regularizes the FLAME parameters, as well

as the geometry MLP G:

Ereg,geom = wreg, flame · Ereg, flame + wreg,offset · Ereg,offset.

Following [9, 71], Ereg,flame uses the statistical properties of

the linear shape model, and regularizes the prediction to-

wards the canonical template head using an ℓ2-norm on

β, ψ, φ. The offsets are regularized using Ereg,offset which

consists of a Laplacian regularizer and a regularizer that

controls the pose-consistency and distribution of the pre-

dicted offsets. We refer to the suppl. document for addi-

tional details.

Appearance Objective Eapp. The appearance term Eapp

measures the reproduction of the color image I . It depends

on both the geometry as well as the texture parameters of

our neural head model. We use dense per-pixel energy terms
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Ephot, as well as an energy term that measures the perceptual

distance Eperc [38]:

Eapp = wphot · Ephot + wperc · Eperc. (3)

Eperc compares image features of predicted and ground truth

images extracted by the face detector from [25].

Initialization and Optimization Strategy To initialize

our reconstruction method, we adopt the tracking algo-

rithm proposed by [71] which optimizes camera, shape,

expression, and pose parameters based on an analysis-by-

synthesis approach, using the FLAME model [43] with a

linear texture space [27]. The resulting reconstruction is

in coarse alignment with the training sequence, but the

FLAME model is limited to bald heads and lacks fine,

subject-specific geometric detail (see Figure 2). We initial-

ize the geometry refinement network G, by optimizing only

for the Egeom term defined in Equation (2). Once, we ob-

tained an estimate of the full head geometry, we optimize

for the texture MLP parameters w.r.t. Eapp (Equation (3)).

Based on this initialization scheme, we optimize jointly the

geometry and texture parameters to minimize Ejoint (Equa-

tion (1)). For implementation details, we refer to the sup-

plemental document.2

4. Results

We quantitatively and qualitatively evaluate the perfor-

mance of our model on the tasks of geometry reconstruction

as well as novel pose-, expression-, and view synthesis, and

compare it to state-of-the-art methods.

4.1. Datasets

Since the current literature does not provide suitable

datasets for the evaluation of dynamic full head approaches,

we created two datasets.

Synthetic Data. Our synthetic dataset has been generated

with the open source MakeHuman project [14] which al-

lows to model fully animatable and texturized human mod-

els with high variance in appearance and facial geometry.

We generated two female and two male subjects with dif-

ferent ethnicity and head geometry, and render animated se-

quences (200 training frames, 210 validation frames). The

resulting sequences provide ground truth RGB-, normal-

and semantic maps as well as landmarks and 3D meshes

which is used to quantitatively evaluate the geometry recon-

struction of our method. Consequently, for evaluation pur-

poses, we will not rely on predicted pseudo-ground truth

(normal and semantic maps, landmarks) for experiments

with this dataset. Note that the synthetic meshes have dif-

ferent topologies compared to FLAME and our model.

2Additionally, we will release the code for research purposes.

Metric Female 1 Female 2 Male 1 Male 2

Normal: FLAME 15.8◦ 13.3◦ 15.0◦ 14.8◦

Normal: Ours 14.4◦
12.2◦

13.7◦
13.7◦

Hausdorff: FLAME (Face) 1.4 0.9 1.5 1.1

Hausdorff: Ours (Face) 1.2 0.9 1.4 1.2

Hausdorff: FLAME 5.5 4.8 6.1 5.7

Hausdorff: Ours 2.6 2.5 3.0 3.1

Table 1. For four synthetic characters shown in Figure 4, we

evaluate our shape prediction using the validation sequence (210

frames) of our dataset. We list the averaged normal error (angular

error) and the average mesh alignment error (Hausdorff distance

in mm). Normal vectors are compared per pixel in the rendered

image, masked by the head region. The single-sided Hausdorff

distance is computed from prediction to ground truth meshes, on

either the full head or the facial region only. We compare against

the reconstruction by FLAME [43] as a baseline.

Real Data. Our real dataset contains four sequences of

humans, two with male actors, two with a female actor. The

sequences capture various hair styles such as short hair, long

hair and a hair bun. All sequences show the subjects dur-

ing a natural conversation in front of a green screen in an

environment with uniform lighting. We capture 750 train-

ing frames and 750 validation frames for each sequence

and ensure that both sides of the head are visible at least

once in the training partition. We complement the obtained

RGB ground truth with detected facial landmarks as well as

normal- and semantic maps by deploying pretrained mod-

els [1, 16, 85]. The resulting dataset is used to qualitatively

and quantitatively evaluate our model on the task of novel

pose-, expression-, and view synthesis, and to compare to

state-of-the-art methods.

4.2. Geometry Reconstruction Quality

To quantify the head shape reconstruction quality, we

utilize the rendered ground truth normals, as well as the

meshes provided by the synthetic recordings. Those are

compared with the predicted meshes and normal maps by

computing their single-sided Hausdorff distance in millime-

ters (mesh alignment error, as in [58]) and their normal an-

gular error on the validation sequence. The Hausdorff dis-

tance is computed once for the full head and once for the

facial region only. We compare with the reconstructions by

FLAME [43] obtained from our tracker as a baseline. The

quantitative results are reported in Table 1. Our reconstruc-

tion and the misalignment error w.r.t. the ground truth are

visualized in Figure 4. We can see that our approach recon-

structs the talking head faithfully, and even regions, where

only a few silhouette views are available (side of the bun or

front/back of the neck) can be estimated, however, with a

slightly higher reconstruction error. The reconstructed ge-

ometry of real subjects in neutral pose is compared with

multi-view stereo (MVS) recordings in the supplement.
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0 mm

Subject GT Mesh Ours Error

Figure 4. From left to right: Ground truth image of the synthetic

subject, its ground truth geometry, and our predicted geometry. On

the right, we show the average Hausdorff distance in mm (from

prediction to the ground-truth mesh) over all validation frames.

4.3. Novel Pose and Expression Synthesis

The animatable geometric backbone of our model al-

lows to synthesize new expressions and poses for an op-

timized avatar. We quantitatively and qualitatively evalu-

ate our model on this task by optimizing it on the training

partition of the real dataset and using the resulting avatar

to reconstruct the validation frames. For reconstructing the

validation frames, we optimize the expression and pose pa-

rameters of our method in an analysis-by-synthesis man-

ner, i.e., minimizing Equation (1) only for ψ and θ, while

keeping all other components fixed. We compare the re-

sults to recent works on talking-head synthesis: NerFACE

[29], Deep Video Portraits (DVP) [40], First-Order Motion

Model (FOMM) [64], Bi-Layer [82], and VariTex [15]. All

one-shot approaches (FOMM, Bi-Layer and VariTex) are

given the first frontal frame of the training sequence, while

the subject-specific methods (NerFACE and DVP) utilize

the whole training sequence. For evaluation, we deploy the

pixel-wise ℓ1 metric; the reference-free cumulative prob-

ability blur detection metric (CPBD) [11]; the multi-scale

structural similarity metric (MS-SSIM) [77]; the learned

perceptual image patch similarity (LPIPS) [83]; and the

cosine distance of a pretrained face recognition network

(CSIM) [25]. Table 2 shows the resulting scores of percep-

tual and photometric metrics averaged over all sequences

Method L1 ↓ MS-SSIM ↑ LPIPS ↓ CSIM ↑ CPBD ↑

VariTex [15] 0.207 0.640 0.316 0.347 0.565
Bi-Layer [82] 0.108 0.805 0.283 0.757 0.403
FOMM [64] 0.055 0.911 0.201 0.800 0.370
DVP [40] 0.042 0.904 0.098 0.815 0.632
NerFACE [29] 0.057 0.897 0.156 0.864 0.485
Ours 0.033 0.923 0.079 0.884 0.674

Table 2. Quantitative evaluation of the appearance reconstruction

on the real dataset. Reported are the average scores over all vali-

dation frames for all subjects in our real dataset (see Section 4.1).

of our real dataset, and demonstrates that we outperform

related approaches consistently. The qualitative compari-

son in Figure 5 confirms that our model synthesizes images

with higher detail and better expression conservation than

related methods.

4.4. Novel View Synthesis

The explicit geometry representation for each subject

(shown in Figure 6) enables 3D-consistent novel viewpoint

synthesis. We evaluate the novel viewpoint synthesis, by

rendering frames from the validation set of the real se-

quences under novel yaw angles. We compare our method

against NerFACE [29] and DeepVideoPortraits (DVP) [40]

as these methods rely on a representation in 3D space that

can be rotated accordingly. The underlying 3D representa-

tions are centered on the image plane before rendering to

account for varying coordinate origin definitions. Figure 7

demonstrates that while related methods suffer from signif-

icant artifacts, our method maintains its high visual quality.

4.5. Ablation Study

We evaluate the influence of different architecture

choices and optimization terms on the real dataset. Our ge-

ometry is based on the FLAME model, and extends it to

capture person-specific detail. For deformations of the face,

we rely on the blendshape-based expression model and the

linear blend-skinning of the yaw bone. Nevertheless, in our

experiments, we found that a static geometry refinement of

the underlying FLAME model does not reconstruct the neck

region realistically as the joint poses and global rotation of

the initial FLAME estimate are highly ambiguous. To this

end, we condition the geometry network G with the joint

poses of the FLAME model which compensates errors in

the neck region, see Figure 8 (a).

Similar to the dynamic geometry network, we use a

pose- and expression-dependent network T to predict the

surface radiance. Figure 8 (b) demonstrates that the use of

a static texture, i.e. when the dynamic conditionings of T
are fixed to zero, results in less authentic synthesis results,

especially for the highly dynamic mouth region.

Our model also supports eye blinks, which are modelled

by the geometry of the FLAME model. To enforce the re-
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VariTex [15] Bi-Layer [82] FOMM [64] DVP [40] NerFACE [29] Ours Ground Truth

Figure 5. Comparison of novel pose & expression synthesis results. VariTex, Bi-Layer and FOMM are one-shot approaches and estimate

the avatar from the first frontal training frame. All other methods are optimized subject-specifically on the respective training set.

Figure 6. Our 3D mesh reconstruction for the subjects in the real

dataset. The meshes align accurately with the real head shapes,

even for longer hair, and preserve fine facial details.

constructions of eye blinks, we introduced a specific energy

term on the landmarks in the eye region (see Elmk in Sec-

tion 3.2). Using this energy term in the shape optimization,

the geometry faithfully reconstructs blinking eyes, see Fig-

ure 8 (c). Without this term, eye blinks are not recovered.

Further energy term ablations are shown in the supplement.

4.6. Discussion

We have demonstrated that our method produces high

quality results even for large head rotations due to our ex-

plicit geometry reconstruction of the face and hair region.

As such, our method addresses one of the main issues of

other learning-based approaches which suffer from signifi-

cant artifacts when synthesizing novel views. Similar to all

baselines, we do not address the synthesis of physical ef-

fects like floating or deforming hair. Incorporating physics

into a 4D avatar is an interesting field for future work.

Moreover, our method exhibits limitations in regions

where the explicit geometry is greatly unconstrained, most

prominently the mouth cavity. As a consequence, the visual

quality of the synthesized inner mouth region, especially

teeth, may decrease if expressions and poses lie far outside

of the training corpus (see Figure 9). The most natural ap-

proach to overcome this issue would be the integration of

a well-aligned geometry of the inner mouth cavity. How-

ever, so far none of the publicly available parametric head

models provides such geometry due to the difficulties in the

acquisition of ground truth data. Similar to NerFACE [29]

and DVP [40], our method is person-specific and, thus, re-

quires optimization of the neural network for every new ac-

tor which takes 7 hours using two Nvidia A100 GPUs, when

optimizing on images with a resolution of 512×512 px. The

optimization time and necessary computational resources

can be reduced greatly when optimizing against smaller im-

ages or image patches. Generalizing our approach is future

work which can benefit from the findings of VariTex [15]

and pi-GAN [20].
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Figure 7. Qualitative novel viewpoint synthesis comparison.

While related methods suffer significant artifacts during novel

viewpoint synthesis, our method exhibits high robustness even un-

der large rotations and preserves its high texture detail.

Ethical Considerations With the advances in the synthe-

sis of photo-realistic human avatars, the potential misuse

(e.g., misinformation) becomes an increasingly important

ethical concern. While active watermarking of generated

content can be employed, there is no guarantee that this wa-

termark can not be removed. To this end, there exists the

field of multi-media forensics which analyzes methods for

active and passive forgery detection. Passive forgery detec-

tion [2, 22, 23, 62, 63] is able to detect manipulated or syn-

thetic imagery without any explicit watermarking. While

these methods can be trained to detect specific manipula-

tion methods [62, 63], generalized methods [2, 22, 23] have

problems in reliably detecting fakes. Also, forgery detec-

tors can be used in an adversarial training to improve the

quality of the synthetic renderings. Thus, besides forgery

detection algorithms, cryptographical approaches for sign-

ing the authenticity of video material have to be used in the

future (which requires a trust network).

5. Conclusion

In this work, we presented Neural Head Avatars, a

method that accurately reconstructs geometry and appear-

ance of the human head from a monocular RGB sequence.

Our approach combines a parametric head model with

multi-layer perceptrons that refine geometry and synthesize

a photorealistic texture. The resulting 4D avatar is robust

with respect to large pose-, view- and expression changes,

and we show that it outperforms state-of-the-art head avatar

methods qualitatively and quantitatively.

While recent work on head avatar synthesis moved to-

Static Offsets Dynamic Offsets

w/o Eye Term w/ Eye Term Ground Truth

Static Texture Dynamic Texture Ground Truth

c)

b)

a)

Figure 8. Ablations: a) Static vertex offsets lead to bulky neck re-

constructions compared to dynamic (pose-conditioned) geometry.

b) Static texture representations fail to reconstruct highly dynamic

face regions such as the interior of the mouth cavity. c) Explicit

optimization for lid closing reconstructs eye closure faithfully.

(a) (b)

GT

(c)

Figure 9. Failure cases. Misaligned eye lids in the reconstructed

mesh can cause rare eye artifacts (a). Extreme mouth poses may

degrade the synthesized mouth interior (b). The reconstruction of

ear shapes that deviate strongly from the statistical average yields

local geometric artifacts (c).

wards implicit representations of spatial geometry, our work

demonstrates the benefits of an explicit geometry recon-

struction in combination with a deep appearance network

for dynamic surface textures in terms of photorealism and

generalizability. We hope that our work inspires further re-

search at the intersection of explicit geometry reconstruc-

tion and deep appearance representations.
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[71] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M.

Nießner. Face2face: Real-time face capture and reenactment

of rgb videos. In Proc. Computer Vision and Pattern Recog-

nition (CVPR), IEEE, 2016. 1, 2, 3, 4, 5

[72] Justus Thies, Michael Zollhöfer, Christian Theobalt, Marc
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Zollhöfer. Learning Compositional Radiance Fields of Dy-

namic Human Heads. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2021. 2

[77] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In The Thrity-

Seventh Asilomar Conference on Signals, Systems Comput-

ers, 2003, volume 2, pages 1398–1402 Vol.2, 2003. 6

[78] Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. Re-

altime performance-based facial animation. In ACM TOG,

volume 30, 2011. 2

[79] Thibaut Weise, Hao Li, Luc J. Van Gool, and Mark Pauly.

Face/Off: live facial puppetry. In Proc. SCA, pages 7–16,

2009. 2

[80] Hongyi Xu, Thiemo Alldieck, and Cristian Sminchisescu.

H-nerf: Neural radiance fields for rendering and temporal

reconstruction of humans in motion. In Advances in Neural

Information Processing Systems (NeurIPS), 2021. 2

[81] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation

network for real-time semantic segmentation. In Proceed-

ings of the European conference on computer vision (ECCV),

pages 325–341, 2018. 4

[82] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya,

and Victor Lempitsky. Fast bi-layer neural synthesis of one-

shot realistic head avatars. In European Conference of Com-

puter vision (ECCV), August 2020. 1, 2, 6, 7

[83] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 6

[84] Yunxuan Zhang, Siwei Zhang, Yue He, Cheng Li,

Chen Change Loy, and Ziwei Liu. One-shot face reenact-

ment. arXiv preprint arXiv:1908.03251, 2019. 2

18663



[85] zllrunning. Face parsing pytorch. https://github.

com/zllrunning/face-parsing.PyTorch, 2021.

4, 5
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