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Abstract

We propose a novel variational Bayesian formulation

for diffeomorphic non-rigid registration of medical images,

which learns in an unsupervised way a data-specific sim-

ilarity metric. The proposed framework is general and

may be used together with many existing image registra-

tion models. We evaluate it on brain MRI scans from the

UK Biobank and show that use of the learnt similarity met-

ric, which is parametrised as a neural network, leads to

more accurate results than use of traditional functions, e.g.

SSD and LCC, to which we initialise the model, without a

negative impact on image registration speed or transfor-

mation smoothness. In addition, the method estimates the

uncertainty associated with the transformation. The code

and the trained models are available in a public repository:

https://github.com/dgrzech/learnsim.

1. Introduction
Image registration attempts to align images so that cor-

responding locations contain the same semantic informa-
tion. It is a necessary pre-processing step for the statistical
analysis of clinical imaging data, computer-aided diagnosis,
and computer-assisted intervention. In order to calculate
the transformation, traditional image registration methods
minimise an energy function which consists of task-specific
similarity and regularisation terms, e.g. [4, 27, 38]. The al-
gorithm needs to be run independently for every pair of im-
ages to be aligned and optimisation of the energy function
is performed in an iterative manner.

Traditional image registration methods minimise an en-
ergy function, which is similar to the training of neural net-
works by the minimisation of loss functions. However, us-
ing deep learning for medical image registration is difficult
due to the lack of ground truth transformations. DLIR [15]
and VoxelMorph (VXM) [5, 6, 13, 14] both use neural net-

works in order to learn in an unsupervised way a function
that outputs a deformation field given a pair of input images,
instead of optimising an energy function independently for
each image pair. The calculation of transformations by eval-
uation of the neural network in a single forward pass speeds
up the process by several orders of magnitude and maintains
an accuracy comparable to traditional methods. The claim
that deep learning models for image registration are limited
to self- and unsupervised learning was recently countered
by training a generative model exclusively on synthetic im-
ages and segmentations [25].

In this work, we present a new model for atlas-based
diffeomorphic non-rigid image registration which, given a
dataset of images, learns in an unsupervised way a suit-
able similarity metric for the task. The model implements
the similarity metric as a neural network that takes as in-
put two three-dimensional images and outputs the value of
a function which needs to be minimised to align them. The
few existing approaches for unsupervised similarity learn-
ing rely either on feature extraction used together with clas-
sical similarity metrics [12, 44, 45] or ad-hoc adversarial
training [17, 18, 36]. In contrast to them, we refine the
similarity metric itself, working within a rigorous Bayesian
framework. The choice of a Bayesian model makes it possi-
ble to learn a data-specific similarity metric with relatively
little data, improves robustness by proxy of the approximate
variational posterior of the transformation parameters, and
allows to quantify the uncertainty associated with the out-
put. The following are the main contributions of our work:

1. We propose a novel variational Bayesian method for
unsupervised similarity learning in atlas-based non-
rigid medical image registration;

2. We show that the learnt metric outperforms traditional
similarity metrics used in image registration on the ex-
amples of SSD and LCC, to which we initialise the
model;
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3. Furthermore, we show that the learnt metrics gener-
alise well by comparing the accuracy of VXM trained
using the baseline and learnt similarity metrics;

4. The proposed formulation also makes it possible to es-
timate the voxel-wise uncertainty associated with the
diffeomorphic transformation.

Related work. State-of-the-art image registration mod-
els based on deep learning tend to rely on traditional simi-
larity metrics, e.g. sum of squared differences (SSD) and lo-
cal cross-correlation (LCC) in case of VXM [5,6,13,14] or
LCC and mutual information (MI) in case of DLIR [15,16].
Deep learning has been used not only to learn a function that
maps a pair of input images directly to a deformation field
but also to improve image registration accuracy by learning
image representations optimised for the task of image reg-
istration in a supervised [32] and weakly-supervised [8, 39]
setting, a spatially-adaptive regulariser [34], and extracting
features which were then used together with traditional sim-
ilarity metrics [12, 44].

Traditionally, similarity metrics in medical image regis-
tration were designed manually rather than learnt, e.g. the
modality-independent neighbourhood descriptor for multi-
modal CT/MRI registration of the thorax [23]. Learnt met-
rics were used in rigid multi-modal registration for CT/MRI
and PET/MRI [31], and for MRI/ultrasound [22]. Similar-
ity learning in a supervised setting, which requires costly
manual data annotation, was proposed for the registration
of T1-T2 MRI brain scans [9], T1-T2 neonatal MRI brain
scans [40], and CT/MRI head [11] and prostate scans [10].

The two existing methods for unsupervised similarity
learning are closely related and used a generative adver-
sarial network, with the discriminator network learning a
similarity metric for the training of an image registration
model [17, 18, 36]. In order to train the discriminator, they
required pre-registered image patches that were generated
from the dataset in an ad-hoc way, by defining patches of
a weighted sum of the fixed and moving images and of the
fixed image as positive samples, and patches of the warped
moving image and of the fixed image as negative samples.
These choices raise the question of what happens when the
input images are similar prior to registration or accurately
registered by the model. Moreover, only one of the models
guaranteed diffeomorphic transformations [36].

Related non-rigid image registration models were pre-
viously adopted for the probabilistic inference of regular-
isation strength [41], uncertainty quantification [30], and
learning a probabilistic model for diffeomorphic registra-
tion [28], but not for similarity learning.

2. Method
Background. We denote by D = {(F,Mk) | k 2

{1, . . . ,K}} a dataset of image pairs, where F : ⌦F !

[0, 1] and Mk : ⌦Mk
! [0, 1] are a fixed and a moving im-

age respectively. The aim of mono-modal image registra-
tion is to align the underlying domains ⌦F and ⌦Mk

using
a transformation ' (wk) : ⌦F ! ⌦Mk

, i.e. to find param-
eters wk such that F ' Mk(wk) := Mk � '

�1 (wk). The
transformation is often expected to possess some desirable
properties, e.g. diffeomorphic transformations are smooth
and invertible, with a smooth inverse.

We parametrise the transformation using stationary ve-
locity fields (SVFs) [1, 2]. The ordinary differential equa-
tion that defines the transformation is given by:

@'
(t)

@t
= wk

⇣
'
(t)
⌘

(1)

where '(0) is the identity transformation and t 2 [0, 1]. Un-
der the assumption of a spatially smooth velocity field wk,
the solution to Equation (1) is diffeomorphic [1]. Numeri-
cal integration is done by scaling and squaring, which uses
the following recurrence relation with 2T steps:

'
(1/2t�1) = '

(1/2t) � '(1/2t) (2)

Mathematical foundation. Throughout registration, the
model residuals will include voxel-wise error ek := F �
Mk(wk) due to noise and the misalignment of the im-
ages1. Therefore, in order to find the registration param-
eters, in probabilistic image registration we maximise the
log-likelihood of the fixed image log p

�
F | Mk, wk

�
given

the moving image and the transformation parameters. The
expression for the log-likelihood depends on the assump-
tions about the distribution of the error, e.g. noise assumed
to be independent and identically distributed across image
voxels with the normal distribution corresponds to the SSD
similarity metric [3]:

log p
�
F | Mk, wk

�
/ �1

2
e
|
k
K�1

ek (3)

where K�1 is a precision matrix of the error in the im-
age. To regularise the registration, a prior distribution on
the transformation parameters wk is used. The usual choice
is a multivariate normal distribution [2, 19, 35]:

log p (wk) / �1

2
�reg(Lwk)

|Lwk (4)

where �reg is the regularisation weight and L is the matrix
of a differential operator. In what follows, we assume that L
represents the gradient operator, which regularises the mag-
nitude kLwk2 of the 1st derivative of the velocity field.

When using the maximum a posteriori method, a single
value of parameters wk is computed rather than the proba-
bility density function, aiming to find the most likely trans-
formation parameters:

p
�
wk | D

�
= p

�
D | wk

� p (wk)

p (D)
(5)

1To simplify notation, we omit the voxel index.
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The objective function to be minimised is the negative log-
arithm, which corresponds to a sum of the log-likelihood
and the prior, i.e. similarity and regularisation terms Esim
and Ereg respectively:

� log p
�
wk | D

�
= � log p

�
F | M,wk

�
| {z }

Esim

� log p (wk)| {z }
Ereg

(6)
Model. We wish to find a similarity metric which max-

imises the likelihood of images in the dataset when regis-
tering them to the atlas. Let g✓ :

�
F,Mk (wk)

�
7! R+ be a

similarity metric, implemented as a neural network with pa-
rameters ✓. We use a Boltzmann distribution as likelihood:

p
�
F | Mk, wk, ✓

�
=

1

Z(✓)
· exp

✓
� g✓

⇣
F,Mk (wk)

⌘◆

(7)
where Z(✓) is a normalisation constant. When using the
Boltzmann distribution, maximising the log-likelihood in
order to find the transformation parameters is equivalent to
minimising the value of the similarity metric in traditional
image registration.

In order to calculate the transformation parameters w

and the neural network parameters ✓, we use variational in-
ference. The posterior distribution of the model parame-
ters p

�
w, ✓ | D

�
is approximated as a parametric probabil-

ity distribution q (w, ✓). We assume that w and ✓ are inde-
pendent, and that wk are mutually independent. Thus, the
approximation of the posterior distribution factorises over
the parameters:

q (w, ✓) = q (w) · q(✓) =

8
<

:

KY

k=1

qk (wk)

9
=

; · q (✓) (8)

We also assume that, for each image, the approxi-
mate posterior distribution of the transformation param-
eters follows a multivariate normal distribution qwk

⇠
N (µwk

,⌃wk), where µwk
2 R3N3⇥1, ⌃wk 2 R3N3⇥3N3

is a positive semi-definite covariance matrix, and N is
the number of voxels along each dimension. Due to
high dimensionality, the covariance matrix is approximated
as a sum of diagonal and low-rank parts, i.e. ⌃wk =
diag

�
�w

2
k

�
+ uwkuw

|
k

, with �wk 2 R3N3⇥1 and uwk 2
R3N3⇥R, where R is a hyperparameter that defines the rank
of the parametrisation. This choice of an approximate pos-
terior distribution is standard in image registration but in
contrast to other recent models based on SVFs, e.g. [13,28],
we use a diagonal + low-rank covariance matrix, rather than
just diagonal.

To find the parameters µwk
, ⌃wk, and ✓, we maximise

the evidence lower bound, which fits the model and pe-

nalises deviation of parameters from the priors [26]:

L (q) = �
Z

✓

Z

w

q (w, ✓) log
q (w, ✓)

p (D, w, ✓)
dw d✓

= �
Z

✓

Z

w

q (w, ✓) log
q (w, ✓)

p
�
F | M,w, ✓

�
p (w, ✓)

dw d✓

= Eq

⇥
log p

�
F | M,w, ✓

� ⇤
| {z }

�
⌦
Esim

↵
q

�DKL(q || p) (9)

where DKL(q (w, ✓) || p (w, ✓)) is the Kullback-Leibler di-
vergence between the approximate posterior q (w, ✓) and
the prior p (w, ✓) and

⌦
·
↵

denotes the expected value. Sim-
ilarly to maximum a posteriori, this corresponds to the sum
of similarity and regularisation terms, with an additional en-
tropy term H (q):

DKL(q || p) =
Z

✓

Z

w

q (w, ✓) log q (w, ✓) dw d✓

| {z }
�H(q)

�
Z

w

q (w) log p (w) dw

| {z }
�
⌦
Ereg

↵
q

�
Z

✓

q (✓) log p (✓) d✓ (10)

We choose a flat prior on ✓, so the gradient of the last
term on the RHS in Equation (10) w.r.t. ✓ is zero. In order
to reduce the computational overhead, we also assume that
the approximate posterior q(✓) is the Dirac delta function.

We use contrastive divergence [24] to deal with the in-
tractable normalisation constant Z(✓) in Equation (7), with
p
�
F | Mk, wk, ✓

�
approximated by a multivariate normal

distribution qF ⇠ N (F,⌃F ). We have:

@L (q)

@✓
=

@Z(✓)

@✓
�

*
@g✓

�
F,Mk (wk)

�

@✓

+

q

⇡
*
@g✓

�
F,Mk (wk)

�

@✓

+

qF

�
*
@g✓

�
F,Mk (wk)

�

@✓

+

q

(11)

We again assume that the covariance matrix ⌃F =
diag

�
�
2
F

�
+ uFu

|
F

is diagonal + low-rank, with �
2
F

2
RN

3⇥1, and uF 2 RN
3⇥R, which makes it easy to sample

from the likelihood distribution when training the model.
Training. We optimise in turn parameters of the ap-

proximate variational posteriors and of the neural network,
starting with the transformation parameters. We use the
reparametrisation trick with two samples per update to
backpropagate with respect to the parameters of the vari-
ational posteriors. For every moving image Mk, we sample
wk ⇠ qwk

:

wk = µwk
±
�
diag (�wk) · ✏+ uwk · x

�
(12)

✏ ⇠ N (0, I3N3), x ⇠ N (0, IR)
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Figure 1. Neural network parametrising the similarity metric initialised to SSD. In case of LCC, we re-use the same architecture, with
output of the aggregation layer convolved with a learnable 3 ⇥ 3 ⇥ 3 kernel whose weights are initialised to one, in order to calculate the
local intensity means and variances in the fixed and moving images.

In order to make optimisation less susceptible to local
maxima of the loss function, we take advantage of Sobolev
gradients [33]. Samples from qw are convolved with a
Sobolev kernel S, approximated for a given size sH1 and
value of �H1 by solving the linear system of equations:

(Is3
H1

� �H1�)S = v (13)

where v 2 Rs
3
H1⇥1 is a discretised Dirac impulse and � is

the Laplacian matrix, discretised with a 7-point stencil [42].
To lower the computational overhead, we further approxi-
mate the three-dimensional kernel by three separable one-
dimensional kernels by calculating the tensor higher-order
singular value decomposition of S and retaining only the
1st singular vector from each resulting matrix, which is then
normalised to unit sum [29, 42].

Initialisation of the similarity metric. The similarity
metrics that are commonly used in non-rigid image regis-
tration include SSD, LCC, and MI. The function is chosen
based on the dataset—SSD is the similarity metric of choice
in case of mono-modal images with comparable intensity
distributions, LCC is robust to linear intensity scaling and
suitable when data was acquired with use of different imag-
ing protocols, and MI is favoured in multi-modal image reg-
istration tasks.

Training a similarity metric from scratch would be dif-
ficult because a quantitative measure of whether a pair of
images is aligned is required to register images to begin
with. To solve this problem in a more rigorous way than
previous methods for unsupervised similarity learning, we
put the focus on functions that are useful in the context of
inter-subject mono-modal registration, i.e. SSD and LCC,

and initialise the neural networks such that:

g✓SSD (F,M) =
1

2
kF �M (w) k2 (14)

g✓LCC (F,M) =�1

2

D bF
k bFk

,

cM
kcMk

E2
(15)

where bF : x 7!
P

x02N(x)
F

�
x
0�
/n3 is the local intensity

mean of an image, N(x) denotes the local neighbourhood
of a voxel, and n = |N (x) | is the count of voxels along
each dimension inside the local neighbourhood.

For each similarity metric, the initialisation may proceed
in two ways—by training in a supervised way a neural net-
work that approximates the value of the chosen similarity
metric for a given image pair or, more elegantly, by ini-
tialising a neural network in such a way that its output is
approximately equal to the similarity metric. In Figure 1,
we show the architecture for SSD used in the experiments,
which consists of a 3D U-Net encoder [37] initialised to the
Dirac delta function and followed by a 1D convolutional
layer. Feature maps output by the 3D U-Net are used to
compute a weighted sum returned by the aggregation layer.
In case of LCC, we re-use this architecture, with its out-
put convolved with a learnable 3 ⇥ 3 ⇥ 3 kernel (n3 = 27)
whose weights are initialised to one, in order to calculate
the local intensity means and variances in the fixed image
and the moving image.

Neural networks can also be trained to approximate
MI [7], so the proposed method is not limited to mono-
modal image registration but potentially applicable to multi-
modal registration problems as well.
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F M1 M1 (w1) M1 (w1)
(learnt)

F � M1 F � M1 (w1) F � M1 (w1)
(learnt)

std. dev. std. dev. (learnt)

(a) SSD

M2 M2 (w2) M2 (w2)
(learnt)

F � M2 F � M2 (w2) F � M2 (w2)
(learnt)

std. dev. std. dev. (learnt)

(b) LCC

Figure 2. The output on two sample images in the test split when using the baseline and the learnt similarity metrics. In case of SSD,
the average improvement in DSC over the baseline on the image above is approximately 27.2 percentage points and in case of LCC, it is
approximately 6.5 percentage points. The uncertainty estimates are visualised as the standard deviation of the displacement field, based on
50 samples. Use of the learnt similarity metric which was initialised to SSD results in better calibration of uncertainty estimates than in
case of the baseline, e.g. higher uncertainty within regions with homogeneous voxel intensities.

3. Evaluation
The model is implemented in PyTorch 1.7.1. We man-

ually select an atlas image without white matter hyperin-
tensities and use a random sample of 1,500 moving images
from the 13,401 three-dimensional T2-FLAIR MRI brain
scans in the UK Biobank dataset [43]. 80% of the images
are used for training and 20% for testing. The input is pre-
registered with the affine component of drop2 [20] and then
resampled to N = 128 isotropic voxels of length 1.82mm
along each dimension.

In order to show that the learnt metrics generalise well,
we also train VXM using the baseline and learnt similarity
metrics2. VXM is trained on a random 80/20 split of the

2The official VXM implementation is available on GitHub: https:
//github.com/voxelmorph/voxelmorph.

whole UK Biobank dataset, using the same atlas image as
our models. To make the comparison fair, we set the hy-
perparameters of VXM trained with the baseline similarity
metrics to ensure diffeomorphic transformations, and then
use the same hyperparameter values, including the regular-
isation weight that determines the transformation smooth-
ness, for training VXM with the learnt similarity metrics.

Implementation details. We determined �reg = 1.8 for
SSD and �reg = 2.8 for LCC to be the minimum values
of regularisation weight which guaranteed diffeomorphic
transformations. The integration of SVFs is done in 212

steps. In order to start training in a stable way with small
displacements, we set the rank hyperparameter to R = 1
and initialise µw to zero, �w to half a voxel in every direc-
tion, and uw to a tenth of a voxel in every direction. We ob-
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served that a variational posterior of transformation parame-
ters with only a diagonal covariance matrix is too restrictive
for accurate image registration. Moreover, use of the rank
parameter set to R � 2 in the diagonal + low-rank approx-
imation is not possible due to constraints on GPU memory.
The parameters of qF are initialised to �F = uF = 0.1. We
set the Sobolev kernel width to sH1 = 7 and the smoothing
parameter to �H1 = 0.5. We use the Adam optimiser with
a step size of 1⇥10�1 and 2⇥10�2 for the variational pos-
terior qw respectively in case of SSD and LCC, 1 ⇥ 10�3

for qF , and 1⇥10�5 for ✓. Between every update to qF and
✓, we run 1,024 and 1,344 updates to the variational param-
eters of qw respectively in case of SSD and LCC, which is
sufficient for convergence.

We run training of each similarity metric for 5 epochs. It
takes approximately 6 days on a system with an Intel Core
i9-1090X CPU, 128GB RAM, and two GeForce RTX 3090
GPUs, and requires 4GB of memory per image in a mini-
batch. The registration of one image takes approximately
1 to 3min, depending on the similarity metric (cf. Table 2).

Results. First, we show that, ceteris paribus, our trained
models outperform the baseline SSD and LCC similarity
metrics. To register images in the test split, we calculate
the variational posteriors of transformation parameters us-
ing the same number of iterations and the same initialisa-
tion as during training. The neural network parameters are
held constant. In case of our model, we sample five trans-
formations for every image in the test split, which gives a
total of 1,500 samples. VXM is deterministic, so the re-
sults related to it are based on a single transformation per
image, i.e. a total of 2,679 samples. In Figures 2 and 3,
we show the result on four MRI brain scans in the test split
for models initialised to SSD and LCC, as well as for VXM
trained with the baseline and the learnt similarity metrics.
The improvement over image registration with the baseline
similarity metrics is clearly visible.

In Figure 4, we report the average surface distances
(ASDs) and Dice scores (DSCs) of subcortical structure
segmentations for the two baseline and learnt similarity
metrics, and for VXM trained with the baseline and learnt
similarity metrics. For the majority of subcortical struc-
tures, image registration with the learnt similarity metrics
yields consistently better ASDs and DSCs. We observe an
average increase in DSC of 4.1 percentage points per struc-
ture in case of SSD, 0.6 percentage points in case of LCC,
2.0 percentage points in case of VXM + SSD, and 1.5 per-
centage points in case of VXM + LCC. There is a corre-
sponding average decrease in ASD of 0.1mm per structure
in case of SSD, 0.01mm in case of LCC, 0.06mm in case
of VXM + SSD, and 0.06mm in case of VXM + LCC. We
performed one-tailed Welch’s t-tests at the 0.05 significance
level to determine if the improvement in accuracy over the
baseline models is statistically significant. We found that

method | det J'�1 |  0 % (⇥10�5)

baseline (SSD) 0.00 (0.00) 0.00 (0.00)
learnt 0.10 (0.39) 0.00 (0.00)
baseline (LCC) 0.00 (0.04) 0.00 (0.00)
learnt 0.00 (0.00) 0.00 (0.00)
VXM + SSD 0.00 (0.00) 0.00 (0.00)
VXM + learnt 0.03 (0.38) 0.00 (0.00)
VXM + LCC 0.00 (0.00) 0.00 (0.00)
VXM + learnt 0.00 (0.00) 0.00 (0.00)

Table 1. Mean and standard deviation of the number and percent-
age of voxels where the sampled transformation is not diffeomor-
phic on the test data. The methods produce only a small number
of voxels where the sampled transformations are not diffeomor-
phic. The use of learnt similarity metrics does not have a negative
impact on the transformation smoothness.

this was the case in terms of ASD for 12/15 structures for
SSD, 10/15 for LCC, 10/15 for VXM + SSD, and 14/15
for VXM + LCC, and in terms of DSC for 13/15 struc-
tures for SSD, 11/15 for LCC, 10/15 for VXM + SSD, and
15/15 for VXM + LCC.

Because it is trivial to improve accuracy at the expense
of smoothness, e.g. by lowering the regularisation weight,
it is also necessary to show that the proposed method does
not have a negative impact on transformation smoothness.
To do this, we count the number of voxels where the sam-
pled transformations are not diffeomorphic, i.e. where the
Jacobian determinant of the sampled transformation is non-
positive, denoted by | det J'�1 |  0. In Table 1, we re-
port the mean and the standard deviation of the values. The
statistics are nearly zero for both the baseline and the learnt
similarity metrics. The learnt similarity metric which was
initialised to LCC not only improves accuracy but also re-
duces the count of voxels with a non-positive determinant of
the transformation Jacobian. There is no evidence that the
learnt similarity metrics have a negative impact on smooth-
ness of the transformations.

4. Discussion
It is difficult to interpret the data-specific similarity met-

rics but the fact that VXM trained with the learnt similarity
metrics is more accurate than VXM trained with the base-
line functions indicates that the model does learn meaning-
ful features. There are other methods to improve proba-
bilistic image registration that cause a lower computational
overhead than the proposed method, e.g. virtual decima-
tion [21, 41]. However, unlike virtual decimation, the pro-
posed method is not specific to SSD and could be easily
integrated with many existing deterministic and probabilis-
tic image registration algorithms. Moreover, the ideas for
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M3 M3 (w3) M3 (w3) (learnt) F � M3 F � M3 (w3) F � M3 (w3)
(learnt)

'
�1 (w3) '

�1 (w3) (learnt)

(a) VXM + SSD

M4 M4 (w4) M4 (w4) (learnt) F � M4 F � M4 (w4) F � M4 (w4)
(learnt)

'
�1 (w4) '

�1 (w4) (learnt)

(b) VXM + LCC

Figure 3. The output on two sample images in the test split when using VXM with the baseline and the learnt similarity metrics. In order
to make the comparison fair, we use the exact same hyperparameter values for VXM trained with the baseline and the learnt similarity
metrics. We also use the same atlas image as in Figure 2. In case of VXM + SSD, the average improvement in DSC over the baseline on
the image above is approximately 25.3 percentage points and in case of LCC, it is approximately 11.8 percentage points.

unsupervised similarity learning that we present are not lim-
ited to medical image registration.

Limitations. Training of the similarity metric initialised
to SSD does not converge despite the promising results,
due to the negative samples used in Equation (11) which
make the optimisation numerically unstable. The method is
slower than image registration models based on deep learn-
ing that use neural networks to map a pair of input im-
ages directly to a deformation field but it can be seamlessly

integrated with them. Finally, use of a fixed regularisa-
tion strength leads to sub-optimal accuracy in case of large
datasets, so the proposed method would also benefit from a
reliable way to infer regularisation strength for a given pair
of images.

Moral, political, and societal issues. Everyday use of
non-rigid image registration in medical image analysis re-
mains in the distant future but accurate image registration
models could be employed both to help and to further disad-
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Figure 4. ASDs and DSCs calculated on the subcortical structure segmentation when aligning images in the test split using the baseline
and learnt similarity metrics. For the probabilistic methods, we use five samples per image, which results in a total of 1,500 samples. The
learnt models show clear improvement over the baselines. On average, when comparing different methods, DSC increases in the range of
0.6 to 4.1 percentage points and ASD decreases in the range of 0.01 to 0.1mm. We provide details on the statistical significance of the
improvement in the main text.

method training time registration time
baseline (SSD) — 1min
learnt (SSD) 6 d 1min
baseline (LCC) — 2min
learnt (LCC) 6.5 d 3min
VXM + SSD 1.5 d < 1 sec
VXM + learnt 1.5 d < 1 sec
VXM + LCC 1.5 d < 1 sec
VXM + learnt 1.5 d < 1 sec

Table 2. Training and image registration time for a single image.
Use of the learnt similarity metrics does not result in a large in-
crease in the training time of the models or the inference time.
The baseline methods do not require training.

vantage marginalised groups, e.g. by comparing individuals
to healthy populations and to deny them access to healthcare
services based on the result. For this reason, care needs to
be taken to ensure that the benefits of fast and accurate im-

age registration, such as democratisation of access to spe-
cialised healthcare and knowledge gained through medical
imaging population studies, outweigh the political and so-
cietal costs.

5. Conclusion
In this paper we presented a new method for unsuper-

vised similarity learning in medical image registration. We
showed on the examples of SSD and LCC that it can sig-
nificantly improve the result of image registration without a
negative impact on the transformation smoothness. We also
showed that the data-specific similarity metrics generalise
well and may be used together with other existing image
registration models to improve accuracy.
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