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Abstract

We introduce Ego4D, a massive-scale egocentric video
dataset and benchmark suite. It offers 3,670 hours of daily-
life activity video spanning hundreds of scenarios (house-
hold, outdoor, workplace, leisure, etc.) captured by 931
unique camera wearers from 74 worldwide locations and 9
different countries. The approach to collection is designed
to uphold rigorous privacy and ethics standards, with con-
senting participants and robust de-identification procedures
where relevant. Ego4D dramatically expands the volume of
diverse egocentric video footage publicly available to the
research community. Portions of the video are accompanied
by audio, 3D meshes of the environment, eye gaze, stereo,
and/or synchronized videos from multiple egocentric cam-
eras at the same event. Furthermore, we present a host of
new benchmark challenges centered around understanding
the first-person visual experience in the past (querying an

episodic memory), present (analyzing hand-object manipu-
lation, audio-visual conversation, and social interactions),
and future (forecasting activities). By publicly sharing this
massive annotated dataset and benchmark suite, we aim to
push the frontier of first-person perception. Project page:
https://ego4d-data.org/

1. Introduction
Today’s computer vision systems excel at naming objects

and activities in Internet photos or video clips. Their tremen-
dous progress over the last decade has been fueled by major
dataset and benchmark efforts, which provide the annota-
tions needed to train and evaluate algorithms on well-defined
tasks [49, 60, 61, 92, 108, 143].

While this progress is exciting, current datasets and mod-
els represent only a limited definition of visual perception.
First, today’s influential Internet datasets capture brief, iso-
lated moments in time from a third-person “spectactor” view.
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Figure 1. Ego4D is a massive-scale egocentric video dataset of daily life activity spanning 74 locations worldwide. Here we see a snapshot of
the dataset (5% of the clips, randomly sampled) highlighting its diversity in geographic location, activities, and modalities. The data includes
social videos where participants consented to remain unblurred. See https://ego4d-data.org/fig1.html for interactive figure.

However, in both robotics and augmented reality, the input
is a long, fluid video stream from the first-person or “ego-
centric” point of view—where we see the world through
the eyes of an agent actively engaged with its environment.
Second, whereas Internet photos are intentionally captured
by a human photographer, images from an always-on wear-
able egocentric camera lack this active curation. Finally,
first-person perception requires a persistent 3D understand-
ing of the camera wearer’s physical surroundings, and must
interpret objects and actions in a human context—attentive
to human-object interactions and high-level social behaviors.

Motivated by these critical contrasts, we present the
Ego4D dataset and benchmark suite. Ego4D aims to cat-
alyze the next era of research in first-person visual percep-
tion. Ego is for egocentric, and 4D is for 3D spatial plus
temporal information.

Our first contribution is the dataset: a massive ego-video
collection of unprecedented scale and diversity that captures
daily life activity around the world. See Figure 1. It consists
of 3,670 hours of video collected by 931 unique participants
from 74 worldwide locations in 9 different countries. The
vast majority of the footage is unscripted and “in the wild”,
representing the natural interactions of the camera wearers as
they go about daily activities in the home, workplace, leisure,
social settings, and commuting. Based on self-identified
characteristics, the camera wearers are of varying back-
grounds, occupations, gender, and ages—not solely graduate
students! The video’s rich geographic diversity supports the
inclusion of objects, activities, and people frequently absent
from existing datasets. Since each participant wore a camera
for 1 to 10 hours at at time, the dataset offers long-form

video content that displays the full arc of a person’s complex
interactions with the environment, objects, and other people.
In addition to RGB video, portions of the data also provide
audio, 3D meshes, gaze, stereo, and/or synchronized multi-
camera views that allow seeing one event from multiple
perspectives. Our dataset draws inspiration from prior ego-
centric video data efforts [43,44,129,138,179,201,205,210],
but makes significant advances in terms of scale, diversity,
and realism.

Equally important to having the right data is to have the
right research problems. Our second contribution is a suite
of five benchmark tasks spanning the essential components
of egocentric perception—indexing past experiences, ana-
lyzing present interactions, and anticipating future activity.
To enable research on these fronts, we provide millions of
rich annotations that resulted from over 250,000 hours of
annotator effort and range from temporal, spatial, and seman-
tic labels, to dense textual narrations of activities, natural
language queries, and speech transcriptions.

Ego4D is the culmination of an intensive two-year effort
by 14 institutions around the world who came together for
the common goal of spurring new research in egocentric per-
ception. We are kickstarting that work with a formal bench-
mark challenge to be held at CVPR 2022. In the coming
years, we believe our contribution can catalyze new research
not only in vision, but also robotics, augmented reality, 3D
sensing, multimodal learning, speech, and language. These
directions will stem not only from the benchmark tasks we
propose, but also alternative ones that the community will
develop leveraging our massive, publicly available dataset.
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2. Related Work
Large-scale third-person datasets In the last decade, an-
notated datasets have both presented new problems in com-
puter vision and ensured their solid evaluation. Existing
collections like Kinetics [108], AVA [92], UCF [207], Ac-
tivityNet [61], HowTo100M [157], ImageNet [49], and
COCO [143] focus on third-person Web data, which have
the benefit and bias of a human photographer. In contrast,
Ego4D is first-person. Passively captured wearable camera
video entails unusual viewpoints, motion blur, and lacks
temporal curation. Notably, pre-training egocentric video
models with third-person data [70,221,224,239] suffers from
the sizeable domain mismatch [139, 201].

Egocentric video understanding Egocentric video offers
a host of interesting challenges, such as human-object in-
teractions [26, 46, 163], activity recognition [110, 139, 243],
anticipation [4, 75, 86, 144, 205], video summarization [48,
129, 131, 147, 148, 232], detecting hands [16, 134], parsing
social interactions [66, 168, 231], and inferring the camera
wearer’s body pose [107]. Our dataset can facilitate new
work in all these areas and more, and our proposed bench-
marks (and annotations thereof) widen the tasks researchers
can consider moving forward. We defer discussion of how
prior work relates to our benchmark tasks to Sec. 5.

Egocentric video datasets Multiple egocentric datasets
have been developed over the last decade. Most relevant to
our work are those containing unscripted daily life activity,
which includes EPIC-Kitchens [43, 44], UT Ego [129, 210],
Activities of Daily Living (ADL) [179], and the Disney
dataset [66]. The practice of giving cameras to participants
to take out of the lab, first explored in [66,129,179], inspires
our approach. Others are (semi-)scripted, where camera
wearers are instructed to perform a certain activity, as in
Charades-Ego [201] and EGTEA [138]. Whereas today’s
largest ego datasets focus solely on kitchens [44,44,124,138],
Ego4D spans hundreds of environments both indoors and out-
doors. Furthermore, while existing datasets rely largely on
graduate students as camera wearers [43,44,66,129,129,138,
168, 179, 194, 210], Ego4D camera wearers are of a much
wider demographic, as detailed below. Aside from daily
life activity, prior ego datasets focus on conversation [170],
inter-person interactions [66, 168, 194, 231], place localiza-
tion [183, 208], multimodal sensor data [124, 166, 204], hu-
man hands [16, 134] human-object interaction [106, 184],
and object tracking [56].

Ego4D is an order of magnitude larger than today’s largest
egocentric datasets both in terms of hours of video (3,670
hours vs. 100 in [43]) and unique camera wearers (931 peo-
ple vs. 71 in [201]); it spans hundreds of environments
(rather than one or dozens, as in existing collections); and
its video comes from 74 worldwide locations and 9 coun-
tries (vs. just one or a few cities). The Ego4D annotations

Figure 2. Ego4D camera wearer demographics—age, gender, coun-
tries of residence, and occupations (self-reported). Font size reflects
relative frequency of the occupation.

are also of unprecedented scale and depth, with millions
of annotations supporting multiple complex tasks. As such,
Ego4D represents a step change in dataset scale and diversity.
We believe both factors are paramount to pursue the next
generation of perception for embodied AI.

3. Ego4D Dataset

Next we overview the dataset, which is publicly available
under an Ego4D license.

3.1. Collection strategy and camera wearers

Not only do we wish to amass an ego-video collection that
is substantial in scale, but we also want to ensure its diversity
of people, places, objects, and activities. Furthermore, for
realism, we are interested in unscripted footage captured by
people wearing a camera for long periods of time.

To this end, we devised a distributed approach to data
collection. The Ego4D project consists of 14 teams from
universities and labs in 9 countries and 5 continents (see
map in Figure 1). Each team recruited participants to wear a
camera for 1 to 10 hours at a time, for a total of 931 unique
camera wearers and 3,670 hours of video in this first dataset
release (Ego4D-3K). Participants in 74 total cities were re-
cruited by word of mouth, ads, and postings on community
bulletin boards. Some teams recruited participants with occu-
pations that have interesting visual contexts, such as bakers,
carpenters, landscapers, or mechanics.

Both the geographic spread of our team as well as our
approach to recruiting participants were critical to arrive at
a diverse demographic composition, as shown in Figure 2.1

Participants cover a wide variety of occupations, span many
age brackets, with 96 of them over 50 years old, and 45%
are female. Two participants identified as non-binary, and
two preferred not to say a gender.

1for 64% of all participants; missing demographics are due to protocols
or participants opting out of answering specific questions.
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Figure 3. Scenarios in Ego4D. Outer circle shows the 14 most
common scenarios (70% of the data). Wordle shows scenarios in
the remaining 30%. Inner circle is color coded by the contributing
partner (see map color legend in Fig 1).

3.2. Scenarios composing the dataset

What activities belong in an egocentric video dataset?
Our research is motivated by problems in robotics and aug-
mented reality, where vision systems will encounter daily
life scenarios. Hence, we consulted a survey from the U.S.
Bureau of Labor Statistics2 that captures how people spend
the bulk of their time in the home (e.g., cleaning, cooking,
yardwork), leisure (e.g., crafting, games, attending a party),
transportation (e.g., biking, car), errands (e.g., shopping,
walking dog, getting car fixed), and in the workplace (e.g,
talking with colleagues, making coffee).

To maximize coverage of such scenarios, our approach is
a compromise between directing camera wearers and giving
no guidance at all: (1) we recruited participants whose col-
lective daily life activity would naturally encompass a spread
of the scenarios (as selected freely by the participant), and
(2) we asked participants to wear the camera at length (at
least as long as the battery life of the device) so that the activ-
ity would unfold naturally in a longer context. A typical raw
video clip in our dataset lasts 8 minutes—significantly longer
than the 10 second clips often studied in third-person video
understanding [108]. In this way, we capture unscripted
activity while being mindful of the scenarios’ coverage.

The exception is for certain multi-person scenarios, where
we asked participants at five sites who had consented to share
their conversation audio and unblurred faces to take part in
social activities, such as playing games. We leverage this
portion of Ego4D for the Audio-Visual and Social Interaction
benchmarks (Sec. 5.3 and 5.4).

Figure 3 shows the wide distribution of scenarios captured
in our dataset. Note that within each given scenario there are
typically dozens of actions taking place, e.g., the carpentry
scenario includes hammering, drilling, moving wood, etc.
Overall, the 931 camera wearers bestow our dataset with a
glimpse of daily life activity around the world.

2https://www.bls.gov/news.release/atus.nr0.htm

Carpenter > 7 hrs of videos Bike Mechanic > 5.5 hrs of videosCrafting > 12 hrs of videos

Figure 4. Some videos (bottom) have coupled 3D meshes (top)
from Matterport3D scanners, allowing one to relate the dynamic
video to the static 3D environment (middle).

3.3. Cameras and modalities

To avoid models overfitting to a single capture device,
seven different head-mounted cameras were deployed across
the dataset: GoPro, Vuzix Blade, Pupil Labs, ZShades, OR-
DRO EP6, iVue Rincon 1080, and Weeview. They offer
tradeoffs in the modalities available (RGB, stereo, gaze),
field of view, and battery life. The field of view and cam-
era mounting are particularly influential: while a GoPro
mounted on the head pointing down offers a high resolu-
tion view of the hands manipulating objects (Fig. 5, right),
a heads-up camera like the Vuzix shares the vantage of a
person’s eyes, but will miss interactions close to the body
(Fig. 5, left).

In addition to video, portions of Ego4D offer several other
data modalities: 3D scans, audio, gaze3, stereo, multiple syn-
chronized wearable cameras, and textual narrations. See
Table 1. Each can support new research challenges. For
example, having Matterport3D scans of the environment
coupled with ego-video clips (Figure 4) offers a unique op-
portunity for understanding dynamic activities in a persistent
3D context, as we exploit in the Episodic Memory bench-
mark (see Sec. 5.1). Multiple synchronized egocentric video
streams allow accounting for the first and second-person
view in social interactions. Audio allows analysis of conver-
sation and acoustic scenes and events.

3.4. Privacy and ethics

From the onset, privacy and ethics standards were critical
to this data collection effort. Each partner was responsible
for developing a policy. While specifics vary per site, this
generally entails:

• Comply with own institutional research policy, e.g.,
independent ethics committee review where relevant

3Eye trackers were deployed by Indiana U. and Georgia Tech only.
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Modality: RGB video Text narrations Features Audio Faces 3D scans Stereo Gaze IMU Multi-cam
# hours: 3,670 3,670 3,670 2,535 612 491 80 45 836 224

Table 1. Modalities of data in Ego4D and their amounts. “Narrations” are dense, timestamped descriptions of camera wearer activity
(cf. Sec. 4). “3D scans” are meshes from Matterport3D scanners for the full environment in which the video was captured. “Faces” refers to
video where participants consented to remain unblurred. “Multi-cam” refers to synchronized video captured at the same event by multiple
camera wearers. “Features” refers to precomputed SlowFast [70] video features.

• Obtain informed consent of camera wearers, who can
ask questions and withdraw at any time, and are free to
review and redact their own video

• Respect rights of others in private spaces, and avoid
capture of sensitive areas or activities

• Follow de-identification requirements for personally
identifiable information (PII)

In short, these standards typically require that the video be
captured in a controlled environment with informed consent
by all participants, or else in public spaces where faces and
other PII are blurred. Appendix K in the supplementary
materials discusses potential negative societal impact.

3.5. Possible sources of bias

While Ego4D pushes the envelope on massive every-
day video from geographically and demographically diverse
sources, we are aware of a few biases in our dataset. 74
locations is still a long way from complete coverage of the
globe. In addition, the camera wearers are generally located
in urban or college town areas. The COVID-19 pandemic
led to ample footage in stay-at-home scenarios such as cook-
ing, cleaning, crafts, etc. and more limited opportunities to
collect video at major social public events. In addition, since
battery life prohibits daylong filming, the videos—though
unscripted—tend to contain more active portions of a partic-
ipant’s day. Finally, Ego4D annotations are done by crowd-
sourced workers in two sites in Africa. This means that there
will be at least subtle ways in which the language-based
narrations are biased towards their local word choices.

4. Narrations of Camera Wearer Activity
Before any other annotation occurs, we pass all video

through a narration procedure. Inspired by the pause-and-
talk narrator [44], annotators are asked to watch a 5 minute
clip of video, summarize it with a few sentences, and then
re-watch, pausing repeatedly to write a sentence about each
thing the camera wearer does. We record the timestamps
and the associated free-form sentences. See Figure 5. Each
video receives two independent narrations from different
annotators. The narrations are temporally dense: on average
we received 13.2 sentences per minute of video, for a total of
3.85M sentences. In total the narrations describe the Ego4D
video using 1,772 unique verbs (activities) and 4,336 unique
nouns (objects). See Appendix D for details.

Figure 5. Example narrations. “C” refers to camera wearer.

The narrations allow us to (1) perform text mining for
data-driven taxonomy construction for actions and objects,
(2) sort the videos by their content to map them to relevant
benchmarks, and (3) identify temporal windows where cer-
tain annotations should be seeded. Beyond these uses, the
narrations are themselves a contribution of the dataset, po-
tentially valuable for research on video with weakly aligned
natural language. To our knowledge, ours is the largest repos-
itory of aligned language and video (e.g., HowTo100M [157],
an existing Internet repository with narrations, contains noisy
spoken narrations that only sometimes comment on the ac-
tivities taking place).

5. Ego4D Benchmark Suite
First-person vision has the potential to transform many

applications in augmented reality and robotics. However,
compared to mainstream video understanding, egocentric
perception requires new fundamental research to account for
long-form video, attention cues, person-object interactions,
multi-sensory data, and the lack of manual temporal curation
inherent to a passively worn camera.

Inspired by all these factors, we propose a suite of chal-
lenging benchmark tasks. The five benchmarks tackle the
past, present, and future of first-person video. See Figure 6.
The following sections introduce each task and its annota-
tions. The first dataset release has annotations for 48-1,000
hours of data per benchmark, on top of the 3,670 hours of
data that is narrated. The Appendices describe how we sam-
pled videos per benchmark to maximize relevance to the task
while maintaining geographic diversity.

We developed baseline models drawing on state-of-the-
art components from the literature in order to test drive all
Ego4D benchmarks. The Appendices present the baseline
models and quantitative results. We are running a formal
Ego4D competition at CVPR 2022 inviting the research
community to improve on these baselines.
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Figure 6. The Ego4D benchmark suite centers around the first-person visual experience—from remembering the past, to analyzing the
present, to anticipating the future. The supplementary video available here https://ego4d-data.org/ overviews each task.

5.1. Episodic Memory

Motivation Egocentric video from a wearable camera
records the who/what/when/where of an individual’s daily
life experience. This makes it ideal for what Tulving called
episodic memory [213]: specific first-person experiences
(“what did I eat and who did I sit by on my first flight
to France?”), to be distinguished from semantic memory
(“what’s the capital of France?”). An augmented reality as-
sistant that processes the egocentric video stream could give
us super-human memory if it could appropriately index our
visual experience and answer queries.

Task definition Given an egocentric video and a query, the
Ego4D Episodic Memory task requires localizing where
the answer can be seen within the user’s past video. We
consider three query types. (1) Natural language queries
(NLQ), in which the query is expressed in text (e.g., “What
did I put in the drawer?”), and the output response is the
temporal window where the answer is visible or deducible.
(2) Visual queries (VQ), in which the query is a static image
of an object, and the output response localizes the object
the last time it was seen in the video, both temporally and
spatially. The spatial response is a 2D bounding box on the
object, and optionally a 3D displacement vector from the
current camera position to the object’s 3D bounding box. VQ
captures how a user might teach the system an object with
an image example, then later ask for its location (“Where
is this [picture of my keys]?”). (3) Moments queries (MQ),
in which the query is the name of a high-level activity or
“moment”, and the response consists of all temporal windows
where the activity occurs (e.g., “When did I read to my
children?”). See Figure 7.

Annotations For language queries, we devised a set of 13
template questions meant to span things a user might ask
to augment their memory, such as “what is the state of
object X?”, e.g., “did I leave the window open?”. Annotators
express the queries in free-form natural language, and also
provide the slot filling (e.g., X = window). For moments,
we established a taxonomy of 110 activities in a data-driven,
semi-automatic manner by mining the narration summaries.
Moments capture high-level activities in the camera wearer’s

Figure 7. Episodic Memory’s three query types

day, e.g., setting the table is a moment, whereas pick up is
an action in our Forecasting benchmark (Sec. 5.5).

For NLQ and VQ, we ask annotators to generate lan-
guage/visual queries and couple them with the “response
track” in the video. For MQ, we provide the taxonomy of
labels and ask annotators to label clips with each and every
temporal segment containing a moment instance. In total,
we have ∼74K total queries spanning 1, 000 hours of video.

Evaluation metrics and baselines For NLQ, we use top-k
recall at a certain temporal intersection over union (tIoU)
threshold. MQ adopts a popular metric used in temporal
action detection: mAP at multiple tIoU thresholds, as well as
top-kx recall. VQ adopts temporal and spatio-temporal local-
ization metrics as well as timeliness metrics that encourage
speedy searches. Appendix F presents the baseline models
we developed and reports results.

Relation to existing tasks Episodic Memory has some
foundations in existing vision problems, but also adds new
challenges. All three queries call for spatial reasoning in
a static environment coupled with dynamic video of a per-
son who moves and changes things; current work largely
treats these two elements separately. The timeliness met-
rics encourage work on intelligent contextual search. While
current literature on language+vision focuses on captioning
and question answering for isolated instances of Internet
data [12, 35, 119, 228], NLQ is motivated by queries about
the camera wearer’s own visual experience and operates over
long-term observations. VQ upgrades object instance recog-
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Figure 8. Hands and Objects: Example object state changes defined
by pre-condition, PNR, and post-condition frames.

nition [23, 85, 126, 155] to deal with video (frequent FoV
changes, objects entering/exiting the view) and to reason
about objects in the context of a 3D environment. Finally,
MQ can be seen as activity detection [141, 229, 237] but for
the activities of the camera wearer.

5.2. Hands and Objects

Motivation While Episodic Memory aims to make past
video queryable, our next benchmark aims to understand
the camera wearer’s present activity—in terms of inter-
actions with objects and other people. Specifically, the
Hands and Objects benchmark captures how the camera
wearer changes the state of an object by using or manip-
ulating it—which we call an object state change. Though
cutting a piece of lumber in half can be achieved through
many methods (e.g., various tools, force, speed, grasps, end-
effectors), all should be recognized as the same state change.
This generalization ability will enable us to understand hu-
man actions better, as well as to train robots to learn from
human demonstrations in video.

Task definitions We interpret an object state change to in-
clude various physical changes, including changes in size,
shape, composition, and texture. Object state changes can be
viewed along temporal, spatial and semantic axes, leading to
these three tasks: (1) Point-of-no-return temporal localiza-
tion: given a short video clip of a state change, the goal is to
estimate the keyframe that contains the point-of-no-return
(PNR) (the time at which a state change begins); (2) State
change object detection: given three temporal frames (pre,
post, PNR), the goal is to regress the bounding box of the
object undergoing a state change; (3) Object state change
classification: given a short video clip, the goal is to classify
whether an object state change has taken place or not.

Annotations We select the data to annotate based on activi-
ties that are likely to involve hand-object interactions (e.g.,
knitting, carpentry, baking, etc.). We start by labeling each
narrated hand-object interaction. For each, we label three

moments in time (pre, PNR, post) and the bounding boxes
for the hands, tools, and objects in each of the three frames.
We also annotate the state change types (remove, burn, etc.,
see Fig. 8), action verbs, and nouns for the objects.

Evaluation metrics and baselines Object state change
temporal localization is evaluated using absolute temporal
error measured in seconds. Object state change classifica-
tion is evaluated by classification accuracy. State change
object detection is evaluated by average precision (AP). Ap-
pendix G details the annotations and presents baseline model
results for the three Hands and Objects tasks.

Relation to existing tasks Limited prior work considers
object state change in photos [102,164] or video [8,68,242];
Ego4D is the first video benchmark dedicated to the task of
understanding object state changes. The task is similar to
action recognition (e.g., [100,110,139,221,243]) because in
some cases a specific action can correspond to a specific state
change. However, a single state change (e.g., cutting) can
also be observed in many forms (various object-tool-action
combinations). It is our hope that the proposed benchmarks
will lead to the development of more explicit models of
object state change, while avoiding approaches that simply
overfit to action or object observations.

5.3. Audio-Visual Diarization

Motivation Our next two tasks aim to understand the cam-
era wearer’s present interactions with people. People com-
municate using spoken language, making the capture of con-
versational content in business meetings and social settings
a problem of great scientific and practical interest. While
diarization has been a standard problem in the speech recog-
nition community, Ego4D brings in two new aspects (1)
simultaneous capture of video and audio (2) the egocentric
perspective of a participant in the conversation.

Task definition and annotations The Audio-Visual Di-
arization (AVD) benchmark is composed of four tasks (see
Figure 9):
• Localization and tracking of the participants (i.e., candi-

date speakers) in the visual field of view (FoV). A bound-
ing box is annotated around each participant‘s face.

• Active speaker detection where each tracked speaker is as-
signed an anonymous label, including the camera wearer
who never appears in the visual FoV.

• Diarization of each speaker’s speech activity, where
we provide the time segments corresponding to each
speaker’s voice activity in the clip.

• Transcription of each speaker’s speech content (only En-
glish speakers are considered for this version).

Evaluation metrics and baselines We use standardized ob-
ject tracking (MOT) metrics [18, 19] to evaluate speaker
localization and tracking in the visual FoV. Speaker detec-
tion with anonymous labels is evaluated using the speaker
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Figure 9. Audio-Visual and Social benchmark annotations

error rate, which measures the proportion of wrongly as-
signed labels. We adopt the well studied diarization error
rate (DER) [11] and word error rate (WER) [114] for di-
arization and transcription, respectively. We present AVD
baseline models and results in Appendix H.

Relation to existing tasks The past few years have seen
audio studied in computer vision tasks [245] for action clas-
sification [110,226], object categorization [125,234], source
localization and tracking [14, 197, 212] and embodied navi-
gation [33]. Meanwhile, visual information is increasingly
used in historically audio-only tasks like speech transcrip-
tion, voice recognition, audio spatialization [5, 80, 104, 161],
speaker diarization [10,83], and source separation [57,78,82].
Datasets like VoxCeleb [39], AVA Speech [31], AVA active
speaker [192], AVDIAR [83], and EasyCom [53] support this
research. However, these datasets are mainly non-egocentric.
Unlike Ego4D, they do not capture natural conversational
characteristics involving a variety of noisy backgrounds,
overlapping, interrupting and un-intelligible speech, environ-
ment variation, moving camera wearers, and speakers facing
away from the camera wearer.

5.4. Social Interactions

Motivation An egocentric video provides a unique lens for
studying social interactions because it captures utterances
and nonverbal cues [115] from each participant’s unique
view and enables embodied approaches to social understand-
ing. Progress in egocentric social understanding could lead
to more capable virtual assistants and social robots. Compu-
tational models of social interactions can also provide new
tools for diagnosing and treating disorders of socialization
and communication such as autism [188], and could support
novel prosthetic technologies for the hearing-impaired.

Task definition While the Ego4D dataset can support such
a long-term research agenda, our initial Social benchmark
focuses on multimodal understanding of conversational in-
teractions via attention and speech. Specifically, we focus on
identifying communicative acts that are directed towards the

camera-wearer, as distinguished from those directed to other
social partners: (1) Looking at me (LAM): given a video in
which the faces of social partners have been localized and
identified, classify whether each visible face is looking at the
camera wearer; and (2) Talking to me (TTM): given a video
and audio segment with the same tracked faces, classify
whether each visible face is talking to the camera wearer.

Annotations Social annotations build on those from AV di-
arization (Sec. 5.3). Given (1) face bounding boxes labeled
with participant IDs and tracked across frames, and (2) asso-
ciated active speaker annotations that identify in each frame
whether the social partners whose faces are visible are speak-
ing, annotators provide the ground truth labels for LAM and
TTM as a binary label for each face in each frame. For LAM,
annotators label the time segment (start and end time) of a
visible person when the individual is looking at the camera
wearer. For TTM, we use the vocal activity annotation from
AVD, then identify the time segment when the speech is
directed at the camera wearer. See Figure 9.

Evaluation metrics and baselines We use mean average
precision (mAP) and Top-1 accuracy to quantify the classifi-
cation performance for both tasks. Unlike AVD, we measure
precision at every frame. Appendix I provides details and
presents Social baseline models and results.

Relation to existing tasks Compared to [67], Ego4D con-
tains substantially more participants, hours of recording, and
variety of sensors and social contexts. The LAM task is most
closely related to prior work on eye contact detection in ego-
video [36, 159], but addresses more diverse and challenging
scenarios. Mutual gaze estimation [54, 150–152, 172, 176]
and gaze following [37, 65, 111, 186] are also relevant. The
TTM task is related to audio-visual speaker detection [7,193]
and meeting understanding [21, 132, 154].

5.5. Forecasting

Motivation Having addressed the past and present of the
camera wearer’s visual experience, our last benchmark
moves on to anticipating the future. Forecasting move-
ments and interactions requires comprehending the camera
wearer’s intention. It has immediate applications in AR and
human-robot interaction, such as anticipatively turning on
appliances or moving objects for the human’s convenience.
The scientific motivation can be seen by analogy with lan-
guage models such as GPT-3 [24], which implicitly capture
knowledge needed by many other tasks. Rather than predict
the next word, visual forecasting models the dynamics of an
agent acting in the physical world.

Task definition The Forecasting benchmark includes four
tasks (Fig. 10): (1) Locomotion prediction: predict a set
of possible future ground plane trajectories of the camera
wearer. (2) Hand movement prediction: predict the hand
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Locomotion Movements Hands Movements Short-Term Anticipation

take 
dough in 

0.8s take 
dough in 

0.8s

Input video

prediction: knead dough put dough pack spice pour spice

Long-Term Anticipation

Figure 10. The Forecasting benchmark aims to predict future loco-
motion, movement of hands, next object interactions, and sequences
of future actions.

positions of the camera wearer in future frames. (3) Short-
term object interaction anticipation: detect a set of possible
future interacted objects in the most recent frame of the clip.
To each object, assign a verb indicating the possible future
interaction and a “time to contact” estimate of when the inter-
action is going to begin. (4) Long-term action anticipation:
predict the camera wearer’s future sequence of actions.

Annotations Using the narrations, we identify the occur-
rence of each object interaction, assigning a verb and a target
object class. The verb and noun taxonomies are seeded from
the narrations and then hand-refined. For each action, we
identify a contact frame and a pre-condition frame in which
we annotate bounding boxes around active objects. The
same objects as well as hands are annotated in three frames
preceding the pre-condition frame by 0.5s, 1s and 1.5s. We
obtain ground truth ego-trajectories of the camera wearer
using structure from motion.

Evaluation metrics and baselines We evaluate future loco-
motion movement and hand movement prediction using L2
distance. Short-term object interaction anticipation is eval-
uated using a Top-5 mean Average Precision metric which
discounts the Top-4 false negative predictions. Long-term ac-
tion anticipation is evaluated using edit distance. Appendix J
details the tasks, annotations, baseline models, and results.

Relation to existing tasks Predicting future events has in-
creasing interest [191]. Previous work considers future lo-
calization [113, 120, 174, 230], action anticipation [76, 77,
86, 118, 127, 219], next active object prediction [20, 74],
future event prediction [149, 167], and future frame predic-
tion [145, 146, 153, 215, 218, 227]. Whereas past work relies
on different benchmarks and task definitions, we propose a
unified benchmark to assess progress in the field.

6. Conclusion
Ego4D is a first-of-its-kind dataset and benchmark suite

aimed at advancing multimodal perception of egocentric
video. Compared to existing work, our dataset is orders of
magnitude larger in scale and diversity. The data will allow

AI to learn from daily life experiences around the world—
seeing what we see and hearing what we hear—while our
benchmark suite provides solid footing for innovations in
video understanding that are critical for augmented reality,
robotics, and many other domains. We look forward to the
research that will build on Ego4D in the years ahead.
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for object instance detection. In 2016 Fourth International
Conference on 3D Vision (3DV), pages 426–434. IEEE, 2016.
7

[86] Rohit Girdhar and Kristen Grauman. Anticipative video
transformer. In ICCV, 2021. 3, 9

[87] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 1440–
1448, 2015. 66

[88] Georgia Gkioxari and Jitendra Malik. Finding action tubes.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 759–768, Boston, MA, USA,
June 2015. IEEE. 27

[89] P. Gollwitzer. Action phases and mind-sets, Handbook of
motivation and cognition: Foundations of social behavior.
1990. 40

[90] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video
database for learning and evaluating visual common sense.
In ICCV, 2017. 40

[91] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber.
Bidirectional lstm networks for improved phoneme classi-
fication and recognition. In International conference on
artificial neural networks, pages 799–804. Springer, 2005.
42, 43

[92] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Car-
oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,
George Toderici, Susanna Ricco, Rahul Sukthankar, et al.
Ava: A video dataset of spatio-temporally localized atomic
visual actions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6047–6056,
2018. 1, 3, 63

[93] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, et al. Conformer: Convolution-
augmented transformer for speech recognition. arXiv
preprint arXiv:2005.08100, 2020. 53

[94] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. arXiv:1703.06870 [cs], Jan. 2018.
29

[95] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 41, 42, 44

[96] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 48

[97] Farnoosh Heidarivincheh, Majid Mirmehdi, and Dima
Damen. Detecting the moment of completion: Temporal
models for localising action completion. In BMVC, 2018.
39

[98] Matthew Honnibal, Ines Montani, Sofie Van Landeghem,
and Adriane Boyd. spaCy: Industrial-strength Natural Lan-
guage Processing in Python, 2020. 17

[99] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A
Large High-Diversity Benchmark for Generic Object Track-
ing in the Wild. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(5):1562–1577, May 2021. 31

[100] Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Timeception for complex action recognition. In
CVPR, 2019. 7

[101] Go Irie, Mirela Ostrek, Haochen Wang, Hirokazu Kameoka,
Akisato Kimura, Takahito Kawanishi, and Kunio Kashino.
Seeing through sounds: Predicting visual semantic segmen-
tation results from multichannel audio signals. In ICASSP
2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3961–3964.
IEEE, 2019. 45

[102] Phillip Isola, Joseph J. Lim, and Edward H. Adelson. Dis-
covering states and transformations in image collections. In
CVPR, 2015. 7

[103] Phillip Isola, Joseph J Lim, and Edward H Adelson. Dis-
covering states and transformations in image collections. In
CVPR, 2015. 40

[104] Koji Iwano, Tomoaki Yoshinaga, Satoshi Tamura, and
Sadaoki Furui. Audio-visual speech recognition using lip
information extracted from side-face images. EURASIP
Journal on Audio, Speech, and Music Processing, 2007:1–9,
2007. 8, 45

[105] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew
Zisserman, Oriol Vinyals, and Joao Carreira. Perceiver:
General perception with iterative attention. arXiv preprint
arXiv:2103.03206, 2021. 42, 43

[106] Baoxiong Jia, Yixin Chen, Siyuan Huang, Yixin Zhu, and
Song-Chun Zhu. A multi-view dataset for learning multi-
agent multi-task activities. In ECCV, 2020. 3

[107] Hao Jiang and Kristen Grauman. Seeing invisible poses:
Estimating 3d body pose from egocentric video. In CVPR,
2017. 3

[108] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 1, 3, 4, 36

[109] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 67

[110] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and
Dima Damen. Epic-fusion: Audio-visual temporal binding
for egocentric action recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pages
5492–5501, 2019. 3, 7, 8, 45

[111] Petr Kellnhofer, Simon Stent, Wojciech Matusik, and An-
tonio Torralba. Gaze360: Physically Unconstrained Gaze
Estimation in the Wild. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV 19), 2019. 8,
55, 57

[112] Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint ctc-
attention based end-to-end speech recognition using multi-
task learning. In 2017 IEEE international conference on

19007



acoustics, speech and signal processing (ICASSP), pages
4835–4839. IEEE, 2017. 53

[113] Kris M. Kitani, Brian Ziebart, James D. Bagnell, and Martial
Hebert. Activity forecasting. In ECCV, 2012. 9

[114] Dietrich Klakow and Jochen Peters. Testing the correlation
of word error rate and perplexity. Speech Communication,
38(1-2):19–28, 2002. 8, 47

[115] Mark L. Knapp, Judith A. Hall, and Terrence G. Hor-
gan. Nonverbal Communication in Human Interaction.
Wadsworth Cengage Learning, 8th edition, 2014. 8

[116] Ross A Knepper, Todd Layton, John Romanishin, and
Daniela Rus. Ikeabot: An autonomous multi-robot coor-
dinated furniture assembly system. In 2013 IEEE Interna-
tional conference on robotics and automation, pages 855–
862. IEEE, 2013. 39

[117] Andrew J Kolarik, Brian CJ Moore, Pavel Zahorik, Silvia
Cirstea, and Shahina Pardhan. Auditory distance percep-
tion in humans: a review of cues, development, neuronal
bases, and effects of sensory loss. Attention, Perception, &
Psychophysics, 78(2):373–395, 2016. 45

[118] Hema S. Koppula and Ashutosh Saxena. Anticipating human
activities using object affordances for reactive robotic re-
sponse. Pattern Analysis and Machine Intelligence, 38(1):14–
29, 2016. 9

[119] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos. In
International Conference on Computer Vision (ICCV), 2017.
6

[120] Alexei A. Efros Krishna Kumar Singh, Kayvon Fatahalian.
Krishnacam: Using a longitudinal, single-person, egocentric
dataset for scene understanding tasks. In IEEE Winter Con-
ference on Applications of Computer Vision (WACV), 2016.
9

[121] Matej Kristan, Ales Leonardis, Jiri Matas, Michael
Felsberg, Roman Pflugfelder, Joni-Kristian Kamarainen,
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