
Kubric: A scalable dataset generator

Klaus Greff1 Francois Belletti1 Lucas Beyer1 Carl Doersch6 Yilun Du5

Daniel Duckworth1 David J Fleet1,2 Dan Gnanapragasam1 Florian Golemo4, 9

Charles Herrmann1 Thomas Kipf1 Abhijit Kundu1 Dmitry Lagun1 Issam Laradji3, 9

Hsueh-Ti (Derek) Liu 2 Henning Meyer1 Yishu Miao10 Derek Nowrouzezahrai3,4

Cengiz Oztireli1,8 Etienne Pot1 Noha Radwan1 Daniel Rebain1,7 Sara Sabour1,2

Mehdi S. M. Sajjadi1 Matan Sela1 Vincent Sitzmann5 Austin Stone1 Deqing Sun1

Suhani Vora1 Ziyu Wang10 Tianhao Wu8 Kwang Moo Yi7 Fangcheng Zhong8

Andrea Tagliasacchi1,2,11

1Google 2University of Toronto 3McGill University 4Mila 5MIT 6DeepMind

7UBC 8University of Cambridge 9ServiceNow 10Haiper 11Simon Fraser University

Abstract

Data is the driving force of machine learning, with the

amount and quality of training data often being more impor-

tant for the performance of a system than architecture and

training details. But collecting, processing and annotating

real data at scale is difficult, expensive, and frequently raises

additional privacy, fairness and legal concerns. Synthetic

data is a powerful tool with the potential to address these

shortcomings: 1) it is cheap 2) supports rich ground-truth

annotations 3) offers full control over data and 4) can cir-

cumvent or mitigate problems regarding bias, privacy and

licensing. Unfortunately, software tools for effective data

generation are less mature than those for architecture de-

sign and training, which leads to fragmented generation

efforts. To address these problems we introduce Kubric, an

open-source Python framework that interfaces with PyBullet

and Blender to generate photo-realistic scenes, with rich

annotations, and seamlessly scales to large jobs distributed

over thousands of machines, and generating TBs of data.

We demonstrate the effectiveness of Kubric by presenting a

series of 13 different generated datasets for tasks ranging

from studying 3D NeRF models to optical flow estimation.

We release Kubric, the used assets, all of the generation code,

as well as the rendered datasets for reuse and modification.

se
gm

en
tat

io
n

de
pt
h

optical flow surface normals object coordinates
Figure 1. Example scene created and rendered with Kubric along

with some of the automatically generated annotations.

1. Introduction

High quality data – at scale – is essential for deep learning.

It is arguably as or more important than many architectural

and training details. Nevertheless, even for many straightfor-

ward vision tasks, collecting and curating sufficient amounts

3749

of data continues to be a daunting challenge. Some of the key

barriers include the expense of high quality, detailed anno-

tations, data diversity, control over task domain complexity,

as well as concerns over privacy, fairness and licensing [4].

This paper advocates the use of synthetic data to circumvent

many of these problems, for which we introduce Kubric,

an open-source pipeline for generating realistic image and

video data with rich ground truth annotations for myriad

vision tasks.

Synthetic data has long been used for benchmark evalua-

tion (e.g. for optical flow [6, 7]), as it supports rich ground-

truth annotations, and fine-grained control over data com-

plexity. It also enables systematic model evaluation under

violations of model assumptions (e.g. rigidity). Synthetic

data has also been used effectively for training. This in-

cludes seminal work on 3D human pose estimation from

RGBD [85], and more recently on myriad tasks, including

facial landmark detection [103], human pose from video [24],

and semantic segmentation [116]. Photo-realism is often con-

sidered essential for narrowing the generalization gap, but

even without perfect realism, synthetic data can be remark-

ably effective (e.g., flying chairs [26], MPI-Sintel [13] and

more recently AutoFlow [89]).

Unfortunately, effective software tools for data genera-

tion are less mature than those for architecture design and

training. It is therefore not surprising that most generation

efforts, although costly, have been one-off and task specific.

Although challenging to design and develop, what is needed

is a general framework for photo-realistic generation that

supports reuse, replication, and shared assets, all at scale, en-

abling workflows with large jobs concurrently on thousands

of machines. Kubric addresses these issues with coherent

framework, a simple Python API, and a full set of tools for

generation at scale, integrating assets from multiple sources,

with a common export data format for porting data into train-

ing pipelines, and with rich annotations for myriad vision

tasks. In summary, our key contributions are:

• We introduce Kubric1, a framework for generating

photo-realistic synthetic datasets for myriad vision

tasks, with fine-grain control over data complexity and

rich ground truth annotations.

• Kubric enables generation at scale, seamlessly running

large jobs over thousands of machines, generating TBs

of data in a standard export data format.

• The versatility of Kubric is demonstrated by the cre-

ation of 13 datasets for new vision challenge problems,

spanning 3D NeRF models to optical flow estimation,

along with benchmark results.

1Source code and datasets are available at https://github.com/

google-research/kubric.

2. Related Work

Synthetic data provides high quality labels for many im-

age tasks such as semantic [16] and instance [102] segmenta-

tion, text localization [37], object detection [40], and classifi-

cation [32]. There are many large synthetic datasets such as

CLEVR [44], ScanNet [21], SceneNet RGB-D [65], NYU

v2 [67], SYNTHIA [80], virtual KITTI [33], and flying

things 3D [64] for specific tasks. However, these datasets

rarely contain all possible annotations for all image tasks,

lacking key signals such as camera pose, instance or seman-

tic segmentation masks, or optical flow. This is particularly

challenging for multi-task problems like co-training a neu-

ral scene model with semantic segmentation [118]. More-

over, fixed datasets can introduce biases [94, 95] such as

an object-centric bias [71] and photographer’s bias [5]. By

contrast, Kubric automatically generates the image cues for

each frame and easily support a variety of viewing angles

and lighting conditions.

Specialized Synthetic Data Pipelines. There are many

hand-crafted pipelines for synthetic data generation [37,

49, 66] built off of rendering engines like Blender [9] and

Unity3D [11]. While these pipelines mitigate biases in view-

ing angles and lighting, they are often specialized for a partic-

ular task. This makes it challenging to adapt them to provide

additional annotations without in-depth knowledge of the

underlying rendering engine. Real world to sim pipelines

capture real-world data via 3D scans and then convert them

into a synthetic data format. [56] creates high quality room

scenes, but has many manual steps including pose align-

ment and material assignment. [27] also utilizes 3D scans,

and provides control over a wide range of scene parameters,

including camera position, field of view, and lighting, as

well as a number of per frame image cues. While these ap-

proaches produce high quality data for a particular captured

scene, the pipeline still relies on 3D scans of the full scene,

which imposes a bottleneck for scaling.

Name Rendering GI Physics Scaling DL

Playing4Data [78] (Game) × (Game) × ×

UnrealCV [75] UE4 × UE4 ✓ ×

TDW [34] Unity × PhysX ✓ ×

iGibson [106] PyRender × PyBullet ✓ ×

Habitat [91] Magnum × Bullet ✓ ×

OpenRooms [56] OptiX ✓ – × ×

Omnidata [27] Blender ✓ – × ✓

Blenderproc [23] Blender ✓ Bullet × ×

Kubric Blender ✓ PyBullet ✓ ✓

Table 1. Rendering: Blender any OptiX are ray tracing engines, all

others are based on rasterization; GI: support for global illumina-

tion; Physics: engine for physics simulation; Scaling: Easy to scale

to very large datasets. DL: Data-loader integration with machine

learning frameworks (PyTorch/TF).

3750

Generic Dataset Creation Pipelines. General purpose syn-

thetic data pipelines (like Kubric) aim to address these issues

by supporting arbitrary random compositions of meshes, tex-

tures, pre-existing scenes, etc. from collections of 3D assets.

This mitigates some of the scaling considerations of real

world to sim pipelines and more easily supports composition

of assets from different datasets. These pipelines differ along

various dimensions (see Tab. 1). One important differences

is the use of rendering engine, where ray-tracing engines sup-

port global illumination and other advanced lighting effects,

which allow for a higher degree of realism than rasteriza-

tion engines at the cost of a higher computational demand.

Most general purpose synthetic data generation pipelines

such as [53, 83, 84, 93, 106] are build on rasterization, which

makes them very fast, often to the point of generating en-

tire datasets on a single GPU machine. ThreeDWorld [34]

is an excellent example for such an engine with a flexible

Python API, comprehensive export capabilities to a Unity3D

based rasterization engine, the NVidia Flex [61] physics sim-

ulator and even sound generation via PyImpact [96]. The

framework closest in scope to Kubric is BlenderProc [23]: a

ray-tracing based pipeline built on Blender, which supports

the generation of high-quality renders and comprehensive

annotations as well as rigid-body physics simulations. The

main differences lie in Kubric’s focus on scaling workloads

to many workers, and its integration with tensorflow datasets.

3. Infrastructure

Kubric is a high-level python library that acts as glue

between: a rendering engine, a physics simulator, and data

export infrastructure; see Figure 2. Its main contribution is to

streamline the process and reduce the hurdle and friction for

researchers that want to generate and share synthetic data.

3.1. Design Principles

Openness. Data-generation code should be freely usable

by researchers both in academia and in industry. Kubric

addresses this by being open-source with an Apache2 li-

cence, and by only using software with similarly permissive

licenses. Together with the use of free 3D assets and textures,

this enables researchers to share not just the data, but also

enable others to reproduce and modify it.

Ease of use. The fragmentation of computer graphics for-

mats, conventions and interfaces is a major pain point for

setting up and reusing data-generation code. Kubric mini-

mizes this friction by offering a simple object-oriented API

interface with PyBullet and Blender behind the scenes, hid-

ing the complexities of setup, data transfer, and keeping them

in sync. We also provide pre-processed 3D assets from a

variety of data sources, that can be used with minimal effort.

Realism. To be maximally useful, a data-generator should

Scene

Assets

Camera

Objects

Lights

Materials

....

PyBullet

Blender

Asset

Source

simulate()

create() render()

layers

metadata

Worker

Figure 2. Overview – a typical Kubric worker randomly populates

a scene with assets loaded from an external source, possibly runs a

physics simulation, renders the resulting frames, and finally exports

the images, annotation layers, and other metadata.

be able to model as much as possible of the structure and

complexity of real data. The Cycles raytracing engine of

Blender supports a high level of realism and can model com-

plex visual phenomena such as reflection, refraction, indirect

illumination, subsurface-scattering, motion-blur, depth of

field, etc. Studying these effects is important, and they also

help to reduce the generalization gap.

Scalability. Data generation workloads can range from sim-

ple toy-data prototyping all the way to generating massive

amounts of high-resolution video data. To support this entire

range of usecases, Kubric is designed to seamlessly scale

from a local workflow to running large jobs on thousands of

machines in the cloud.

Portable and Reproducible. To facilitate reuse of data-

generation code, it is important that the pipeline is easy to

setup and produces the same results — even when executed

on different machines. This is especially important due to the

difficulty in installing the Blender Python module [31] and

the substantial variations between versions. By distributing

a Kubric Docker image, we ensure portability and remove

the bulk of the installation pain.

Data Export. Kubric by default exports a rich set of ground

truth annotations from segmentation, optical flow, surface

normals and depth maps, to object trajectories, collision

events and camera parameters. We also introduce SunDs (see

Sec. 3.4), a unified multi-task frontend for richly annotated

scene-based data.

3.2. Kubric Worker – Figure 3

The typical Kubric workflow consists of writing a worker

script that creates, simulates, and renders a single random

scene. The full dataset is then generated by running this

worker many times, and afterwards collecting the generated

data. This division into independent scenes mirrors the i.i.d.

structure of most datasets and supports scaling the gener-

ation process from local prototyping to a large number of

parallel jobs; e.g. using the Google Cloud Platform (GCP),

for which we provide convenience launcher scripts. We also

plan to support an Apache Beam pipeline that combines

generation, collection and post-processing of datasets into a

single convenient (but ultimately harder to debug) workflow.

3751

1 import numpy as np

2 import kubric as kb

3 asset_source = kb.AssetSource.from_manifest("KuBasic.json")

4 scene = kb.Scene(resolution=(640, 640))

5 renderer = kb.renderer.Blender(scene)

6 simulator = kb.simulator.PyBullet(scene)

7 # --- populate the scene

8 scene.camera = kb.PerspectiveCamera(position=(0, 5, 5),

9 look_at=(0, 0, 0))

10 scene += kb.Cube(name="floor", scale=(10, 10, .1),

11 position=(0, 0, -0.1), static=True)

12 scene += kb.PointLight(position=(-2.5, -1, 5), intensity=300)

13 rng = np.random.RandomState(seed=42)

14 for i in range(8): # place 8 random objects within a region

15 mat = kb.PrincipledBSDFMaterial(color=kb.random_hue_color(rng=rng),

16 metallic=rng.choice([0.0, 1.0]),

17 transmission=rng.choice([0.0, 1.0]))

18 obj = asset_source.create(rng.choice(asset_source.all_asset_ids),

19 material=mat, velocity=rng.normal(size=3))

20 scene += obj

21 kb.move_until_no_overlap(obj, simulator, rng=rng,

22 spawn_region=[[-1, -1, 0], [1, 1, 1]])

23 # --- execute the simulation, render, and save data to files

24 simulator.run()

25 renderer.save_state("output/scene.blend")

26 frames_dict = renderer.render()

27 kb.write_image_dict(frames_dict, "output")

Figure 3. Example worker – A simple environ-

ment with a floor, a point light, a perspective

camera and eight KuBasic objects placed with-

out overlap (by rejection sampling) and a random

velocity. PyBullet then simulates the physics,

Blender renders the video. Infinite random

variations of the scene can be generated by vary-

ing the random seed (rng), and the result can be

inspected in Blender even before rendering (top

right). The exported data includes annotations

such as segmentation, depth, flow, and normals.

Scene structure. Each worker sets up a Scene object,

which keeps track of global settings (e.g., resolution, num-

ber of frames to render, gravity), a Camera, and all the

objects, including lights, materials, animations, etc., which

we refer to collectively as Assets. They are the main ab-

stractions used in Kubric to control the content of a scene,

and they each expose a set of properties such as position,

velocity or color. When an Asset is added to the scene,

the corresponding objects are created in each of the Views.

Currently this comprises the PyBullet simulator and the

Blender renderer, but Kubric can be extended to sup-

port other views (e.g., the recently open-sourced MuJoCo).

Kubric also maintains a link with the resulting data structure,

and automatically communicates all changes of the assets to

the connected views. That way, the user only has to work

with the abstractions provided by Kubric, and does not have

to worry about differences in interfaces or conventions.

Simulator. For physics simulation we interface with the

open-source PyBullet physics engine [18] that is widely used

in robotics (e.g., [43, 46, 107]). It can be used to populate

the scene with non-overlapping objects, or to run a (rigid-

body) simulation, and to convert the resulting trajectories

into keyframes and collision events. Bullet can also handle

rigged models, softbody simulations, and various constraints

that Kubric does not yet support.

Renderer. Kubric uses the bpy module as an interface

to Blender, a powerful open-source 3D computer graphics

suite which is widely used for game development and vi-

sual effects. Blender comes with a powerful UI that can be

used for interactively debugging and adjusting scenes, as

well as creating and exporting new assets. For rendering we

rely on cycles – Blender’s raytracing engine – which, unlike

rasterized rendering engines, supports global illumination,

accurately capturing effects such as soft shadows, reflec-

tion, refraction, and subsurface scattering. These effects are

crucial for visual realism, and together with the vast set of

other features of Blender, they enable artists to create photo-

realistic 3D scenes. The downside is that cycles is up to two

orders of magnitude slower than a rasterized rendering en-

gine, but for Kubric we decided that this computational cost

is a worthwile tradeoff in exchange for the added realism and

the ability to systematically study complex visual effects.

Annotations. Another important feature of Blender is the

use of specialized render passes that compute auxiliary

ground truth information. We leverage this feature to ex-

port (in addition to the RGB image) 1⃝ depth maps, 2⃝ in-

stance segmentation, 3⃝ optical flow, 4⃝ surface normals, and

5⃝ object coordinates (see Fig. 1). In addition to these im-

age space annotations, Kubric also automatically collects

object-centric metadata, such as 2D/3D trajectories, 2D/3D

bounding boxes, velocities, mass, friction, camera parame-

ters, collision events, as well as custom metadata.

3.3. Assets

A limiting factor in the creation of synthetic scenes is

the availability of high-quality 3D assets. Several asset

collections exist, but their use often requires substantial

cleanup and conversion to make them compatible with a

given pipeline. Kubric provides several preprocessed collec-

tions of assets in a public Google Cloud bucket. Using these

assets is as simple as changing the path of the asset source

with kb.AssetSource(path). At the core level, each

dataset source is associated with a manifest.json file

storing high level aggregated information, without the need

3752

K
u

B
as

ic
S

h
ap

eN
et

(a) collision (b) cleaned (c) original

G
S

O

Figure 4. (top) The KuBasic assets collection. (middle) ShapeNet

objects by default do not render well in Blender (c) due to problems

with auto-smoothing and the lack of backface culling in cycles. (b)

We processed all ShapeNet objects to fix these issues and (a) gener-

ated a collision mesh by first making the model watertight and then

performing an approximate convex decomposition using VHACD.

(bottom) Example assets from the Google Scanned Objects (GSO)

dataset along with the generated collision meshes.

to traverse the entire folder structure. The "id" property of

each entry in the manifest is in one-to-one correspondence to

an archive file containing the data for the asset. Each of these

archives a contains a JSON-file with metadata, including the

paths to the sub-asset for rendering and for collision detec-

tion, and the definition of physical properties in the Unified

Robot Description Format (URDF) used by PyBullet. For

textured models, we employ the GLTF standard [79].

KuBasic. For simple prototyping we ship a small collection

of eleven simple assets depicted in the top row of Fig. 4.

ShapeNetCore.v2. This dataset is a subset of the full

ShapeNet dataset [14] with 51, 300 unique 3D models

from 55 with canonical alignment and common object cat-

egories annotations (both manually verified). Extensive

pre-processing was performed to simplify the integration

of these assets within Kubric, which included making the

models watertight using [41], generating collision geometry

using VHAC-D [62], and fixing raytracing artifacts due to

auto-smoothing and intersecting faces(see Appendix B for

details).

Google Scanned Objects (GSO) [77]. Is a dataset of com-

mon household objects that have been 3D scanned for use

in robotic simulation and synthetic perception research. It

is licensed under the CC-BY 4.0 License and contains ≈ 1k

high-quality textured meshes; see Fig. 4. We publish pre-

processed version of this dataset in the Kubric format, which

again includes generated collision meshes.

Polyhaven [115]. is a public (CC0 licensed) library from

which we have collected and pre-processed HDRI images

for use as backgrounds and lighting, and textures for use in

high-quality materials.

3.4. Scene Understanding Datasets (SunDs)

To facilitate ingesting data into machine learning models,

we introduce, alongside Kubric, the SunDs (Scene Under-

standing Datasets) dataset front-end2. SunDs is an API to

access public scene understanding datasets. The field names

and structure, shape, dtype are standardized across datasets.

This allow to trivially switch between datasets (e.g. switch

from synthetic to real data). All SunDs datasets are com-

posed of two sub-datasets:

• The scenes dataset contains high level scene metadata

(e.g. scene boundaries, mesh of the full scene, etc.).

• The frames dataset contains the individual examples

within a scene (e.g., RGB image, bounding boxes, etc.).

SunDs abstracts away the dataset-specific file format (json,

npz, folder structure, . . .), and returns tensors directly in-

gestible by machine learning models (TF, Jax, Torch). Inter-

nally, SunDs is a wrapper around TFDS, which allows one

to scale to huge datasets (≈ TB), to provide native compat-

ibility with distributed cloud file systems (e.g. GCS, S3),

and to leverage tf.data pipeline capabilities (prefetching,

multi-threading, auto-caching, transformations, etc.).

To simplify even further data ingestion, SunDs introduce,

on top of TFDS, the concept of tasks. Each SunDs dataset

can be loaded for different tasks. Tasks control:

• Which features of the dataset to use/decode. Indeed,

scene understanding datasets often have many fields

(lidar, optical flow, . . .), but only a small subset are

used for any given task. Selecting which fields are used

avoids the cost of decoding unnecessary features.

• Which transformation to apply to the pipeline. For ex-

ample, the NeRF task will dynamically generate the

rays origin/directions from the camera intrinsics/extrin-

sics contained in the dataset.

4. Kubric Datasets and Challenges

To demonstrate the power and versatility of Kubric, we

next describe a series of new challenge problems, each with

data3 generated by Kubric (see Tab. 2). They cover 2D and

3D tasks at different scales, with dataset sizes ranging from

2https://github.com/google-research/sunds
3The presented datasets along with the corresponding worker scripts can

be found at https://github.com/google-research/kubric.

3753

Section ta
sk

d
o
m

ai
n

fl
o
w

se
g
m

en
ta

ti
o
n

d
ep

th

ca
m

er
a

3
D

p
o
se

o
b
je

ct
3
D

p
o
se

s

p
h
y
si

cs
si

m
.

ri
g
g
ed

an
im

at
io

n

co
n
tr

o
l

b
ac

k
g
rn

d
.

co
n
tr

o
l

m
at

er
ia

ls

co
n
tr

o
l

li
g
h
ti

n
g

n
ew

ch
al

le
n
g
e

si
m

-t
o
-r

ea
l

h
y
p
o
th

es
is

te
st

in
g

P
II

/
le

g
al

sc
al

e

4.1∗ Object discovery 2D ✓ ✓ × × × ✓ × ✓ ✓ ✓ ✓ × ✓ × TB

4.2∗ Optical flow 2D ✓ × × × × ✓ × ✓ × ✓ × ✓ × × TB

4.3∗ NeRF & Texture 3D × × ✓ × × × × × ✓ × × × ✓ × MB

4.4 Pose-estimation 2D × × × × ✓ × ✓ ✓ ✓ ✓ × ✓ × ✓ GB

4.5∗ Pre-training 2D × × × × × × × × ✓ ✓ × ✓ × ✓ GB

C.1∗ Robust NeRF 3D × × × ✓ × × × × ✓ × ✓ × ✓ × MB

C.2∗ Multi-view SOD 2D × ✓ × × × × × ✓ × ✓ × ✓ ✓ × GB

C.3∗ Complex BRDFs 3D × × × ✓ × × × × ✓ ✓ ✓ × ✓ × GB

C.4∗ 3D reconstruction 3D × ✓ × ✓ ✓ × × × × × ✓ × × × GB

C.5∗ Robust 3D recons. 3D ✓ ✓ × × ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ MB

C.6∗ Point tracking 2D × ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓ × × × TB

C.7 ToyBox 3D × ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ × ✓ × GB

C.8 Novel View Synthesis 3D × × × ✓ × ✓ × ✓ × ✓ ✓ × ✓ × GB

Table 2. Overview of the datasets / challenges presented in

Sec. 4 (∗claimed as dataset contributions for this paper).

MBs to TBs. Each relies on a different subset of annotations

(flow, segmentation, depth, camera pose, or object pose),

makes use of a different subset of features (e.g., physics or

rigged animation), and requires control over different factors

(background, materials, or lighting). Any one dataset might

have been generated by a simpler, specialized code-base, but

this would have been extremely inefficient. Rather, with the

versatility of Kubric, it was straightforward to create, extend

and combine datasets, leveraging a common platform and

shared engineering efforts.

These different challenges also highlight different uses

of synthetic data. Some serve as benchmarks for comparing

existing and future methods, while others provide additional

training data for real-world applications (sim-to-real). Some

are designed to empirically test specific hypotheses (e.g., in

testing), while some focus on data that can be shared without

privacy and legal concerns. We describe four challenges in

sections below and 8 more in the appendix C.

4.1. Object discovery from video

Object discovery methods aim to decompose a scene into

its constituent components and find object instance segmen-

tation masks with minimal supervision. While recent models

such as IODINE [36], MONet [12], GENESIS [28], and Slot

Attention [59] succeed at decomposing simple scenes with

uniform textures, decomposing dynamic scenes (i.e., videos)

with high visual complexity and complex dynamics remains

difficult. This challenge introduces five Multi-Object Video

(MOVi) datasets, MOVi-A to -E (see Fig. 5), of increasing

visual and dynamical complexity, aimed at testing the limits

of existing object discovery approaches, enabling progress

towards more realistic and diverse visual scenes.

We test two state-of-the-art video object discovery meth-

ods, SAVi [50] and SIMONe [45], for their ability to de-

compose videos into temporally consistent object masks

(see Tab. 3). SAVi, which uses optical flow during training,

performs better at decomposing moving objects, especially

Method MOVi-A MOVi-B MOVi-C MOVi-D MOVi-E

SAVi [50] 82.0± 0.3 61.5± 0.3 47.0± 0.3 19.4± 8.0 2.7± 0.5

SIMONe [45] 61.8± 2.0 30.7± 3.3 19.8± 0.5 34.1± 0.7 34.9± 0.6

SAVi + BBox 95.3± 0.2 85.5± 0.2 73.5± 0.3 9.9± 1.4 7.5± 1.0

Table 3. Object discovery – Object segmentation performance,

measured in terms of foreground ARI [36, 42] (FG-ARI↑) in %.

We compare two recent state-of-the-art models, SAVi [50] (trained

using optical flow) and SIMONe [45]. SAVi + BBox additionally

receives object bounding boxes as cues in the first frame.

MOVi-A MOVi-B MOVi-C MOVi-D MOVi-E

F
ra

m
es

F
lo

w
Figure 5. Object discovery – Dataset samples of MOVi of in-

creasing visual complexity. MOVi-A uses objects inspired by

CLEVR [44]. MOVi-B introduces additional primitive object

types and colors. MOVi-C introduces real-world backgrounds

and scanned 3D objects. MOVi-A to -C contain scenes of up to 10

moving objects (24 frames per video). MOVi-D & MOVi-E scenes

have up to 23 objects, with only a small fraction of moving objects.

In MOVi-E, the camera is moving in random directions.

when receiving bounding boxes for the first frame of the

video. Both methods decline in performance as complexity

increases with an exception for static objects in MOVi-D

and -E, which are partially captured by SIMONe. Neither

method can reliably decompose scenes in all five datasets.

4.2. Optical flow

Optical flow refers to the 2D motion from pixels in one

frame to the next in a video. It is fundamental to video

processing and analysis. Unlike high-level vision tasks, we

cannot obtain reliable, ground-truth optical flow on generic

real-world videos, even with human annotation. Optical flow

is actually the first sub-field of computer vision to rely on

synthetic data for evaluation [7].

Recent deep models, PWC-net [90], RAFT [92], and

VCN [110], all rely on synthetic data for pre-training, like

FlyingChairs [26]. However, FlyingChairs lacks photo-

realism, uses synthetic chairs as the only foreground ob-

jects, and does not have general 3D motion. AutoFlow [89]

learns rendering hyperparameters for generating a synthetic

flow datasets, yielding large performance gains over Fly-

ingChairs [89]. But AutoFlow adopts a simple 2D layered

model, lacks 3D motion and realism in rendering. Our

dataset addresses these shortcomings, as shown in Fig. 6.

We compare training RAFT on different datasets using

the same training protocol [88, 89, 92]. As shown in Ta-

3754

Sintel KITTI-15

Dataset Parameters Clean Final AEPE ER%

FlyingChairs (2D) Manual 2.27 3.76 7.63 38.5%

Kubric (3D) Manual 1.89 3.02 4.82 16.9%

AutoFlow (2D) Learned 2.08 2.75 4.66 15.3%

Table 4. Optical flow – Comparison of pre-training RAFT on

different optical flow datasets (lower is better for all metrics).

FlyingChairs AutoFlow Kubric

Figure 6. Optical flow – Chairs in FlyingChairs undergo 2D affine

motion; random polygons in AutoFlow undergo nonrigid 2D mo-

tion; 3D objects in Kubric undergo 3D rigid-body motion.

Frequency Cutoff 10−0.5 100 100.5 101 102

PSNR ↑ 28.1 27.8 26.7 23.6 23.4

Depth Variance↓ 0.026 0.024 0.023 0.023 0.022

Table 5. Texture-structure in NeRF – Reconstruction error and

depth variance for different texture frequency bands with NeRF

on textured surface. Accuracy of color prediction improves as

frequency of the texture becomes lower, while accuracy of the

surface geometry degrades.

Figure 7. A NeRF dataset with

procedural texture allows each

pixel to be annotated with fre-

quency information. This en-

ables analysis of the frequency-

structure relationship in the

learned NeRF model.

ble 4, Kubric leads to significantly more accurate results

than FlyingChairs when both use manually selected render-

ing hyperparameters, demonstrating the benefit of using 3D

rendering. Kubric also performs competitively against Aut-

oFlow. Note that this is not an apples-to-apples comparison,

because the hyperparameters of AutoFlow have been learned

to optimize the performance on the Sintel dataset [89]. These

results suggest that learning hyperparameters for Kubric is

likely to result in significant performance gains.

4.3. Texturestructure in NeRF

Neural radiance fields are inherently volumetric repre-

sentations, but are commonly used to model the surfaces of

Train data set COCO + Active COCO + Active + Synth

COCO [57] 0.554 0.557

Active [98] 0.650 0.662

Yoga 0.391 0.427

Table 6. Pose estimation – results are improved out-of-domain

by the addition of synthetic images of human models featuring

poses outside the COCO domain; Keypoint Mean Average Preci-

sion (mAP) metric (higher is better)

Figure 8. Pose estimation – fully annotated images from synthetic

videos aimed at diversifying poses (left), motions, subjects and

backgrounds featured in real-world annotated data sets, and (right)

examples of COCO-equivalent images.

solid objects. These NeRF surface models are a result of the

model trying satisfy a multi-view reconstruction problem: to

reconstruct surface detail consistently from multiple views,

those details must lie in a thin slice of the volume around the

true surface. Note that not all surfaces will encourage NeRF

to build a surface model. Surfaces with flat color may still be

reconstructed as a non-solid volume. Hence, benchmarking

NeRF methods according to how well they stay true to the

actual surface depending on texture is an interesting aspect

that is still unexplored.

To quantify this, we created synthetic scene containing

flat surfaces, the textures of which are procedurally gen-

erated with blue noise to have varying spatial frequency.

We annotate each pixel with the cutoff frequency of its tex-

ture and analyze the correlation between frequency, depth

variance, and reconstruction error. We then train a NeRF

model with this synthetic data. As shown in Table 5, we find

that increasing frequencies are associated with lower depth

variance, indicating better approximations to a hard surface,

while also increasing the reconstruction error, showing that

the network is less able to approximate the complex textures.

It would be interesting to see how well future volumetric

multi-view reconstruction methods would cope with this

ambiguity and encourage hard surface boundaries.

3755

Bkgnd Object Mixup Paste

Label: motorcycle

Bk
gn
d

Ob
jec

t
M
ix
up

Pa
ste

Im
gN

et

50
60
70

ImageNet
Bk

gn
d

Ob
jec

t
M
ix
up

Pa
ste

Im
gN

et
50

75

Pets

Bk
gn
d

Ob
jec

t
M
ix
up

Pa
ste

Im
gN

et

60

80

CIFAR-100

Figure 9. Pre-training a ResNet50 on synthetic Kubric data (top)

and transferring it to standard bencharks (bottom) halves the gap

between random pre-training (Bkgnd) and ImageNet pre-training.

4.4. Pose estimation

Pose-estimation-based interactive experience (e.g.,

Kinect) often feature human poses that remain under-

represented in most data sets comprising user-generated

pictures (e.g. COCO [57]), as picture-worthy poses present

an obvious sampling bias. Simulated data can supplement

real data with less aesthetic poses which are nonetheless

common in real-life human motions. Here we improve

MoveNet [98], a CenterNet [119] based pose inference CNN

usually trained on COCO [57] and Active [98] (a proprietary

data set with more diverse poses). As in Simpose [120],

training batches mix real and synthetic data with an

80/20% mixture. Unlike [120], synthetics do not provide

additional labels (e.g., surface normals) but only contribute

more diverse examples. As illustrated in Figure 8, the

samples feature 41 rigged RenderPeople models placed in a

randomized indoor scene where background elements and

textures come from BlenderKit and TextureHeaven. Human

poses are extracted from dancing and workout ActorCore

animations. While licensing terms of non-CC0 assets forbid

data publication, the data set can be re-generated with

our open source software by any owner of the same mesh

and animation assets. Synthetic data improves keypoint

Mean-Average-Precision (see Table 6), in domain (on

COCO and Active), and out-of-domain (on Yoga, a test set

of contorted poses comprising 1000 examples). Synthetic

data are therefore now routinely used in our human-centric

training procedures for still images as well as videos.

4.5. Pretraining visual representations

Ever since AlexNet [55], the entire field of computer

vision has benefited immensely from re-using “backbones”

pre-trained on large amounts of data [25,52,54,76]. However,

recent work casts doubt on the continued use of datasets that

consist of vast collections of photos from the internet [8,112].

One potential way forward, which completely circumvents

the downsides of web-image based data, is to use rendered

data. This has recently shown great success for face recogni-

tion [103], and we hypothesize that synthetic data could also

eventually replace web images for pre-training general com-

puter vision backbones. In order to evaluate the promise of

such a setting, we perform a small pilot experiment. Kubric

was used to render ShapeNet objects in various random poses

on transparent backgrounds. We pre-train a ResNet-50 to

predict the object’s category from images that combine the

object with a random background image in various ways, as

shown in Fig. 9 (top). We then transfer this pre-trained model

to various datasets, following the protocol in [52]. Fig 9 (bot-

tom) shows that this simple pilot experiment already halves

the gap between random pre-training and pre-training on

ImageNet, suggesting that this is a promising approach.

5. Conclusions

We introduce Kubric, a general Python framework com-

plete with tools for generation at scale, integrating assets

from multiple sources, rich annotations and a common ex-

port data format (SunDS) for porting data directly into train-

ing pipelines. Kubric enables the generation of high quality

synthetic data, addressing many of the problems inherent in

curating natural image data, and circumventing the expense

of building task-specific, one-off pipelines. We demonstrate

the effectiveness of our framework in 11 case studies with

generated datasets of varying complexity for a range of dif-

ferent vision tasks. In each case, Kubric has substantially

reduced the engineering effort to generate the required data

and has facilitated reuse and collaboration. We hope that it

will help the community by lowering the barriers to generat-

ing high-quality synthetic data, reduce fragmentation, and

facilitate the sharing of pipelines and datasets.

Limitations and future work. While already tremendously

useful, Kubric is still a work in progress and does not yet

support many features of Blender and PyBullet. Notable ex-

amples include volumetric effects like fog or fire, soft-body

and cloth simulations, and advanced camera effects such

as depth of field and motion blur. We also plan to prepro-

cess and unify assets from more sources, including the ABC

dataset [51] or Amazon Berkeley Objects [17]. At present,

Kubric requires substantial computational resources due to

its reliance on a path-tracing renderer versus a rasterizing

renderer. We hope to add support for a rasterizing backend,

allowing users to trade-off speed and render quality.

We include a discussion on the potential societal impact

and ethical implications surrounding the application of our

system in Section A of the supplementary material.

Acknowledgements

This work was supported by a UKRI Future Leaders

Fellowship [grant number G104084].

3756

References

[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada,

and Sabine Susstrunk. Frequency-tuned salient region de-

tection. In 2009 IEEE conference on computer vision and

pattern recognition, pages 1597–1604. IEEE, 2009. 3

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark

and state of the art analysis. In Proceedings of the IEEE

Conference on computer Vision and Pattern Recognition,

pages 3686–3693, 2014. 6

[3] Anonymous Authors. TAP-Net: Tracking any point in a

video. In Submission, 2022. 5, 6

[4] Yuki M. Asano, Christian Rupprecht, Andrew Zisserman,

and Andrea Vedaldi. Pass: An imagenet replacement for

self-supervised pretraining without humans. NeurIPS Track

on Datasets and Benchmarks, 2021. 2

[5] Aharon Azulay and Yair Weiss. Why do deep convolutional

networks generalize so poorly to small image transforma-

tions?, 2019. 2

[6] S Baker, D Scharstein, JP Lewis, S Roth, MJ Black, and R

Szeliski. A database and evaluation methodology for optical

flow. International Journal of Computer Vision, 92:1–31,

2011. 2

[7] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Perfor-

mance of optical flow techniques. International Journal of

Computer Vision, 12:43–77, 1994. 2, 6

[8] Abeba Birhane and Vinay Uday Prabhu. Large image

datasets: A pyrrhic win for computer vision? In IEEE Win-

ter Conference on Applications of Computer Vision, WACV

2021, Waikoloa, HI, USA, January 3-8, 2021, pages 1536–

1546. IEEE, 2021. 8

[9] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Blender Institute,

Amsterdam, 2021. 2

[10] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li.

Salient object detection: A benchmark. IEEE transactions

on image processing, 24(12):5706–5722, 2015. 3

[11] Steve Borkman, Adam Crespi, Saurav Dhakad, Sujoy

Ganguly, Jonathan Hogins, You-Cyuan Jhang, Mohsen

Kamalzadeh, Bowen Li, Steven Leal, Pete Parisi, Cesar

Romero, Wesley Smith, Alex Thaman, Samuel Warren, and

Nupur Yadav. Unity perception: Generate synthetic data for

computer vision, 2021. 2

[12] Christopher P Burgess, Loic Matthey, Nicholas Watters,

Rishabh Kabra, Irina Higgins, Matt Botvinick, and Alexan-

der Lerchner. MONet: Unsupervised scene decomposition

and representation. arXiv preprint arXiv:1901.11390, 2019.

6

[13] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In A. Fitzgibbon et al. (Eds.), editor, European Conf. on

Computer Vision (ECCV), Part IV, LNCS 7577, pages 611–

625. Springer-Verlag, Oct. 2012. 2

[14] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li

Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D

model repository. Dec. 2015. 5, 8

[15] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic

image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. IEEE transactions on

pattern analysis and machine intelligence, 40(4):834–848,

2017. 8

[16] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.

Learning semantic segmentation from synthetic data: A

geometrically guided input-output adaptation approach. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 2

[17] Jasmine Collins, Shubham Goel, Achleshwar Luthra, Leon

Xu, Kenan Deng, Xi Zhang, Tomas F Yago Vicente, Himan-

shu Arora, Thomas Dideriksen, Matthieu Guillaumin, and

Jitendra Malik. ABO: Dataset and benchmarks for Real-

World 3D object understanding. Oct. 2021. 8

[18] E Coumans and Y Bai. Pybullet, a python module for

physics simulation for games, robotics and machine learning.

2016. 4

[19] Erwin Coumans and Yunfei Bai. Pybullet, a python module

for physics simulation for games, robotics and machine

learning. 2016. 2

[20] Ingemar J Cox, Satish B Rao, and Yu Zhong. ” ratio regions”:

a technique for image segmentation. In Proceedings of 13th

International Conference on Pattern Recognition, 1996. 2

[21] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 5828–5839, 2017. 2

[22] Dawson-Haggerty et al. trimesh. 2

[23] M Denninger, M Sundermeyer, and others. Blenderproc.

arXiv:1911.01911, 2019. 2, 3

[24] Carl Doersch and Andrew Zisserman. Sim2real trans-

fer learning for 3d pose estimation: motion to the rescue.

NeurIPS, pages 12949–12961, 2019. 2

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image

is worth 16x16 words: Transformers for image recognition

at scale. In 9th International Conference on Learning Rep-

resentations, ICLR 2021, Virtual Event, Austria, May 3-7,

2021. OpenReview.net, 2021. 8

[26] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Häusser, Caner Hazirbas, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages

2758–2766, 2015. 2, 6

[27] A Eftekhar, A Sax, and others. Omnidata: A scalable

pipeline for making multi-task mid-level vision datasets

from 3d scans. arXiv:2110.04994, 2021. 2

[28] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and

Ingmar Posner. GENESIS: Generative scene inference and

3757

sampling with object-centric latent representations. In In-

ternational Conference on Learning Representations, 2020.

6

[29] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali

Borji. Structure-measure: A new way to evaluate foreground

maps. In Proceedings of the IEEE international conference

on computer vision, pages 4548–4557, 2017. 3

[30] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng,

Jianbing Shen, and Ling Shao. Camouflaged object de-

tection. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 2777–2787,

2020. 2, 3

[31] Blender Foundation. Blender 2.93.6 release candidate

python api documentation, 2021. 3

[32] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Gold-

berger, and Hayit Greenspan. Synthetic data augmentation

using gan for improved liver lesion classification. In 2018

IEEE 15th international symposium on biomedical imaging

(ISBI 2018), pages 289–293. IEEE, 2018. 2

[33] A Gaidon, Q Wang, Y Cabon, and E Vig. Virtual worlds as

proxy for multi-object tracking analysis. CVPR, 2016. 2

[34] C Gan, J Schwartz, and others. ThreeDWorld: A

platform for interactive Multi-Modal physical simulation.

arXiv:2007.04954, 2020. 2, 3

[35] Benjamin Graham and Laurens van der Maaten. Sub-

manifold sparse convolutional networks. arXiv preprint

arXiv:1706.01307, 2017. 8

[36] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick

Watters, Christopher Burgess, Daniel Zoran, Loic Matthey,

Matthew Botvinick, and Alexander Lerchner. Multi-object

representation learning with iterative variational inference.

In International Conference on Machine Learning, pages

2424–2433, 2019. 6

[37] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Synthetic data for text localisation in natural images. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016. 2

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 6

[39] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali

Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.

Data-efficient image recognition with contrastive predictive

coding. In International Conference on Machine Learning,

pages 4182–4192. PMLR, 2020. 6

[40] Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Marek

Martina, and Martin Bokeloh. An annotation saved is an

annotation earned: Using fully synthetic training for object

detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) Workshops, Oct

2019. 2

[41] Jingwei Huang, Yichao Zhou, and Leonidas Guibas. Man-

ifoldplus: A robust and scalable watertight manifold sur-

face generation method for triangle soups. arXiv preprint

arXiv:2005.11621, 2020. 5, 2

[42] Lawrence Hubert and Phipps Arabie. Comparing partitions.

Journal of Classification, 2(1):193–218, 1985. 6

[43] S James, P Wohlhart, M Kalakrishnan, and others. Sim-

to-real via sim-to-sim: Data-efficient robotic grasping via

randomized-to-canonical adaptation networks. Proceedings

of the, 2019. 4

[44] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,

Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. CLEVR:

A diagnostic dataset for compositional language and elemen-

tary visual reasoning. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017. 2,

6, 4

[45] Rishabh Kabra, Daniel Zoran, Loic Matthey Goker Er-

dogan, Antonia Creswell, Matthew Botvinick, Alexan-

der Lerchner, and Christopher P. Burgess. SIMONe:

View-invariant, temporally-abstracted object representations

via unsupervised video decomposition. arXiv preprint

arXiv:2106.03849, 2021. 6

[46] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz,

Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan

Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey

Levine. QT-Opt: Scalable deep reinforcement learning for

Vision-Based robotic manipulation. June 2018. 4

[47] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.

Snakes: Active contour models. International journal of

computer vision, 1988. 2

[48] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In Proc. CVPR, pages 3907–3916,

2018. 3, 4

[49] Kangyeol Kim, Sunghyun Park, Jaeseong Lee, Sunghyo

Chung, Junsoo Lee, and Jaegul Choo. Animeceleb: Large-

scale animation celebfaces dataset via controllable 3d syn-

thetic models, 2021. 2

[50] Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahen-

dran, Austin Stone, Sara Sabour, Georg Heigold, Rico Jon-

schkowski, Alexey Dosovitskiy, and Klaus Greff. Condi-

tional Object-Centric Learning from Video. arXiv preprint

arXiv:2111.12594, 2021. 6

[51] S Koch, A Matveev, Z Jiang, and others. ABC: A big cad

model dataset for geometric deep learning. Proceedings of

the, 2019. 8

[52] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan

Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.

Big transfer (bit): General visual representation learning.

In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-

Michael Frahm, editors, Computer Vision - ECCV 2020 -

16th European Conference, Glasgow, UK, August 23-28,

2020, Proceedings, Part V, volume 12350 of Lecture Notes

in Computer Science, pages 491–507. Springer, 2020. 8

[53] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu,

Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive

3d environment for visual ai, 2019. 3

[54] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do

better imagenet models transfer better? In IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2019,

Long Beach, CA, USA, June 16-20, 2019, pages 2661–2671.

Computer Vision Foundation / IEEE, 2019. 8

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

3758

works. In Peter L. Bartlett, Fernando C. N. Pereira, Christo-

pher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,

editors, Advances in Neural Information Processing Sys-

tems 25: 26th Annual Conference on Neural Information

Processing Systems 2012. Proceedings of a meeting held

December 3-6, 2012, Lake Tahoe, Nevada, United States,

pages 1106–1114, 2012. 8

[56] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Sai

Bi, Zexiang Xu, Hong-Xing Yu, Kalyan Sunkavalli, Mi-

los Hasan, Ravi Ramamoorthi, and Manmohan Chandraker.

Openrooms: An end-to-end open framework for photoreal-

istic indoor scene datasets. CoRR, abs/2007.12868, 2020.

2

[57] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 7, 8

[58] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft

rasterizer: A differentiable renderer for image-based 3d

reasoning. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 7708–7717, 2019. 4

[59] Francesco Locatello, Dirk Weissenborn, Thomas Un-

terthiner, Aravindh Mahendran, Georg Heigold, Jakob

Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-

centric learning with slot attention. In Advances in Neural

Information Processing Systems, 2020. 6

[60] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr,

Andreas Geiger, Laura Leal-Taixé, and Bastian Leibe. Hota:

A higher order metric for evaluating multi-object tracking.

International journal of computer vision, 129(2):548–578,

2021. 6

[61] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and

Tae-Yong Kim. Unified particle physics for real-time appli-

cations. ACM transactions on graphics, 33(4):1–12, July

2014. 3

[62] Khaled Mamou, E Lengyel, and AK Peters. Volumetric

hierarchical approximate convex decomposition. In Game

Engine Gems 3, pages 141–158. AK Peters, 2016. 5, 2

[63] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-

jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel

Duckworth. NeRF in the Wild: Neural Radiance Fields for

Unconstrained Photo Collections. In CVPR, 2021. 8

[64] N Mayer, E Ilg, P Hausser, P Fischer, and others. A large

dataset to train convolutional networks for disparity, optical

flow, and scene flow estimation. In CVPR, 2016. 2

[65] J McCormac, A Handa, and others. Scenenet RGB-D: Can

5m synthetic images beat generic imagenet pre-training on

indoor segmentation? In CVPR, 2017. 2

[66] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as

neural radiance fields for view synthesis. In ECCV, 2020. 2,

8

[67] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In ECCV, 2012. 2

[68] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. In

Proc. CVPR, 2020. 3

[69] Stanley Osher and James A Sethian. Fronts propagating with

curvature-dependent speed: Algorithms based on hamilton-

jacobi formulations. Journal of computational physics, 1988.

2

[70] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo

Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The

2017 davis challenge on video object segmentation. arXiv

preprint arXiv:1704.00675, 2017. 6

[71] Senthil Purushwalkam and Abhinav Gupta. Demystifying

contrastive self-supervised learning: Invariances, augmenta-

tions and dataset biases, 2020. 2

[72] Xuebin Qin, Shida He, Zichen Zhang, Masood Dehghan,

and Martin Jagersand. Bylabel: A boundary based semi-

automatic image annotation tool. In 2018 IEEE Winter

Conference on Applications of Computer Vision (WACV),

2018. 2

[73] Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-

hghan, Osmar R Zaiane, and Martin Jagersand. U2-net:

Going deeper with nested u-structure for salient object de-

tection. Pattern Recognition, 106:107404, 2020. 2, 3

[74] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,

Masood Dehghan, and Martin Jagersand. Basnet: Boundary-

aware salient object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7479–7489, 2019. 2, 3

[75] W Qiu and A Yuille. UnrealCV: Connecting computer vision

to unreal engine. In ECCV Workshops. Springer, 2016. 2

[76] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,

and Stefan Carlsson. CNN features off-the-shelf: An as-

tounding baseline for recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR Workshops

2014, Columbus, OH, USA, June 23-28, 2014, pages 512–

519. IEEE Computer Society, 2014. 8

[77] Google Research. Scanned objects dataset of common house-

hold objects, 2021. 5

[78] S R Richter, V Vineet, S Roth, and V Koltun. Playing for

data: Ground truth from computer games. In ECCV, 2016.

2

[79] Fabrice Robinet, Rémi Arnaud, Tony Parisi, and Patrick

Cozzi. gltf: Designing an open-standard runtime asset for-

mat. GPU Pro, 5:375–392, 2014. 5

[80] G Ros, L Sellart, J Materzynska, and others. The synthia

dataset: A large collection of synthetic images for semantic

segmentation of urban scenes. In CVPR, 2016. 2

[81] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and

William T Freeman. Labelme: a database and web-based

tool for image annotation. International journal of computer

vision, 2008. 2

[82] Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs

Bergmann, Klaus Greff, Noha Radwan, Suhani Vora, Mario

Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob Uszko-

reit, Thomas Funkhouser, and Andrea Tagliasacchi. Scene

Representation Transformer: Geometry-Free Novel View

3759

Synthesis Through Set-Latent Scene Representations. CVPR,

2022. 9

[83] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv

Batra. Habitat: A platform for embodied AI research. CoRR,

abs/1904.01201, 2019. 3

[84] Max Schwarz and Sven Behnke. Stillleben: Realistic

scene synthesis for deep learning in robotics. CoRR,

abs/2005.05659, 2020. 3

[85] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp,

Mark Finocchio, Richard Moore, Alex Kipman, and Andrew

Blake. Real-time human pose recognition in parts from

single depth images. In CVPR 2011, pages 1297–1304,

2011. 2

[86] Vincent Sitzmann, Semon Rezchikov, William T. Freeman,

Joshua B. Tenenbaum, and Fredo Durand. Light field net-

works: Neural scene representations with single-evaluation

rendering. In Proc. NeurIPS, 2021. 3, 4, 8, 9

[87] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.

Scene representation networks: Continuous 3d-structure-

aware neural scene representations. In Proc. NeurIPs, 2019.

3

[88] Deqing Sun, Charles Herrmann, Varun Jampani, Michael

Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski,

Ramin Zabih, William T. Freeman, and Ce Liu. TF-RAFT:

A tensorflow implementation of raft. In ECCV Robust Vision

Challenge Workshop, 2020. 6

[89] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun

Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih,

William T Freeman, and Ce Liu. Autoflow: Learning a

bet @articleMayer2016-xo, title = ”A large dataset to train

convolutional networks for disparity, optical flow, and scene

flow estimation”, author = ”Mayer, N and Ilg, E and Hausser,

P and Fischer, P and others”, journal = ”Proceedings of the”,

publisher = ”openaccess.thecvf.com”, year = 2016 ter train-

ing set for optical flow. In CVPR, 2021. 2, 6, 7

[90] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, June 2018. 6

[91] A Szot, A Clegg, and others. Habitat 2.0: Training home

assistants to rearrange their habitat. NeuRIPS, 2021. 2

[92] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field

transforms for optical flow. In ECCV, 2020. 6

[93] Thang To, Jonathan Tremblay, Duncan McKay, Yukie Yam-

aguchi, Kirby Leung, Adrian Balanon, Jia Cheng, William

Hodge, and Stan Birchfield. NDDS: NVIDIA deep learn-

ing dataset synthesizer, 2018. https://github.com/

NVIDIA/Dataset_Synthesizer. 3

[94] Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne

Tuytelaars. A deeper look at dataset bias, 2015. 2

[95] Antonio Torralba and Alexei A Efros. Unbiased look at

dataset bias. In CVPR 2011, pages 1521–1528. IEEE, 2011.

2

[96] James Traer and Maddie Cusimano. A perceptually in-

spired generative model of rigid-body contact sounds.

https://www.dafx.de/paper-archive/2019/

DAFx2019_paper_57.pdf. Accessed: 2021-11-17. 3

[97] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,

Kyle Genova, Mehdi S. M. Sajjadi, Etienne Pot, Andrea

Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic

fields for generalizable semantic segmentation of 3d scenes.

arXiv preprint arXiv:2111.13260, 2021. 8

[98] Ronny Votel, Yu-Hui Chen, and Na Li. Next-generation

pose detection with movenet and tensorflow.js, 2021. 7, 8

[99] Chaoyang Wang, Simon Lucey, Federico Perazzi, and Oliver

Wang. Web stereo video supervision for depth prediction

from dynamic scenes. In 2019 International Conference on

3D Vision (3DV), pages 348–357. IEEE, 2019. 7

[100] Tinghuai Wang, Bo Han, and John Collomosse. Touchcut:

Fast image and video segmentation using single-touch inter-

action. Computer Vision and Image Understanding, 2014.

2

[101] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning

correspondence from the cycle-consistency of time. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2566–2576, 2019. 6, 7

[102] Daniel Ward, Peyman Moghadam, and Nicolas Hudson.

Deep leaf segmentation using synthetic data. arXiv preprint

arXiv:1807.10931, 2018. 2

[103] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian

Dziadzio, Matthew Johnson, Virginia Estellers, Thomas J.

Cashman, and Jamie Shotton. Fake it till you make it: Face

analysis in the wild using synthetic data alone, 2021. 2, 8

[104] Zhenyu Wu and Richard Leahy. An optimal graph theoretic

approach to data clustering: Theory and its application to

image segmentation. IEEE transactions on pattern analysis

and machine intelligence, 1993. 2

[105] Zhe Wu, Li Su, and Qingming Huang. Cascaded partial

decoder for fast and accurate salient object detection. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 3907–3916, 2019. 2,

3

[106] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Mi-

cael Edmond Tchapmi, Alexander Toshev, Roberto Martı́n-

Martı́n, and Silvio Savarese. Interactive gibson benchmark:

A benchmark for interactive navigation in cluttered environ-

ments. IEEE Robotics and Automation Letters, 5(2):713–

720, 2020. 2, 3

[107] F Xia, A R Zamir, Z He, A Sax, J Malik, and others. Gibson

env: Real-world perception for embodied agents. Proceed-

ings of the, 2018. 4

[108] Jiarui Xu and Xiaolong Wang. Rethinking self-supervised

correspondence learning: A video frame-level similarity

perspective. In IEEE International Conference on Computer

Vision (ICCV), 2021. 6

[109] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and

Honglak Lee. Perspective transformer nets: Learning single-

view 3d object reconstruction without 3d supervision. arXiv

preprint arXiv:1612.00814, 2016. 4

[110] Gengshan Yang and Deva Ramanan. Volumetric correspon-

dence networks for optical flow. In Advances in neural

information processing systems, pages 794–805, 2019. 6

[111] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,

Forrester Cole, Huiwen Chang, Deva Ramanan, William T

3760

Freeman, and Ce Liu. Lasr: Learning articulated shape

reconstruction from a monocular video. In CVPR, 2021. 4,

5

[112] Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, and Olga

Russakovsky. Towards fairer datasets: filtering and balanc-

ing the distribution of the people subtree in the imagenet

hierarchy. In Mireille Hildebrandt, Carlos Castillo, L. Elisa

Celis, Salvatore Ruggieri, Linnet Taylor, and Gabriela Zanfir-

Fortuna, editors, FAT* ’20: Conference on Fairness, Ac-

countability, and Transparency, Barcelona, Spain, January

27-30, 2020, pages 547–558. ACM, 2020. 8

[113] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-

ume rendering of neural implicit surfaces. arXiv preprint

arXiv:2106.12052, 2021. 2

[114] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelnerf: Neural radiance fields from one or few images. In

Proc. CVPR, pages 4578–4587, 2021. 3, 4, 8, 9

[115] Greg Zaal, Rob Tuytel, Rico Cilliers, James Ray Cock, An-

dreas Mischok, Sergej Majboroda, Dimitrios Savva, and

Jurita Burger. Polyhaven: a curated public asset library for

visual effects artists and game designers, 2021. 5, 3

[116] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-

Francois Lafleche, Adela Barriuso, Antonio Torralba, and

Sanja Fidler. Datasetgan: Efficient labeled data factory with

minimal human effort. In CVPR, 2021. 2

[117] Jia-Xing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao,

Jufeng Yang, and Ming-Ming Cheng. Egnet: Edge guidance

network for salient object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 8779–8788, 2019. 2, 3

[118] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-

drew J. Davison. In-place scene labelling and understanding

with implicit scene representation, 2021. 2

[119] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-

jects as points. arXiv preprint arXiv:1904.07850, 2019. 8

[120] Tyler Zhu, Per Karlsson, and Christoph Bregler. Simpose:

Effectively learning densepose and surface normals of peo-

ple from simulated data. In European Conference on Com-

puter Vision, pages 225–242. Springer, 2020. 8

3761

