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Abstract

Person re-identification is a hot topic in computer vision,
and the loss function plays a vital role in improving the dis-
crimination of the learned features. However, most exist-
ing models utilize the hand-crafted loss functions, which
are usually sub-optimal and challenging to be designed.
In this paper, we propose a novel method, AutoLoss-GMS,
to search the better loss function in the space of gener-
alized margin-based softmax loss function for person re-
identification automatically. Specifically, the generalized
margin-based softmax loss function is first decomposed into
two computational graphs and a constant. Then a gen-
eral searching framework built upon the evolutionary al-
gorithm is proposed to search for the loss function effi-
ciently. The computational graph is constructed with a for-
ward method, which can construct much richer loss function
forms than the backward method used in existing works.
In addition to the basic in-graph mutation operations, the
cross-graph mutation operation is designed to further im-
prove the offspring’s diversity. The loss-rejection proto-
col, equivalence-check strategy and the predictor-based
promising-loss chooser are developed to improve the search
efficiency. Finally, experimental results demonstrate that
the searched loss functions can achieve state-of-the-art per-
formance and be transferable across different models and
datasets in person re-identification.

1. Introduction

Person re-identification (ReID) [1–3] aims at retriev-
ing an interested person across multiple, non-overlapping
cameras. With the advancement of deep neural networks

*Corresponding author.

(DNNs) and the increasing demand for intelligent video
surveillance, ReID attracts more and more attention from
the computer vision community. Although DNN-based
models have made a significant breakthrough in ReID,
learning discriminative features to identify the person from
the large-scale gallery set is still challenging due to signif-
icant intra-class variance caused by pose variations, occlu-
sions, or cluttered backgrounds.

Recently, most works [2, 4–7] have been based on the
network design to obtain the discriminative features and ig-
nore the importance of the loss function. As we all know,
a high-performance DNN model is inseparable from the
well-designed network architecture and the appropriate loss
function. However, most existing works still adopt the
paradigm of cross-entropy loss and triplet loss, and there are
very few works exploring other forms of loss function on
the ReID problem. Inspired by NormFace [8] in face recog-
nition (FR), Fan et al. [3] proposed SphereReID to learn a
hypersphere manifold embedding, which is better at extract-
ing the discriminative features than the cross-entropy loss
function. But according to recent researches in FR, Norm-
Face is not the best choice among the margin-based softmax
(MS) loss functions [9–11]. Sun et al. [12] proposed a more
flexible loss function named CircleLoss, which is superior
to the other MS loss functions in FR and ReID tasks. The
loss functions mentioned above are all special cases in the
generalized margin-based softmax (GMS) loss function and
just the tip of the iceberg. Likely, they are not optimal in
this space. Therefore, we aim to explore whether there is a
better loss function than these classical loss functions in the
GMS loss function space.

With the development of AutoML, more and more auto-
mated methods are proposed. Especially in the fields of data
augmentation [13–16] and networks architecture [17–19],
automated methods have surpassed hand-crafted methods.
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In the field of the loss function, the AutoML-based meth-
ods have also emerged recently. Existing works mainly use
two methods to search the loss function: 1) The first method
does not directly search for the specific form of the loss
function [20, 21], but, like PBT [22], only cares about the
final trained neural network. Therefore, once the dataset
or network changes, the expensive search procedure will
be implemented again. 2) The second method can search
for the loss function composed of some predefined primi-
tive operations [23,24] or the metric-surrogate loss with pa-
rameterized function [25]. What’s more, the searched loss
in the second method can be directly transferred to other
similar tasks without searching again. However, the sec-
ond searching method often requires a lot of search cost
like other AutoML methods, so it is critical to improve the
search efficiency. Although many methods [23, 24] have
been proposed to speed up the search, the improvement of
search efficiency is still limited.

In this paper, a novel method named AutoLoss-GMS
is proposed to automatically search the loss functions in
the GMS loss function space for person re-identification
based on the second searching method. Specifically, we first
represent the GMS loss function with two computational
graphs and a constant. Then a general searching frame-
work built upon the evolutionary algorithm is proposed to
efficiently search for the loss function. The computational
graph is constructed with a forward method, which can
construct much richer loss function forms than the back-
ward method used in [23, 24]. In addition to the basic in-
graph mutation operations, the cross-graph mutation opera-
tion is designed to further improve the offspring’s diversity.
The loss-rejection protocol, equivalence-check strategy and
the predictor-based promising-loss chooser are developed
to improve the search efficiency. To the best of our knowl-
edge, AutoLoss-GMS is the first work to use predictor in
loss function search (LFS). We summarize the contributions
of this work as follows:

• AutoLoss-GMS is the first work to search the GMS
loss function for person re-identification.

• A general searching framework with the performance
predictor is proposed to efficiently search the GMS
loss function.

• The searched loss functions are transferable across dif-
ferent models and datasets with competitive perfor-
mance and can achieve state-of-the-art performance in
person re-identification.

2. Related Works

2.1. Person Re-identification

In recent years, person ReID has become a hot topic in
the computer vision community. With the support of DNN,
the performance of DNN-based models has surpassed the

level of humans. The key to the ReID problem is to ex-
tract discriminative features. Most of the existing works
start with the network architecture [4, 26, 27] design to im-
prove the discrimination of features. However, the loss
function also plays a vital role in extracting discriminative
features. In ReID, cross-entropy and triplet are commonly
used paradigms, and there are very few works exploring
other forms of loss functions. Inspired by NormFace [8]
in FR, Fan et al. [3] proposed SphereReID, which exper-
imentally verified that the features embedded on the hy-
persphere are more discriminative than the features learned
by cross-entropy. However, SphereReID only considers
the hyperspherical embedding instead of the large margin,
which has been verified in FR to perform better than Norm-
Face [9–11]. Sun et al. [12] proposed a more flexible loss
named CircleLoss, which significantly improved compared
with other MS loss functions. However, designing such a
good loss function requires a lot of professional knowledge
and energy for humans. Therefore, AM-LFS [20] tries to
automatically design the loss function in the MS space to
reduce the burden on humans. However, AM-LFS cannot
get a searched loss function with a fixed form, which is not
conducive to directly transferring to other datasets or net-
works without searching again.

2.2. Loss Function Search

The loss function is an indispensable part of deep learn-
ing, but the hand-crafted loss function often requires much
professional knowledge to design. With the development of
AutoML, the LFS has gradually become the pursued goal.
AM-LFS [20] and Searched-Softmax [28] are two similar
works, and they both use reinforcement learning to search
t(x) under the framework of the MS loss. However, the
searched losses of these two methods do not have a fixed
form, so they are hard to directly transfer across datasets
and networks without searching again. Some other meth-
ods are closer to the network architecture search (NAS),
and a fixed form of result can be obtained. Auto Seg-
Loss [25] searches for the differentiable part to replace the
non-differentiable part of the metrics, but this method is dif-
ficult to apply to our search space. AutoLoss-Zero [24] and
CSE-Autoloss [23] use a computational graph composed
of primitive mathematical operations to represent the loss
function. This loss function representation method meets
our goal, but this searching method requires a large amount
of search cost. Therefore AutoLoss-Zero and CSE-Autoloss
propose various methods to improve search efficiency, but
the improvement is still limited.

3. Method
In this section we provide the detailed introduction to our

proposed method, including the design of search space and
the search algorithm.

4745



Table 1. The t(x) and n(x) of the hand-crafted loss functions. The
m is the hyper-parameter in the corresponding loss function. The
de(x) represents the “Detach” operation.

Loss t(x) n(x)

NormFace x x
CosFace x−m x
ArcFace cos(arccos(x) +m) x
SphereFace cos(m arccos(x)) x
CircleLoss [de(1 +m− x)]+(x− 1 +m) [de(m+ x)]+(x−m)

3.1. Search Space

3.1.1 Preliminary Knowledge

To have a clear understanding of the search space, some
preliminary knowledge is introduced first. To start with, we
consider the standard softmax cross-entropy loss:

Lce = − log

(
exp

(
W T

yx+ by
)∑K

i=1 exp
(
W T

i x+ bi
)) , (1)

where x ∈ Rd denotes the input feature vector, y ∈
{1, 2, · · · ,K} is its ground truth label, K is the total num-
ber of classes, W i ∈ Rd and bi ∈ R are the weight vector
and the bias of the i-th class, respectively. By removing the
biases, normalizing the classifier weights and feature to one
(i.e., ∥W i∥ = 1,∀i and ∥x∥ = 1), and adding the scale
factor s > 0, the unified form of the MS loss function can
be obtained:

Lms = − log

(
exp (s · t (cos θy))

exp (s · t (cos θy)) +
∑

i̸=y exp (s · cos θi)

)
, (2)

where cos θi = (W T
i x)/(∥W i∥ ∥x∥) and t(x) is a func-

tion whose domain is [−1, 1]. The GMS loss function can
be obtained by further introducing n(x) in the non-target
part in the MS loss function:

Lgms = − log

(
exp (s · t (cos θy))

exp (s · t (cos θy)) +
∑

i ̸=y exp (s · n (cos θi))

)
.

(3)
Obviously, the MS loss function is a special case of the

GMS loss function, where n(x) = x. As shown in Ta-
ble 1, the commonly used MS loss functions [8–11] and
CircleLoss [12] can be represent by setting different t(x)
and n(x). In this paper, the form of the loss function we
aim to explore is based on Lgms, that is, search for the spe-
cific expressions of t(x), n(x) and the specific value of s.
The search target can be formulated as a nested optimiza-
tion:

Θ∗ =argmax
Θ

ξ
(
MΩ∗(Θ);Dval

)
,

s.t. Ω∗ (Θ) = argmin
Ω

E(x,y)∈Dtrn

[
LΘ
gms (MΩ (x) , y)

]
,

(4)

where MΩ is a network parameterized by Ω, the training
dataset and validation dataset are denoted as Dtrn and Dval,
respectively. ξ is a given evaluation metric, and LΘ

gms is
Lgms parameterized by Θ = {s, t(x), n(x)}.

3.1.2 Loss Function Representation

As mentioned in the previous section, our target is to search
for the optimal Θ = {s, t(x), n(x)}. Since the roles of
t(x), n(x) and s in Lgms are decoupled, we can consider
the representation of these three parts separately.

We define the scale factor s ⩾ 1, which is consistent
with all hand-crafted loss functions. We discretize s as

s ∈ Scales =
{
2∆s×i|i ∈ N, 0 ⩽ i ⩽ Ns

}
, (5)

where ∆s > 0 and Ns are the predefined values. Although
this discretization is simple, it is sufficient to achieve good
performance in the subsequent experiments.

For t(x) and n(x), we only introduce the representation
of t(x), and n(x) is similar. The t(x) can be represented as
a computational graph (CG) Gt:

• There are two types of input nodes in the Gt as shown
the green and gray nodes in Figure 2. The green node
x is the network output cos θy in Lgms. The gray
nodes are the predefined constants, which are repre-
sented like the scale factor s and defined as

c ∈ Cons = {∆c × i|i ∈ N, 0 ⩽ i ⩽ Nc} , (6)

where ∆c > 0 and Nc are the predefined values.
• The intermediate computational nodes (the blue nodes

in Figure 2) are the primitive mathematical opera-
tions selected from the set H as shown in Table 1 of
Suppl. A.

• The result of the output node (the orange node O in
Figure 2) is the t(x).

To sum up, the Θ = {s, t(x), n(x)} is represented as
s ∈ Scales, Gt and Gn, which are our search space.

3.2. Search Algorithm

Our search algorithm is mainly based on the variants of
evolutionary algorithm [24, 29, 30], which are easy to be
parallelized by distributing training. The search pipeline of
our algorithm is illustrated in Figure 1. Firstly, K loss func-
tions are generated to form the initial population. Then in
each evolution, two parent loss functions are selected by
two independent tournament selections [31] (T ratio of cur-
rent population). These two selected loss functions are used
to produce the offspring through the well-designed muta-
tion operations until the offspring pass the loss-rejection
protocol. The equivalence-check strategy based on the fea-
ture vector is proposed to avoid accurately re-evaluating
the mathematically equivalent loss functions. The most
promising loss function would be chosen among the non-
equivalent loss functions by the predictor-based promising-
loss chooser. Following [24, 30], only the most recent P
loss functions are maintained in the population.
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Figure 1. The search pipeline of AutoLoss-GMS.

3.2.1 Initialization and Mutation

We apply two methods to initialize the population: 1)
randomly-generated loss functions for searching from
scratch like AutoLoss-Zero [24] and 2) predefined hand-
crafted loss functions for searching from prior knowledge
like CSE-Autoloss [23]. The predefined hand-crafted loss
functions are mainly based on Table 1.

AutoLoss-Zero and CSE-Autoloss construct the CGs in
a backward manner [23, 24], but this construction method
is not efficient. Specifically, the output of the intermediate
node cannot be used multiple times, as shown in the pur-
ple part of Figure 2(b). To construct CGs more efficiently,
a forward construction method is proposed inspired by the
network architecture search (NAS) [17]. The graph con-
structed by forward method starts with 1 + nc input nodes,
which are one feature node x (the green node in Figure 2(a))
and nc constant nodes (the gray nodes in Figure 2(a)). Then,
given the state of the current CG, all possible operations
and edge connections are enumerated, and a possible oper-
ation and its corresponding edge connections are randomly
selected to add to the CG. When the selected operation is
the “Output” operation, all nodes without successors are
connected to the output node O. When the CG reaches
the maximum number of primitive operations no, only the
“Output” operation can be chosen. Under the same number
of primitive operations, the forward method can construct
much richer loss function forms than the backward method.
The forward construction process of a CG is shown in Al-
gorithm 1 of Suppl. B, and the loss function of our search
space can be constructed by Algorithm 2 in Suppl. B.

In addition to the three in-graph mutation operations (In-

sertion, Deletion and Replacement are detailed in Suppl. C)
like AutoLoss-Zero [24], a cross-graph mutation operation
is introduced. Specifically, in each evolution, given two loss
functions (Θ(1) and Θ(2)), Gt or Gn in Θ(2) replaces the
corresponding CG in Θ(1) with the probability of pc to ob-
tain the mutated Θ′, and the s′ in Θ′ is changed as follows:

s′ = 2[(log2(s
(1))+log2(s

(2)))/2|∆s], (7)

where [x|∆s] means standardizing the precision of x to ∆s.
Generally speaking, the hyper-parameters in the loss func-
tion will have a significant impact on the results, so we also
introduce the mutation operations on the s and {coni|nc

i=1},
instead of keeping these constants fixed like AutoLoss-Zero
and CSE-Autoloss. The specific mutation operations for the
constant term are as follows:{

s′ = 2Clamp[log2(s)+∆sr; 0; ∆sNs]

c′ = Clamp [c+∆cr; 0; ∆cNc]
, (8)

where Clamp[x; xmin; xmax] means clamp x in [xmin,
xmax], and r is randomly selected from {−1, 0, 1}.

Given the two loss functions Θ(1) and Θ(2) selected by
tournament, the offspring is produced by Algorithm 3 in
Suppl. C.

3.2.2 Loss-Rejection Protocol

Inspired by CES-Autoloss [23] and AutoLoss-Zero [24],
our loss-rejection protocol starts from two aspects:

Basic properties protocol. By analyzing the GMS loss
function Lgms, the following properties should be generally
met (see the Suppl. D for details):
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Figure 2. The Gt of t(x) in CircleLoss. There are two constant
nodes (the gray nodes) in the graph, and m = 0.25. The graph
in (a) is constructed by forward method, while the graph in (b) is
constructed by backward method. The numbers in the red nodes
represent the order of construction.

• t′(x) ⩾ 0, x ∈ [−1, 1];
• n′(x) ⩾ 0, x ∈ [−1, 1];
• n(x)− t(x) ⩾ 0, x ∈ [−1, 1].
Toy task. Given B random samples {(xb, yb)|Bb=1} from

the training dataset Dtrn and a randomly initialized network
MΩ0 , we record the network predictions and the corre-
sponding labels as {(x̂b = MΩ0(xb), yb)|Bb=1}. The toy
task is set up to solve the following problem by only opti-
mizing on

{
x̂b|Bb=1

}
:

{
x̂∗
b |Bb=1

}
= argmin

{x̂b|Bb=1}

1

B

B∑
b=1

LΘ
gms (x̂b, yb). (9)

To sum up, the loss-rejection protocol first judges the ba-
sic properties of Θ and then performs the toy task. Only the
Θ that satisfies the basic properties and the evaluation met-
ric ξ(

{
x̂∗
b |Bb=1

}
) on the toy task is greater than the prede-

fined threshold τtoy can pass the protocol, otherwise it will
be rejected.

3.2.3 Equivalence-Check Strategy

The AutoLoss-Zero use the initial gradient norm
{
∥∥∂LΘ

gms/∂x̂b

∥∥
2
|Bb=1} in toy task to judge the math-

ematically equivalent loss functions, but this may be
inaccurate when only using the initial gradient norm.
Considering the relationship among s, t(x) and n(x) in
Lgms, the Θ can be formalized as a concise feature vector,
which can accurately judge the equivalent loss functions.

Firstly, we discrete Θ as

dΘ = [ft, fn, log2 (s) /(∆sNs)] ∈ R2N+1, (10)

where ft ∈ RN and fn ∈ RN are the values of t(x) and
n(x) at uniformly discrete points in the domain [−1, 1].
But the dΘ cannot recognize the mathematically equiva-
lent loss functions under the translation-scale transforma-
tion, for example, Θ0 = {t(x), n(x), s} and Θk,b =
{t(x)/k + b, n(x)/k + b, ks},∀k ̸= 0, b ∈ R are mathe-
matically equivalent for Lgms. We introduce the following
transformation to normalize t(x) and n(x):

TNmin = min

{
min

x∈[−1,1]
t (x) , min

x∈[−1,1]
n (x)

}
TNmax = max

{
max

x∈[−1,1]
t (x) , max

x∈[−1,1]
n (x)

}
b = (TNmin + TNmax) /2

k = max {(TNmax − TNmin) /2, 1/s}
s̄ = k · s

t̄ (x) = (t (x)− b) /k

n̄ (x) = (n (x)− b) /k

, (11)

where the transformed s ⩾ 1, and the range of t (x)
and n (x) is in [−1, 1]. The dΘ can perfectly recog-
nize the mathematically equivalent loss functions under
the translation-scale transformation. But the dΘ[2N ] ∈
[0,+∞], which seriously affects the prediction performance
of predictor proposed next section. A scale constraint on the
search space is proposed to solve this problem. Specifically,
the generated CG needs to meet the following constraint:

log2 ((TNmax − TNmin) · s/2) ⩽ Γ, (12)

where Γ > ∆sNs. Under such constraint, the value range
of log2(s) becomes in [0, Γ ]. In summary, we define the
feature vector of a loss function with a parameter of Θ as:

fvΘ = [ft, fn, 2 log2 (s) /Γ − 1]. (13)

Each element in fvΘ is in the interval of [−1, 1], which
achieves the purpose of normalization for the predic-
tor training. What’s more, the fvΘ can be used as a
equivalence-check to check the mathematically equivalent
loss functions, which avoids re-evaluating the equivalent
loss functions.

3.2.4 Promising-Loss Chooser

Although the loss-rejection protocol can filter the invalid
loss functions, some loss functions passing the protocol still
perform poorly. In order to further save the computational
budget, inspired by the performance predictor in NAS [32,
33], we propose a CNN-based loss function performance
predictor to further choose the most promising loss from
the candidate population.

When the number of loss functions evaluated on the
proxy task reaches E0, the predictor P will be trained on the
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Table 2. The searched loss functions. PIP: predefined initial populations. Each loss is searched on a certain dataset using certain model
with PIP or not.

Searched Loss Model Dataset PIP t(x) n(x) log2(s)

AutoLoss-GMS-Zero ResNet50 Market-1501 ✗ (0.22 + e
√
0.22)x+ arcsin(0.22)2 x+ 0.85 5.5

AutoLoss-GMS-A ResNet50 Market-1501 ✓ de(1− x)(x− 0.7) [Gd(x−Sig(0.25))]+ 7.5
AutoLoss-GMS-B ResNet50 CUHK03 ✓ de(1.3− x)(x− 1.0) 0.35x− 0.352 6.0
AutoLoss-GMS-C OSNet Market-1501 ✓ (x− 0.84)(0.95− x) [de(arcsin(x))]+(x− 0.5) + 0.05 7.5
AutoLoss-GMS-D MGN Market-1501 ✓ x+ 0.15 x+ 0.2 4.0

current evaluated set (loss function Θi and the correspond-
ing performance pi pair) Eva = {(Θi, pi)|E0

i=1}. Then ev-
ery time the number of |Eva| increases by ∆E, the predic-
tor P is updated once according to the current Eva. After
the predictor is trained for the first time, each produced new
loss function that passes the equivalence-check strategy will
be added to the candidate population of the promising-loss
chooser. When the number of candidate population reaches
the predefined Np, the most promising one is chosen ac-
cording to the results predicted by the current predictor, and
the candidate population is cleared. The algorithm of choos-
ing the promising loss is shown in Suppl. E Algorithm 4.

In this paper, we choose ResNet [34] as the CNN-
based predictor, some adjusted details are shown in
Suppl. F. Formally, given B different converted loss func-
tions and their ground-truth performance {(xΘi

, yi)|Bi=1},
and {P(xΘi

)|Bi=1} is the output of the predictor. The com-
mon used MSE loss function can be defined as:

LMSE =
1

B

B∑
i=1

(P(xΘi
)− yi)

2. (14)

As [32, 33] have pointed out, the predictor to determines
the ranking of loss functions is more robust than the predic-
tor to accurately predict the performance of loss functions.
The Kendall’s Tau (KTau) [35] is an indicator to measure
the ranking relationship:

KTau =
1

C2
B

∑
1⩽i<j⩽B

sign (yi − yj) · sign
(
P(xΘi

)− P(xΘj
)
)
,

(15)
where sign(x) is the sign function. Inspired by [36], we
convert the non-differentiable KTau to the differentiable
KTau by replacing the second sign(x) in Eq.(15) with
tanh(x/τ):

LK =
1

C2
B

∑
1⩽i<j⩽B

sign (yi − yj) · tanh
(
(P(xΘi

)− P(xΘj
))/τ

)
,

(16)
where τ governs the temperature of the tanh(x) that re-
places the sign(x) function. Therefore, the final loss func-
tion for our predictor is:

L = LMSE + λLK , (17)

where λ is the hyper-parameter that controls the importance
between two different loss functions.

 

Figure 3. The analysis of the predictor. PLC: promising-loss
chooser.

4. Experiments
4.1. Datasets and Evaluation Metrics

To verify the performance of AutoLoss-GMS, we con-
duct experiments on three common used datasets: Market-
1501 [37], CUHK03 [38] and MSMT17 [39].

Following conventions in the ReID community [37, 39],
all methods are evaluated with Cumulative Matching Char-
acteristic (CMC) curves and the mean Average Precision
(mAP).

4.2. Implementation Details

For the search algorithm, the population is initialized
with K = 20 loss functions and is restricted to the most
recent P = 1000 loss functions. The ratio of tournament
selection is set as T = 5% of the current population. The
condition for the search to stop is evaluating 500 models on
the proxy task. The search process takes around 2.5 days
on five NVIDIA Telsa-V100 GPUs. More details are in
Suppl. G. Five loss functions are obtained under different
settings, as shown in Table 2.

4.3. Ablation Study

4.3.1 Analysis of the predictor

We first randomly sample 1000 loss functions, and their per-
formance on the proxy task is used to verify the effective-
ness of the components in the predictor. Under different
settings, ten times of training is implemented. A certain
amount of data is randomly selected as the training dataset
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Table 3. The effectiveness of the components in AutoLoss-GMS
when searching on Market-1501 with ResNet50. RS: random
search. EA: evolutionary algorithm. CGM: cross-graph mutation.
LRP: loss-rejection protocol. BPP: basic properties protocol. TT:
toy task. ECS: equivalence-check strategy. PIP: predefined initial
population. PLC: promising-loss chooser.

mAP Speed-Up Explored Losses

RS Backward 81.32 1× ∼ 500
Forward 82.67 1× ∼ 500

Naı̈ve EA 83.39 1× ∼ 500
+CGM 83.77 1× ∼ 500
+LRP(BPP) 84.52 ∼ 30× ∼ 1.5× 104

+LRP(TT) 84.95 ∼ 36× ∼ 1.8× 104

+ECS 85.24 ∼ 54× ∼ 2.7× 104

+PIP 85.80 ∼ 58× ∼ 2.9× 104

+PLC 88.02 ∼ 540× ∼ 2.7 × 105

in each training, and the rest is used as the test dataset.
The training results are shown in Figure 3(a). The follow-
ing conclusions can be drawn from the experimental re-
sults: 1) The result of simply using LMSE is worse than
LMSE + LK , which shows that our differentiable KTau
is effective; 2) The unnormalized dΘ performs poorly; 3)
Converting fvΘ into a three-channel xΘ performs well.

In Figure 3(b), we show the performance of AutoLoss-
GMS with or without predictors. It can be seen from the
results that when the predictor is introduced after search-
ing 100 loss functions, the loss functions with poor perfor-
mance are filtered out a lot, which further illustrates the ef-
fectiveness of our promising-loss chooser.

4.3.2 Effectiveness of the components in AutoLoss-
GMS

To verify the effectiveness of the components in our
AutoLoss-GMS, the searching with different components
are implemented, and the results are shown in Table 3. The
following conclusions can be concluded from the results: 1)
The forward construction is better than the backward con-
struction, which verifies that the CGs constructed by the
forward method have richer loss function forms; 2) The
proposed cross-graph mutation operation can improve the
performance in search; 3) The two-step loss-rejection pro-
tocol can expand the amount of loss function explored by
36 times, and quickly filters out the loss functions that can-
not meet the basic properties or perform poorly on the toy
task; 4) 50% more loss functions can be explored further by
avoiding the re-evaluation on equivalent loss functions with
the equivalence-check strategy; 5) The prior knowledge in-
troduced by the hand-crafted loss function is conducive to
better search results; 6) The predictor-based promising-loss
chooser can further improve search efficiency by about ten
times.

Table 4. Transferability of the searched losses and hand-crafted
losses. Only the mAP metric is reported. R: ResNet50. O: OS-
Net. The results in the bracket represent the results after directly
being transferred across datasets or networks without any modifi-
cation on hyper-parameters. The results outside the bracket rep-
resent the results after fine-tuning s for our searched loss or other
hyper-parameters for hand-crafted losses. When there is only one
result, it is the performance of the fine-tuned hand-crafted losses
or the loss searched under this setting.

Methods Market-1501 CUHK03

R

NormFace 81.74 58.48(55.91)
CosFace 84.23 61.94(57.41)
ArcFace 85.06 65.03(56.54)
CircleLoss 85.41 66.87(59.21)
AutoLoss-GMS-A 87.00 68.33(67.18)
AutoLoss-GMS-B 78.03(76.10) 67.11
AutoLoss-GMS-C 86.64(86.23) 67.95(67.79)
AutoLoss-GMS-Zero 84.16 64.32(64.32)

O

AutoLoss-GMS-A 88.99(88.87) 70.60(70.60)
AutoLoss-GMS-B 86.20(84.65) 71.15(70.27)
AutoLoss-GMS-C 88.94 72.57(72.17)
AutoLoss-GMS-Zero 85.79(84.59) 68.95(67.59)

4.3.3 Transferability of the searched losses

To verify the transferability of the loss functions searched
on different datasets and different networks, we conduct
an in-depth comparison of these loss functions, as shown
in Table 4. The hyper-parameters in the hand-crafted loss
function are carefully fine-tuned on the two datasets by grid
search shown in Figure 3 of Suppl. H. The mAP of our
searched AutoLoss-GMS-A is 1.59% higher than the best
CircleLoss among the hand-crafted loss functions. Without
the predefined initial population, AutoLoss-GMS-Zero can
achieve performance equivalent to CosFace. Maintaining
the hyper-parameter settings on Market-1501, AutoLoss-
GMS-A can still surpass CircleLoss’ 59.21% with 67.18%
mAP on the CUHK03 dataset. When the hyper-parameters
on the CUHK03 dataset are further tine-tuned, the Cir-
cleLoss can reach 66.87% performance. To fast adapt to
other datasets (networks), we can also perform a fine-tuning
on the s of the searched loss. AutoLoss-GMS-A fine-tuned
on CUHK03 can reach 68.33%, which is still 1.46% higher
than CircleLoss.

AutoLoss-GMS-B and AutoLoss-GMS-C are used to
test the performance across datasets and networks with
AutoLoss-GMS-A. AutoLoss-GMS-B only performs well
on CUHK03 but not good enough on the Market-1501. The
main reason is that CUHK03 has fewer data than Market-
1501. Therefore, searching on a large dataset can obtain a
loss function with good generalization. AutoLoss-GMS-A
and AutoLoss-GMS-C are obtained by searching on differ-
ent models. Regardless of the fine-tunning on s, the perfor-
mance of these two loss functions is almost the best under
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Table 5. Comparison with state-of-the-art methods. The part above the double line is the models based on the global feature, and the part
below the double line is the models based on the local feature. In each part, the ones below the single line are our methods, and the ones
above are other methods. Redbold is the best performance of ours. Bluebold is the best performance of others.

Methods Market-1501 CUHK03 MSMT17
mAP Rank-1 mAP Rank-1 mAP Rank-1

TriNet [40] 69.1 84.9 - - - -
SphereReID [3] 83.6 94.4 - - - -
StrongBaseline [41] 85.9 94.5 - - - -
ResNet50+CircleLoss [12] 84.9 94.2 - - 50.2 76.3
OSNet [42] 86.7 94.8 67.8 72.3 55.1 79.1
AutoReID [43] 85.1 94.5 69.3 73.3 52.5 78.2
SphereReID+AM-LFS [20] 84.4 95.0 - - - -
ResNet50+AutoLoss-GMS-A(ours) 87.0 94.7 68.3 70.4 55.1 79.5
OSNet+AutoLoss-GMS-C(ours) 88.9 95.7 72.6 74.5 62.6 83.7
PCB+RPP [27] 81.6 93.8 57.5 63.7 - -
MGN [4] 86.9 95.7 66.0 66.8 - -
MGN+CircleLoss [12] 87.4 96.1 - - 52.1 76.9
MGN+AM-LFS [20] 88.1 95.8 - - - -
MGN+AutoLoss-GMS-A(ours) 88.7 95.6 73.2 75.2 58.2 80.9
MGN+AutoLoss-GMS-C(ours) 89.3 95.7 72.3 75.3 58.3 79.9
MGN+AutoLoss-GMS-D(ours) 90.1 96.2 74.3 75.6 63.0 83.7

their respective models. Even after transferring, the per-
formance of the searched loss functions is enough to sur-
pass the hand-crafted loss functions, which shows that our
searched loss functions have a certain degree of transfer-
ability.

4.4. Comparison With State-of-the-Art Methods

Our comparison with the SOTA methods is based on two
types of models, namely, the models based on the global
feature and the models based on the local feature. We
report the performance of AutoLoss-GMS-A, AutoLoss-
GMS-C and AutoLoss-GMS-D, and the comparison results
are shown in Table 5.

Among the models based on the global feature with
the ResNet50 backbone, ResNet50 + AutoLoss-GMS-A
achieves the highest mAP on all three datasets. Espe-
cially on Market-1501, our AutoLoss-GMS-A can sur-
pass StrongBaseline, which uses cross-entropy and triplet
paradigms, by 1.1%. On the largest dataset, MSMT17,
our AutoLoss-GMS-A significantly surpasses CircleLoss
by 4.9% in terms of mAP. On all three datasets, under the
support of AutoLoss-GMS-A, ResNet50 can achieve simi-
lar performance with the network architecture specially de-
signed for ReID (i.e. OSNet, AutoReID). When equipped
with OSNet, AutoLoss-GMS-C can further improve the
original OSNet significantly. Especially on MSMT17, OS-
Net + AutoLoss-GMS-C can reach 62.6% mAP.

The performance of directly applying AutoLoss-GMS-A
and AutoLoss-GMS-C to the MGN model is significantly
better than MGN + CircleLoss, which further verifies that
our searched loss functions are transferable across models.
Furthermore, MGN + AutoLoss-GMS-D surpasses other
methods on Market-1501 with an mAP of 90.1%.

In summary, the performance of our searched loss
functions is significantly better than the performance of
the hand-crafted CircleLoss and AutoML-based AM-LFS,
which further illustrates the effectiveness of our method.

5. Conclusions
In this paper, we propose a novel method, AutoLoss-

GMS, to search the better loss function in the space of
generalized margin-based softmax loss function for person
re-identification automatically. The experimental results
demonstrate that the searched loss functions achieve state-
of-the-art performance and are transferable across different
models and datasets in person ReID.

However, current good search results still heavily depend
on prior knowledge, and subsequent research will focus on
further improving the performance of search results without
prior knowledge. We will also plan to apply the searching
framework on more tasks to further verify the effectiveness
of our search algorithm.
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