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Abstract

Data is the driving force of machine learning, with the

amount and quality of training data often being more impor-

tant for the performance of a system than architecture and

training details. But collecting, processing and annotating

real data at scale is difficult, expensive, and frequently raises

additional privacy, fairness and legal concerns. Synthetic

data is a powerful tool with the potential to address these

shortcomings: 1) it is cheap 2) supports rich ground-truth

annotations 3) offers full control over data and 4) can cir-

cumvent or mitigate problems regarding bias, privacy and

licensing. Unfortunately, software tools for effective data

generation are less mature than those for architecture de-

sign and training, which leads to fragmented generation

efforts. To address these problems we introduce Kubric, an

open-source Python framework that interfaces with PyBullet

and Blender to generate photo-realistic scenes, with rich

annotations, and seamlessly scales to large jobs distributed

over thousands of machines, and generating TBs of data.

We demonstrate the effectiveness of Kubric by presenting a

series of 13 different generated datasets for tasks ranging

from studying 3D NeRF models to optical flow estimation.

We release Kubric, the used assets, all of the generation code,

as well as the rendered datasets for reuse and modification.
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Figure 1. Example scene created and rendered with Kubric along

with some of the automatically generated annotations.

1. Introduction

High quality data – at scale – is essential for deep learning.

It is arguably as or more important than many architectural

and training details. Nevertheless, even for many straightfor-

ward vision tasks, collecting and curating sufficient amounts
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of data continues to be a daunting challenge. Some of the key

barriers include the expense of high quality, detailed anno-

tations, data diversity, control over task domain complexity,

as well as concerns over privacy, fairness and licensing [4].

This paper advocates the use of synthetic data to circumvent

many of these problems, for which we introduce Kubric,

an open-source pipeline for generating realistic image and

video data with rich ground truth annotations for myriad

vision tasks.

Synthetic data has long been used for benchmark evalua-

tion (e.g. for optical flow [6, 7]), as it supports rich ground-

truth annotations, and fine-grained control over data com-

plexity. It also enables systematic model evaluation under

violations of model assumptions (e.g. rigidity). Synthetic

data has also been used effectively for training. This in-

cludes seminal work on 3D human pose estimation from

RGBD [85], and more recently on myriad tasks, including

facial landmark detection [103], human pose from video [24],

and semantic segmentation [116]. Photo-realism is often con-

sidered essential for narrowing the generalization gap, but

even without perfect realism, synthetic data can be remark-

ably effective (e.g., flying chairs [26], MPI-Sintel [13] and

more recently AutoFlow [89]).

Unfortunately, effective software tools for data genera-

tion are less mature than those for architecture design and

training. It is therefore not surprising that most generation

efforts, although costly, have been one-off and task specific.

Although challenging to design and develop, what is needed

is a general framework for photo-realistic generation that

supports reuse, replication, and shared assets, all at scale, en-

abling workflows with large jobs concurrently on thousands

of machines. Kubric addresses these issues with coherent

framework, a simple Python API, and a full set of tools for

generation at scale, integrating assets from multiple sources,

with a common export data format for porting data into train-

ing pipelines, and with rich annotations for myriad vision

tasks. In summary, our key contributions are:

• We introduce Kubric1, a framework for generating

photo-realistic synthetic datasets for myriad vision

tasks, with fine-grain control over data complexity and

rich ground truth annotations.

• Kubric enables generation at scale, seamlessly running

large jobs over thousands of machines, generating TBs

of data in a standard export data format.

• The versatility of Kubric is demonstrated by the cre-

ation of 13 datasets for new vision challenge problems,

spanning 3D NeRF models to optical flow estimation,

along with benchmark results.

1Source code and datasets are available at https://github.com/

google-research/kubric.

2. Related Work

Synthetic data provides high quality labels for many im-

age tasks such as semantic [16] and instance [102] segmenta-

tion, text localization [37], object detection [40], and classifi-

cation [32]. There are many large synthetic datasets such as

CLEVR [44], ScanNet [21], SceneNet RGB-D [65], NYU

v2 [67], SYNTHIA [80], virtual KITTI [33], and flying

things 3D [64] for specific tasks. However, these datasets

rarely contain all possible annotations for all image tasks,

lacking key signals such as camera pose, instance or seman-

tic segmentation masks, or optical flow. This is particularly

challenging for multi-task problems like co-training a neu-

ral scene model with semantic segmentation [118]. More-

over, fixed datasets can introduce biases [94, 95] such as

an object-centric bias [71] and photographer’s bias [5]. By

contrast, Kubric automatically generates the image cues for

each frame and easily support a variety of viewing angles

and lighting conditions.

Specialized Synthetic Data Pipelines. There are many

hand-crafted pipelines for synthetic data generation [37,

49, 66] built off of rendering engines like Blender [9] and

Unity3D [11]. While these pipelines mitigate biases in view-

ing angles and lighting, they are often specialized for a partic-

ular task. This makes it challenging to adapt them to provide

additional annotations without in-depth knowledge of the

underlying rendering engine. Real world to sim pipelines

capture real-world data via 3D scans and then convert them

into a synthetic data format. [56] creates high quality room

scenes, but has many manual steps including pose align-

ment and material assignment. [27] also utilizes 3D scans,

and provides control over a wide range of scene parameters,

including camera position, field of view, and lighting, as

well as a number of per frame image cues. While these ap-

proaches produce high quality data for a particular captured

scene, the pipeline still relies on 3D scans of the full scene,

which imposes a bottleneck for scaling.

Name Rendering GI Physics Scaling DL

Playing4Data [78] (Game) × (Game) × ×

UnrealCV [75] UE4 × UE4 ✓ ×

TDW [34] Unity × PhysX ✓ ×

iGibson [106] PyRender × PyBullet ✓ ×

Habitat [91] Magnum × Bullet ✓ ×

OpenRooms [56] OptiX ✓ – × ×

Omnidata [27] Blender ✓ – × ✓

Blenderproc [23] Blender ✓ Bullet × ×

Kubric Blender ✓ PyBullet ✓ ✓

Table 1. Rendering: Blender any OptiX are ray tracing engines, all

others are based on rasterization; GI: support for global illumina-

tion; Physics: engine for physics simulation; Scaling: Easy to scale

to very large datasets. DL: Data-loader integration with machine

learning frameworks (PyTorch/TF).
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Generic Dataset Creation Pipelines. General purpose syn-

thetic data pipelines (like Kubric) aim to address these issues

by supporting arbitrary random compositions of meshes, tex-

tures, pre-existing scenes, etc. from collections of 3D assets.

This mitigates some of the scaling considerations of real

world to sim pipelines and more easily supports composition

of assets from different datasets. These pipelines differ along

various dimensions (see Tab. 1). One important differences

is the use of rendering engine, where ray-tracing engines sup-

port global illumination and other advanced lighting effects,

which allow for a higher degree of realism than rasteriza-

tion engines at the cost of a higher computational demand.

Most general purpose synthetic data generation pipelines

such as [53, 83, 84, 93, 106] are build on rasterization, which

makes them very fast, often to the point of generating en-

tire datasets on a single GPU machine. ThreeDWorld [34]

is an excellent example for such an engine with a flexible

Python API, comprehensive export capabilities to a Unity3D

based rasterization engine, the NVidia Flex [61] physics sim-

ulator and even sound generation via PyImpact [96]. The

framework closest in scope to Kubric is BlenderProc [23]: a

ray-tracing based pipeline built on Blender, which supports

the generation of high-quality renders and comprehensive

annotations as well as rigid-body physics simulations. The

main differences lie in Kubric’s focus on scaling workloads

to many workers, and its integration with tensorflow datasets.

3. Infrastructure

Kubric is a high-level python library that acts as glue

between: a rendering engine, a physics simulator, and data

export infrastructure; see Figure 2. Its main contribution is to

streamline the process and reduce the hurdle and friction for

researchers that want to generate and share synthetic data.

3.1. Design Principles

Openness. Data-generation code should be freely usable

by researchers both in academia and in industry. Kubric

addresses this by being open-source with an Apache2 li-

cence, and by only using software with similarly permissive

licenses. Together with the use of free 3D assets and textures,

this enables researchers to share not just the data, but also

enable others to reproduce and modify it.

Ease of use. The fragmentation of computer graphics for-

mats, conventions and interfaces is a major pain point for

setting up and reusing data-generation code. Kubric mini-

mizes this friction by offering a simple object-oriented API

interface with PyBullet and Blender behind the scenes, hid-

ing the complexities of setup, data transfer, and keeping them

in sync. We also provide pre-processed 3D assets from a

variety of data sources, that can be used with minimal effort.

Realism. To be maximally useful, a data-generator should

Scene

Assets
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Objects

Lights

Materials

....

PyBullet

Blender

Asset

Source

simulate()

create() render()

layers

metadata

Worker

Figure 2. Overview – a typical Kubric worker randomly populates

a scene with assets loaded from an external source, possibly runs a

physics simulation, renders the resulting frames, and finally exports

the images, annotation layers, and other metadata.

be able to model as much as possible of the structure and

complexity of real data. The Cycles raytracing engine of

Blender supports a high level of realism and can model com-

plex visual phenomena such as reflection, refraction, indirect

illumination, subsurface-scattering, motion-blur, depth of

field, etc. Studying these effects is important, and they also

help to reduce the generalization gap.

Scalability. Data generation workloads can range from sim-

ple toy-data prototyping all the way to generating massive

amounts of high-resolution video data. To support this entire

range of usecases, Kubric is designed to seamlessly scale

from a local workflow to running large jobs on thousands of

machines in the cloud.

Portable and Reproducible. To facilitate reuse of data-

generation code, it is important that the pipeline is easy to

setup and produces the same results — even when executed

on different machines. This is especially important due to the

difficulty in installing the Blender Python module [31] and

the substantial variations between versions. By distributing

a Kubric Docker image, we ensure portability and remove

the bulk of the installation pain.

Data Export. Kubric by default exports a rich set of ground

truth annotations from segmentation, optical flow, surface

normals and depth maps, to object trajectories, collision

events and camera parameters. We also introduce SunDs (see

Sec. 3.4), a unified multi-task frontend for richly annotated

scene-based data.

3.2. Kubric Worker – Figure 3

The typical Kubric workflow consists of writing a worker

script that creates, simulates, and renders a single random

scene. The full dataset is then generated by running this

worker many times, and afterwards collecting the generated

data. This division into independent scenes mirrors the i.i.d.

structure of most datasets and supports scaling the gener-

ation process from local prototyping to a large number of

parallel jobs; e.g. using the Google Cloud Platform (GCP),

for which we provide convenience launcher scripts. We also

plan to support an Apache Beam pipeline that combines

generation, collection and post-processing of datasets into a

single convenient (but ultimately harder to debug) workflow.
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1 import numpy as np

2 import kubric as kb

3 asset_source = kb.AssetSource.from_manifest("KuBasic.json")

4 scene = kb.Scene(resolution=(640, 640))

5 renderer = kb.renderer.Blender(scene)

6 simulator = kb.simulator.PyBullet(scene)

7 # --- populate the scene

8 scene.camera = kb.PerspectiveCamera(position=(0, 5, 5),

9 look_at=(0, 0, 0))

10 scene += kb.Cube(name="floor", scale=(10, 10, .1),

11 position=(0, 0, -0.1), static=True)

12 scene += kb.PointLight(position=(-2.5, -1, 5), intensity=300)

13 rng = np.random.RandomState(seed=42)

14 for i in range(8): # place 8 random objects within a region

15 mat = kb.PrincipledBSDFMaterial(color=kb.random_hue_color(rng=rng),

16 metallic=rng.choice([0.0, 1.0]),

17 transmission=rng.choice([0.0, 1.0]))

18 obj = asset_source.create(rng.choice(asset_source.all_asset_ids),

19 material=mat, velocity=rng.normal(size=3))

20 scene += obj

21 kb.move_until_no_overlap(obj, simulator, rng=rng,

22 spawn_region=[[-1, -1, 0], [1, 1, 1]])

23 # --- execute the simulation, render, and save data to files

24 simulator.run()

25 renderer.save_state("output/scene.blend")

26 frames_dict = renderer.render()

27 kb.write_image_dict(frames_dict, "output")

Figure 3. Example worker – A simple environ-

ment with a floor, a point light, a perspective

camera and eight KuBasic objects placed with-

out overlap (by rejection sampling) and a random

velocity. PyBullet then simulates the physics,

Blender renders the video. Infinite random

variations of the scene can be generated by vary-

ing the random seed (rng), and the result can be

inspected in Blender even before rendering (top

right). The exported data includes annotations

such as segmentation, depth, flow, and normals.

Scene structure. Each worker sets up a Scene object,

which keeps track of global settings (e.g., resolution, num-

ber of frames to render, gravity), a Camera, and all the

objects, including lights, materials, animations, etc., which

we refer to collectively as Assets. They are the main ab-

stractions used in Kubric to control the content of a scene,

and they each expose a set of properties such as position,

velocity or color. When an Asset is added to the scene,

the corresponding objects are created in each of the Views.

Currently this comprises the PyBullet simulator and the

Blender renderer, but Kubric can be extended to sup-

port other views (e.g., the recently open-sourced MuJoCo).

Kubric also maintains a link with the resulting data structure,

and automatically communicates all changes of the assets to

the connected views. That way, the user only has to work

with the abstractions provided by Kubric, and does not have

to worry about differences in interfaces or conventions.

Simulator. For physics simulation we interface with the

open-source PyBullet physics engine [18] that is widely used

in robotics (e.g., [43, 46, 107]). It can be used to populate

the scene with non-overlapping objects, or to run a (rigid-

body) simulation, and to convert the resulting trajectories

into keyframes and collision events. Bullet can also handle

rigged models, softbody simulations, and various constraints

that Kubric does not yet support.

Renderer. Kubric uses the bpy module as an interface

to Blender, a powerful open-source 3D computer graphics

suite which is widely used for game development and vi-

sual effects. Blender comes with a powerful UI that can be

used for interactively debugging and adjusting scenes, as

well as creating and exporting new assets. For rendering we

rely on cycles – Blender’s raytracing engine – which, unlike

rasterized rendering engines, supports global illumination,

accurately capturing effects such as soft shadows, reflec-

tion, refraction, and subsurface scattering. These effects are

crucial for visual realism, and together with the vast set of

other features of Blender, they enable artists to create photo-

realistic 3D scenes. The downside is that cycles is up to two

orders of magnitude slower than a rasterized rendering en-

gine, but for Kubric we decided that this computational cost

is a worthwile tradeoff in exchange for the added realism and

the ability to systematically study complex visual effects.

Annotations. Another important feature of Blender is the

use of specialized render passes that compute auxiliary

ground truth information. We leverage this feature to ex-

port (in addition to the RGB image) 1⃝ depth maps, 2⃝ in-

stance segmentation, 3⃝ optical flow, 4⃝ surface normals, and

5⃝ object coordinates (see Fig. 1). In addition to these im-

age space annotations, Kubric also automatically collects

object-centric metadata, such as 2D/3D trajectories, 2D/3D

bounding boxes, velocities, mass, friction, camera parame-

ters, collision events, as well as custom metadata.

3.3. Assets

A limiting factor in the creation of synthetic scenes is

the availability of high-quality 3D assets. Several asset

collections exist, but their use often requires substantial

cleanup and conversion to make them compatible with a

given pipeline. Kubric provides several preprocessed collec-

tions of assets in a public Google Cloud bucket. Using these

assets is as simple as changing the path of the asset source

with kb.AssetSource(path). At the core level, each

dataset source is associated with a manifest.json file

storing high level aggregated information, without the need
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Figure 4. (top) The KuBasic assets collection. (middle) ShapeNet

objects by default do not render well in Blender (c) due to problems

with auto-smoothing and the lack of backface culling in cycles. (b)

We processed all ShapeNet objects to fix these issues and (a) gener-

ated a collision mesh by first making the model watertight and then

performing an approximate convex decomposition using VHACD.

(bottom) Example assets from the Google Scanned Objects (GSO)

dataset along with the generated collision meshes.

to traverse the entire folder structure. The "id" property of

each entry in the manifest is in one-to-one correspondence to

an archive file containing the data for the asset. Each of these

archives a contains a JSON-file with metadata, including the

paths to the sub-asset for rendering and for collision detec-

tion, and the definition of physical properties in the Unified

Robot Description Format (URDF) used by PyBullet. For

textured models, we employ the GLTF standard [79].

KuBasic. For simple prototyping we ship a small collection

of eleven simple assets depicted in the top row of Fig. 4.

ShapeNetCore.v2. This dataset is a subset of the full

ShapeNet dataset [14] with 51, 300 unique 3D models

from 55 with canonical alignment and common object cat-

egories annotations (both manually verified). Extensive

pre-processing was performed to simplify the integration

of these assets within Kubric, which included making the

models watertight using [41], generating collision geometry

using VHAC-D [62], and fixing raytracing artifacts due to

auto-smoothing and intersecting faces(see Appendix B for

details).

Google Scanned Objects (GSO) [77]. Is a dataset of com-

mon household objects that have been 3D scanned for use

in robotic simulation and synthetic perception research. It

is licensed under the CC-BY 4.0 License and contains ≈ 1k

high-quality textured meshes; see Fig. 4. We publish pre-

processed version of this dataset in the Kubric format, which

again includes generated collision meshes.

Polyhaven [115]. is a public (CC0 licensed) library from

which we have collected and pre-processed HDRI images

for use as backgrounds and lighting, and textures for use in

high-quality materials.

3.4. Scene Understanding Datasets (SunDs)

To facilitate ingesting data into machine learning models,

we introduce, alongside Kubric, the SunDs (Scene Under-

standing Datasets) dataset front-end2. SunDs is an API to

access public scene understanding datasets. The field names

and structure, shape, dtype are standardized across datasets.

This allow to trivially switch between datasets (e.g. switch

from synthetic to real data). All SunDs datasets are com-

posed of two sub-datasets:

• The scenes dataset contains high level scene metadata

(e.g. scene boundaries, mesh of the full scene, etc.).

• The frames dataset contains the individual examples

within a scene (e.g., RGB image, bounding boxes, etc.).

SunDs abstracts away the dataset-specific file format (json,

npz, folder structure, . . . ), and returns tensors directly in-

gestible by machine learning models (TF, Jax, Torch). Inter-

nally, SunDs is a wrapper around TFDS, which allows one

to scale to huge datasets (≈ TB), to provide native compat-

ibility with distributed cloud file systems (e.g. GCS, S3),

and to leverage tf.data pipeline capabilities (prefetching,

multi-threading, auto-caching, transformations, etc.).

To simplify even further data ingestion, SunDs introduce,

on top of TFDS, the concept of tasks. Each SunDs dataset

can be loaded for different tasks. Tasks control:

• Which features of the dataset to use/decode. Indeed,

scene understanding datasets often have many fields

(lidar, optical flow, . . . ), but only a small subset are

used for any given task. Selecting which fields are used

avoids the cost of decoding unnecessary features.

• Which transformation to apply to the pipeline. For ex-

ample, the NeRF task will dynamically generate the

rays origin/directions from the camera intrinsics/extrin-

sics contained in the dataset.

4. Kubric Datasets and Challenges

To demonstrate the power and versatility of Kubric, we

next describe a series of new challenge problems, each with

data3 generated by Kubric (see Tab. 2). They cover 2D and

3D tasks at different scales, with dataset sizes ranging from

2https://github.com/google-research/sunds
3The presented datasets along with the corresponding worker scripts can

be found at https://github.com/google-research/kubric.
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4.1∗ Object discovery 2D ✓ ✓ × × × ✓ × ✓ ✓ ✓ ✓ × ✓ × TB

4.2∗ Optical flow 2D ✓ × × × × ✓ × ✓ × ✓ × ✓ × × TB

4.3∗ NeRF & Texture 3D × × ✓ × × × × × ✓ × × × ✓ × MB

4.4 Pose-estimation 2D × × × × ✓ × ✓ ✓ ✓ ✓ × ✓ × ✓ GB

4.5∗ Pre-training 2D × × × × × × × × ✓ ✓ × ✓ × ✓ GB

C.1∗ Robust NeRF 3D × × × ✓ × × × × ✓ × ✓ × ✓ × MB

C.2∗ Multi-view SOD 2D × ✓ × × × × × ✓ × ✓ × ✓ ✓ × GB

C.3∗ Complex BRDFs 3D × × × ✓ × × × × ✓ ✓ ✓ × ✓ × GB

C.4∗ 3D reconstruction 3D × ✓ × ✓ ✓ × × × × × ✓ × × × GB

C.5∗ Robust 3D recons. 3D ✓ ✓ × × ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ MB

C.6∗ Point tracking 2D × ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓ × × × TB

C.7 ToyBox 3D × ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ × ✓ × GB

C.8 Novel View Synthesis 3D × × × ✓ × ✓ × ✓ × ✓ ✓ × ✓ × GB

Table 2. Overview of the datasets / challenges presented in

Sec. 4 (∗claimed as dataset contributions for this paper).

MBs to TBs. Each relies on a different subset of annotations

(flow, segmentation, depth, camera pose, or object pose),

makes use of a different subset of features (e.g., physics or

rigged animation), and requires control over different factors

(background, materials, or lighting). Any one dataset might

have been generated by a simpler, specialized code-base, but

this would have been extremely inefficient. Rather, with the

versatility of Kubric, it was straightforward to create, extend

and combine datasets, leveraging a common platform and

shared engineering efforts.

These different challenges also highlight different uses

of synthetic data. Some serve as benchmarks for comparing

existing and future methods, while others provide additional

training data for real-world applications (sim-to-real). Some

are designed to empirically test specific hypotheses (e.g., in

testing), while some focus on data that can be shared without

privacy and legal concerns. We describe four challenges in

sections below and 8 more in the appendix C.

4.1. Object discovery from video

Object discovery methods aim to decompose a scene into

its constituent components and find object instance segmen-

tation masks with minimal supervision. While recent models

such as IODINE [36], MONet [12], GENESIS [28], and Slot

Attention [59] succeed at decomposing simple scenes with

uniform textures, decomposing dynamic scenes (i.e., videos)

with high visual complexity and complex dynamics remains

difficult. This challenge introduces five Multi-Object Video

(MOVi) datasets, MOVi-A to -E (see Fig. 5), of increasing

visual and dynamical complexity, aimed at testing the limits

of existing object discovery approaches, enabling progress

towards more realistic and diverse visual scenes.

We test two state-of-the-art video object discovery meth-

ods, SAVi [50] and SIMONe [45], for their ability to de-

compose videos into temporally consistent object masks

(see Tab. 3). SAVi, which uses optical flow during training,

performs better at decomposing moving objects, especially

Method MOVi-A MOVi-B MOVi-C MOVi-D MOVi-E

SAVi [50] 82.0± 0.3 61.5± 0.3 47.0± 0.3 19.4± 8.0 2.7± 0.5

SIMONe [45] 61.8± 2.0 30.7± 3.3 19.8± 0.5 34.1± 0.7 34.9± 0.6

SAVi + BBox 95.3± 0.2 85.5± 0.2 73.5± 0.3 9.9± 1.4 7.5± 1.0

Table 3. Object discovery – Object segmentation performance,

measured in terms of foreground ARI [36, 42] (FG-ARI↑) in %.

We compare two recent state-of-the-art models, SAVi [50] (trained

using optical flow) and SIMONe [45]. SAVi + BBox additionally

receives object bounding boxes as cues in the first frame.

MOVi-A MOVi-B MOVi-C MOVi-D MOVi-E

F
ra

m
es

F
lo

w
Figure 5. Object discovery – Dataset samples of MOVi of in-

creasing visual complexity. MOVi-A uses objects inspired by

CLEVR [44]. MOVi-B introduces additional primitive object

types and colors. MOVi-C introduces real-world backgrounds

and scanned 3D objects. MOVi-A to -C contain scenes of up to 10

moving objects (24 frames per video). MOVi-D & MOVi-E scenes

have up to 23 objects, with only a small fraction of moving objects.

In MOVi-E, the camera is moving in random directions.

when receiving bounding boxes for the first frame of the

video. Both methods decline in performance as complexity

increases with an exception for static objects in MOVi-D

and -E, which are partially captured by SIMONe. Neither

method can reliably decompose scenes in all five datasets.

4.2. Optical flow

Optical flow refers to the 2D motion from pixels in one

frame to the next in a video. It is fundamental to video

processing and analysis. Unlike high-level vision tasks, we

cannot obtain reliable, ground-truth optical flow on generic

real-world videos, even with human annotation. Optical flow

is actually the first sub-field of computer vision to rely on

synthetic data for evaluation [7].

Recent deep models, PWC-net [90], RAFT [92], and

VCN [110], all rely on synthetic data for pre-training, like

FlyingChairs [26]. However, FlyingChairs lacks photo-

realism, uses synthetic chairs as the only foreground ob-

jects, and does not have general 3D motion. AutoFlow [89]

learns rendering hyperparameters for generating a synthetic

flow datasets, yielding large performance gains over Fly-

ingChairs [89]. But AutoFlow adopts a simple 2D layered

model, lacks 3D motion and realism in rendering. Our

dataset addresses these shortcomings, as shown in Fig. 6.

We compare training RAFT on different datasets using

the same training protocol [88, 89, 92]. As shown in Ta-

3754



Sintel KITTI-15

Dataset Parameters Clean Final AEPE ER%

FlyingChairs (2D) Manual 2.27 3.76 7.63 38.5%

Kubric (3D) Manual 1.89 3.02 4.82 16.9%

AutoFlow (2D) Learned 2.08 2.75 4.66 15.3%

Table 4. Optical flow – Comparison of pre-training RAFT on

different optical flow datasets (lower is better for all metrics).

FlyingChairs AutoFlow Kubric

Figure 6. Optical flow – Chairs in FlyingChairs undergo 2D affine

motion; random polygons in AutoFlow undergo nonrigid 2D mo-

tion; 3D objects in Kubric undergo 3D rigid-body motion.

Frequency Cutoff 10−0.5 100 100.5 101 102

PSNR ↑ 28.1 27.8 26.7 23.6 23.4

Depth Variance↓ 0.026 0.024 0.023 0.023 0.022

Table 5. Texture-structure in NeRF – Reconstruction error and

depth variance for different texture frequency bands with NeRF

on textured surface. Accuracy of color prediction improves as

frequency of the texture becomes lower, while accuracy of the

surface geometry degrades.

Figure 7. A NeRF dataset with

procedural texture allows each

pixel to be annotated with fre-

quency information. This en-

ables analysis of the frequency-

structure relationship in the

learned NeRF model.

ble 4, Kubric leads to significantly more accurate results

than FlyingChairs when both use manually selected render-

ing hyperparameters, demonstrating the benefit of using 3D

rendering. Kubric also performs competitively against Aut-

oFlow. Note that this is not an apples-to-apples comparison,

because the hyperparameters of AutoFlow have been learned

to optimize the performance on the Sintel dataset [89]. These

results suggest that learning hyperparameters for Kubric is

likely to result in significant performance gains.

4.3. Texturestructure in NeRF

Neural radiance fields are inherently volumetric repre-

sentations, but are commonly used to model the surfaces of

Train data set COCO + Active COCO + Active + Synth

COCO [57] 0.554 0.557

Active [98] 0.650 0.662

Yoga 0.391 0.427

Table 6. Pose estimation – results are improved out-of-domain

by the addition of synthetic images of human models featuring

poses outside the COCO domain; Keypoint Mean Average Preci-

sion (mAP) metric (higher is better)

Figure 8. Pose estimation – fully annotated images from synthetic

videos aimed at diversifying poses (left), motions, subjects and

backgrounds featured in real-world annotated data sets, and (right)

examples of COCO-equivalent images.

solid objects. These NeRF surface models are a result of the

model trying satisfy a multi-view reconstruction problem: to

reconstruct surface detail consistently from multiple views,

those details must lie in a thin slice of the volume around the

true surface. Note that not all surfaces will encourage NeRF

to build a surface model. Surfaces with flat color may still be

reconstructed as a non-solid volume. Hence, benchmarking

NeRF methods according to how well they stay true to the

actual surface depending on texture is an interesting aspect

that is still unexplored.

To quantify this, we created synthetic scene containing

flat surfaces, the textures of which are procedurally gen-

erated with blue noise to have varying spatial frequency.

We annotate each pixel with the cutoff frequency of its tex-

ture and analyze the correlation between frequency, depth

variance, and reconstruction error. We then train a NeRF

model with this synthetic data. As shown in Table 5, we find

that increasing frequencies are associated with lower depth

variance, indicating better approximations to a hard surface,

while also increasing the reconstruction error, showing that

the network is less able to approximate the complex textures.

It would be interesting to see how well future volumetric

multi-view reconstruction methods would cope with this

ambiguity and encourage hard surface boundaries.
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Figure 9. Pre-training a ResNet50 on synthetic Kubric data (top)

and transferring it to standard bencharks (bottom) halves the gap

between random pre-training (Bkgnd) and ImageNet pre-training.

4.4. Pose estimation

Pose-estimation-based interactive experience (e.g.,

Kinect) often feature human poses that remain under-

represented in most data sets comprising user-generated

pictures (e.g. COCO [57]), as picture-worthy poses present

an obvious sampling bias. Simulated data can supplement

real data with less aesthetic poses which are nonetheless

common in real-life human motions. Here we improve

MoveNet [98], a CenterNet [119] based pose inference CNN

usually trained on COCO [57] and Active [98] (a proprietary

data set with more diverse poses). As in Simpose [120],

training batches mix real and synthetic data with an

80/20% mixture. Unlike [120], synthetics do not provide

additional labels (e.g., surface normals) but only contribute

more diverse examples. As illustrated in Figure 8, the

samples feature 41 rigged RenderPeople models placed in a

randomized indoor scene where background elements and

textures come from BlenderKit and TextureHeaven. Human

poses are extracted from dancing and workout ActorCore

animations. While licensing terms of non-CC0 assets forbid

data publication, the data set can be re-generated with

our open source software by any owner of the same mesh

and animation assets. Synthetic data improves keypoint

Mean-Average-Precision (see Table 6), in domain (on

COCO and Active), and out-of-domain (on Yoga, a test set

of contorted poses comprising 1000 examples). Synthetic

data are therefore now routinely used in our human-centric

training procedures for still images as well as videos.

4.5. Pretraining visual representations

Ever since AlexNet [55], the entire field of computer

vision has benefited immensely from re-using “backbones”

pre-trained on large amounts of data [25,52,54,76]. However,

recent work casts doubt on the continued use of datasets that

consist of vast collections of photos from the internet [8,112].

One potential way forward, which completely circumvents

the downsides of web-image based data, is to use rendered

data. This has recently shown great success for face recogni-

tion [103], and we hypothesize that synthetic data could also

eventually replace web images for pre-training general com-

puter vision backbones. In order to evaluate the promise of

such a setting, we perform a small pilot experiment. Kubric

was used to render ShapeNet objects in various random poses

on transparent backgrounds. We pre-train a ResNet-50 to

predict the object’s category from images that combine the

object with a random background image in various ways, as

shown in Fig. 9 (top). We then transfer this pre-trained model

to various datasets, following the protocol in [52]. Fig 9 (bot-

tom) shows that this simple pilot experiment already halves

the gap between random pre-training and pre-training on

ImageNet, suggesting that this is a promising approach.

5. Conclusions

We introduce Kubric, a general Python framework com-

plete with tools for generation at scale, integrating assets

from multiple sources, rich annotations and a common ex-

port data format (SunDS) for porting data directly into train-

ing pipelines. Kubric enables the generation of high quality

synthetic data, addressing many of the problems inherent in

curating natural image data, and circumventing the expense

of building task-specific, one-off pipelines. We demonstrate

the effectiveness of our framework in 11 case studies with

generated datasets of varying complexity for a range of dif-

ferent vision tasks. In each case, Kubric has substantially

reduced the engineering effort to generate the required data

and has facilitated reuse and collaboration. We hope that it

will help the community by lowering the barriers to generat-

ing high-quality synthetic data, reduce fragmentation, and

facilitate the sharing of pipelines and datasets.

Limitations and future work. While already tremendously

useful, Kubric is still a work in progress and does not yet

support many features of Blender and PyBullet. Notable ex-

amples include volumetric effects like fog or fire, soft-body

and cloth simulations, and advanced camera effects such

as depth of field and motion blur. We also plan to prepro-

cess and unify assets from more sources, including the ABC

dataset [51] or Amazon Berkeley Objects [17]. At present,

Kubric requires substantial computational resources due to

its reliance on a path-tracing renderer versus a rasterizing

renderer. We hope to add support for a rasterizing backend,

allowing users to trade-off speed and render quality.

We include a discussion on the potential societal impact

and ethical implications surrounding the application of our

system in Section A of the supplementary material.
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Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The

2017 davis challenge on video object segmentation. arXiv

preprint arXiv:1704.00675, 2017. 6

[71] Senthil Purushwalkam and Abhinav Gupta. Demystifying

contrastive self-supervised learning: Invariances, augmenta-

tions and dataset biases, 2020. 2

[72] Xuebin Qin, Shida He, Zichen Zhang, Masood Dehghan,

and Martin Jagersand. Bylabel: A boundary based semi-

automatic image annotation tool. In 2018 IEEE Winter

Conference on Applications of Computer Vision (WACV),

2018. 2

[73] Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-

hghan, Osmar R Zaiane, and Martin Jagersand. U2-net:

Going deeper with nested u-structure for salient object de-

tection. Pattern Recognition, 106:107404, 2020. 2, 3

[74] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,

Masood Dehghan, and Martin Jagersand. Basnet: Boundary-

aware salient object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7479–7489, 2019. 2, 3

[75] W Qiu and A Yuille. UnrealCV: Connecting computer vision

to unreal engine. In ECCV Workshops. Springer, 2016. 2

[76] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,

and Stefan Carlsson. CNN features off-the-shelf: An as-

tounding baseline for recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR Workshops

2014, Columbus, OH, USA, June 23-28, 2014, pages 512–

519. IEEE Computer Society, 2014. 8

[77] Google Research. Scanned objects dataset of common house-

hold objects, 2021. 5

[78] S R Richter, V Vineet, S Roth, and V Koltun. Playing for

data: Ground truth from computer games. In ECCV, 2016.

2
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