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Abstract

Monocular 3D object detection is an essential task in
autonomous driving. However, most current methods con-
sider each 3D object in the scene as an independent training
sample, while ignoring their inherent geometric relations,
thus inevitably resulting in a lack of leveraging spatial con-
straints. In this paper, we propose a novel method that takes
all the objects into consideration and explores their mutual
relationships to help better estimate the 3D boxes. More-
over, since 2D detection is more reliable currently, we also
investigate how to use the detected 2D boxes as guidance
to globally constrain the optimization of the corresponding
predicted 3D boxes. To this end, a differentiable loss func-
tion, termed as Homography Loss, is proposed to achieve
the goal, which exploits both 2D and 3D information, aim-
ing at balancing the positional relationships between differ-
ent objects by global constraints, so as to obtain more ac-
curately predicted 3D boxes. Thanks to the concise design,
our loss function is universal and can be plugged into any
mature monocular 3D detector, while significantly boosting
the performance over their baseline. Experiments demon-
strate that our method yields the best performance (Nov.
2021) compared with the other state-of-the-arts by a large
margin on KITTI 3D datasets.

1. Introduction

Monocular 3D object detection is a fundamental task in
computer vision, where the goal is to localize and estimate
3D bounding boxes, parameterized by location, dimension,
and orientation, of objects from a single image. It can be ap-
plied to various scenes, such as autonomous driving, robotic
navigation, etc. However, it is an ill-posed and challenging
problem since a single image cannot provide explicit depth
information. To acquire such resources, most existing meth-
ods resort to LiDAR sensors to obtain accurate depth mea-
surements [29], or stereo cameras for stereo depth estima-
tion [15], but they will increase the cost of practical usages.
In comparison, the monocular camera is cost-effective.
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(a) each object is an independent training sample

(b) each object is geometrically associated with others (c) Bird’s Eye View

Figure 1. (a) Most of existing methods consider each object as a
single training sample, (b) our proposed homography loss estab-
lishes connections between objects, and applies 2D detection as
guidance to help constrain 3D localization in (c) Bird’s Eye View.

Most of the existing monocular 3D object detection
methods have already achieved remarkable high accuracy
with fixed camera settings. However, in their training strate-
gies, each 3D object in the scene is treated as an indi-
vidual sample without considering the mutual relationships
with other neighboring objects, for example, as shown in
Fig. 1(a). Assuming that, if the predicted 3D box of a single
object obviously deviates from its ground truth, without ad-
ditional constraints, it is usually hard for the network to re-
fine and correct the estimated position of this specific sam-
ple. To handle this, apart from the regression loss defined
by minimizing the discrepancies between the predicted 3D
boxes and the ground truths, many algorithms propose pro-
jection loss [15, 17, 25, 26] to constrain the optimization of
3D boxes with the supervision of corresponding projected
2D ground truth boxes. However, the 3D localization of a
single object is still independent of the others. Differently,
MonoPair [7] exploits the object relationships and builds
scene graph to enhance the mutual connections of objects
during training and inference. They fully leverage the spa-
tial relationships between close-by objects instead of indi-
vidually focusing on the information-constrained single ob-
ject. An obvious drawback is that an object can only locally
connect with its nearest neighbor.

On the other hand, a large percent of approaches are ef-
fective for normal objects. In reality, only the foreground
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objects can be detected easily, because they are fully vis-
ible and have rich recognizable features. Therefore, these
approaches still struggle to handle the occluded objects or
small ones that are far away from the camera, and those
objects usually occupy a higher proportion in the scene.
Limited improvement is achieved since little information is
helpful to solve the problem. A straightforward way to im-
prove the 3D detection is to correct the results by the fore-
ground objects or even the 2D detection results. The most
relevant work, MonoFlex [42], which leverages the distribu-
tion of different objects and proposes a flexible framework
to decouple the truncated objects and adaptively combine
multiple approaches for 3D detection. However, it is also
limited to training the network for each individual sample.

Moreover, due to the perspective projection, objects with
different depths may block each other in image space. Thus,
OFTNet [33] and ImVoxelNet [34] propose to regress 3D
positions on Bird’s Eye View (BEV), since objects on the
projected BEV plane do not intersect with each other and
can be distinguished.

In general, to be concrete as shown in Fig. 1, our core
idea is to build the connections between all the objects and
globally optimize their 3D positions. Besides, we also asso-
ciate BEV with image view through inverse projective map-
ping and apply 2D detection results as guidance to improve
the 3D localization in BEV. To achieve the goal, we propose
Homography Loss to combine 2D and 3D information and
globally balance the mutual relationships to obtain more ac-
curate 3D boxes. By doing so, our loss function is able to
effectively encode necessary geometric information in both
2D and 3D space, and the network will be enforced to ex-
plicitly capture the global geometric relationships between
objects which are demonstrated to be helpful for 3D detec-
tion. Because of the differentiability and interpretability,
our loss function can be plugged into any mature monocu-
lar 3D detector. Practically, we take ImVoxelNet [34] and
MonoFlex [42] as examples, and integrate the novel homog-
raphy loss during training phase, experiments demonstrate
that our method outperforms the state-of-the-arts by a large
margin on KITTI 3D detection benchmark (Nov. 2021).
The main contributions can be summarized as follows:

• We propose a novel loss function, termed as homog-
raphy loss, to exploit geometric relationships of all the
objects in the scene and globally constrain their mutual
locations, by using the homography between the image
view and the Bird’s Eye View. At the same time, the
geometric consistency in both 2D and 3D space will be
well preserved. To the best of our knowledge, this is
the first work that fully leverages the global geometric
constraints in monocular 3D object detection.

• The proposed monocular 3D detector based on homog-
raphy loss achieves the state-of-the-art performance on

KITTI 3D detection benchmark, and surpasses the re-
sults of all the other monocular 3D detectors, which
implies the superiority of our loss.

• We apply this loss function to several popular monoc-
ular 3D detectors. Without any additional inference
cost, the training is more stable and easier to converge,
achieving higher accuracy and performance. It can be
a plug-and-play module and be adapted to any monoc-
ular 3D detector.

2. Related Work
We first review methods on monocular 3D object de-

tection, followed by a brief introduction of geometric con-
straints that are commonly used during training phase.

Monocular 3D object detection is an ill-posed problem
because of lacking depth clues of the monocular 2D image.
When compared with stereo images [15] or LiDAR-based
methods [23, 27, 30, 32, 39, 40], in some earlier works, aux-
iliary information are necessary for monocular 3D detection
to achieve competitive results. These prior knowledge usu-
ally includes ground plane assumption [5], morphable wire-
frame model hypothesis [13] or 3D CAD model [3,14], etc.

Moreover, some other works only take a single RGB
image as input. For example, Deep3DBox [25] estimates
the 3D pose and dimension from the image patch enclosed
by a 2D box. Afterwards, the network with a 3D regres-
sion head [9, 18, 26] is used to predict the 3D box while
searching and filtering the proposal whose 2D projection
has the threshold overlap with the ground-truth 2D box.
MonoGRNet [31] detects and localizes 3D boxes via ge-
ometric reasoning in both the observed 2D projection and
the unobserved depth dimension. MonoDIS [36] leverages
a novel disentangling transformation for 2D and 3D de-
tection losses. M3D-RPN [1] reformulates the monocular
3D detection problem as a standalone 3D region proposal
network. Unlike previous methods, which depend on 2D
proposals, SMOKE [19] argues that the 2D detection net-
work is redundant and introduces non-negligible noise in
3D detection. Thus, it predicts a 3D box for each object by
combining a single keypoint estimated with regressed 3D
variables via a single-stage detector, and similarly, RTM-
3D [17] predicts nine perspective keypoints of a 3D box in
the image space. Specifically, MonoFlex [42] proposes a
flexible framework for monocular 3D object detection that
explicitly decouples the truncated objects and adaptively
combines multiple approaches for depth estimation.

However, image-based training and inference will intro-
duce non-linear perspective distortion where the scale of ob-
jects varies drastically with depth, which makes it hard to
accurately predict the relative distance and location of the
object of interest. To handle this, OFTNet [33] proposes or-
thographic feature transform by mapping image-based fea-
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Figure 2. In practice, for 2D/3D detection tasks, the discrepancies
between the predicted 2D/3D boxes and the corresponding ground
truths can be narrowed down by applying L1 loss. It means that
the predicted 2D/3D boxes would be self-constrained with the cor-
responding ground truths. Besides, the predicted 3D positions of
objects can be projected into 2D image space with camera parame-
ters, and the projected 2D positions will be further compared with
their 2D ground truths. That is to say, 3D data can be converted
to 2D space via a projection matrix. By analogy, our proposed
method builds the correlation from 2D to 3D and uses 2D detec-
tion as guidance to supervise the training of 3D localization.

tures into an orthographic 3D space that is better aligned
with the real-world perception, where the target object will
not intersect or occlude with each other and can be intu-
itively distinguished. ImVoxelNet [34] projects the obtained
image features extracted from the backbone network to a 3D
voxel volume and proposes to detect 3D boxes from BEV
for the same purpose as just mentioned.

Overall, current methods consider either directly regress-
ing depth or keypoints from image view, or detecting 3D
boxes from BEV. As none of the existing methods dig into
the inherent connection between the image view and BEV,
our proposed method first bridges the gap between them.

Geometric constraints in 3D detection. Most current
approaches directly regress 3D spatial information from 2D
image without the help of extra 3D priors. Because 2D and
3D space are naturally interrelated via perspective projec-
tion, therefore, some recent works attempt to use geomet-
ric constraints in the network. Mousavian et al. [25] esti-
mates 3D boxes using the geometric relations between 2D
edges and 3D corners. Li et al. [15] solves a coarse 3D box
by utilizing the sparse perspective keypoints and 2D box.
Naiden et al. [26] solves the translation vector of the ob-
ject center via a closed-form least squares equation. Li et
al. [17] utilizes the geometric relationship of 3D and 2D
perspectives to recover 3D boxes. Li et al. [16] reformu-
lates the non-linear optimization in the projective space as
a differentiable geometric reasoning module. Note that, the
aforementioned methods apply the geometric constraint to
individual object. Contrarily, we take the positional rela-
tionships of all the objects into account at the same time.

3. Methods
3.1. Motivation

We have two key observations: 1) the 2D detection can
serve as a guidance to constrain and supervise the training of
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Figure 3. The location of the target object is globally affected by
other objects. Since an individual object can only locally connect
with its nearest neighbor, as proposed in [7], the pairwise relation-
ship is not enough to encode the spatial relationship of objects. We
take the global affection into account, which is similar to the long-
range dependency used in the attention mechanism. For example,
the location of Car 2 can not only be influenced by Car 1, but also
be constrained by Car 5 and 9 as connected with the blue dotted
line. (The figure originates from [7])

3D localization, 2) the position of a single object should be
globally influenced by the surrounding objects, as detailed
in Fig. 2 and 3. To handle those problems, we propose ho-
mography loss to implement the conversion from 2D image
space to 3D BEV space, and simultaneously constrain the
globally geometric relationships of all the objects.

3.2. Revisiting of Homography

A homography is a mapping between two planar surfaces
which preserves collinearity. The homography matrix H ∈
R3×3 between two 2D planes maps p1 in the plane 1 to p2

in the plane 2 up to a scale factor s. It satisfies:

sp2 = Hp1, (1)

where p = [x, y, 1]T is the homogeneous coordinate of a
2D point in a plane. Since the homography matrix has 8
degrees of freedom, at least 4 corresponding point pairs are
necessary for recovering the matrix. Inspired by ImVoxel-
Net [34], the projections of objects on BEV plane do not
intersect with each other and accordingly contain more in-
formation about 3D localization, we define the homogra-
phy matrix between the image plane and BEV plane, in
order to implicitly transform coordinates from 2D to 3D
space. More details will be illustrated in Sec. 3.3. Then,
let us explain why homography is a global geometric con-
straint. Firstly, all pairs of corresponding points will involve
in solving the homography matrix from Eq. 1, and the so-
lution is guaranteed to be globally optimal. In other words,
the constraint enforced by arbitrary pair of corresponding
points will finally affect the whole optimization process.
Thus, homography is a global constraint. Secondly, in pro-
jective geometry, a homography is an isomorphism of pro-
jective spaces, which correlates a group of points on one
plane to the other and preserves geometric properties, e.g.,
collinearity. So, homography is also a geometric constraint.
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Figure 4. 2D and 3D candidate points of a single object.

3.3. Homography Loss

Inspired by those observations, we propose a global loss
function, termed as homography loss, aiming to establish
the geometric connections among all the objects by lever-
aging the homography matrix. Assuming that we already
have a monocular 3D object detector that could predict 3D
boxes under the supervision of the ground truths, in addition
to the regular classification and regression loss in the com-
mon pipelines, our homography loss penalizes the wrong
relationship among all the predicted boxes and refines the
final locations. The major steps are listed as follows.

Candidate Points Modeling. Suppose we have the pre-
dicted boxes boxpred obtained from the arbitrary 3D detec-
tor and the corresponding ground truth boxes boxgt. As
mentioned in Sec. 3.2, we opt to use the homography matrix
to describe the projection relationship between the image
plane and the BEV plane. For a single object, as demon-
strated in Fig. 4, we pick up five bottom points Qpred =
[xpred, ypred, zpred]

T of boxpred as representatives, includ-
ing one bottom center point and four bottom corner points.
We also assume that all the objects are always on the flat
ground, the bottom points on the BEV plane can thus be
simplified as Q̃pred = [xpred, ypred]

T . Similarly, we have
Qgt = [xgt, ygt, zgt]

T obtained from boxgt. After the cam-
era projection, the ground truth 3D box will be transformed
into the image space, which is defined by:

q = K [R|t]Q, (2)

where K is the intrinsic matrix and [R|t] are the extrin-
sic matrices, and q = [u, v]T represents the projected pixel
on the image plane, which is suitable for both boxpred and
boxgt. Therefore, if there exist N objects, we can get 5N
pairs of candidate points qpred, Q̃pred for boxpred and qgt,
Q̃gt for boxgt, respectively, which are prepared for calcu-
lating the homography matrix.

Calculating Homography. To implicitly constrain rela-
tive positions of each object, without loss of generality, we
select qgt and Q̃pred. Specifically, we use the ground truth
coordinates qgt in 2D image view as guidance, to correct
the final positions Q̃pred in 3D space. The formulation is
defined, up to a scale factor (omitted here) with homoge-

neous coordinates, as follows,

Q̃pred = Hqgt,

xpred

ypred
1

 = H

ugt

vgt
1

 . (3)

Here, H stores the mutual relationships of all the objects
by mapping between two views. We use singular value de-
composition (SVD) to calculate the homography matrix H
as it can be easily implemented in PyTorch [28].

In practice, the homography matrix in Eq. 3 is estimated
since Q̃pred may deviate a lot from the ground truth at the
very beginning of training. We denote it as Ĥ, and represent
Q̃homo = Ĥqgt. As the training progresses, the estimated
value Q̃homo will approach Q̃pred and Q̃gt.

Loss Function. The homography matrix Ĥ implicitly
contains the correspondences between two different views
and the relative positions of all the objects. Previously,
3D detection is treated as an independent task for each
object, which is constrained by regression loss, such as
Lreg = L1

(
Q̃gt − Q̃pred

)
. Here, we propose a novel loss

function, named as homography loss, to optimize the loca-
tions with strong spatial constraints. The homography loss
is defined as follows,

Lhomo = SmoothL1
(
Q̃gt − Q̃homo

)
= SmoothL1

(
Q̃gt − Ĥqgt

)
.

(4)

Different from the regression loss, calculating the ho-
mography matrix Ĥ will take all pairs of corresponding
points into consideration. It is therefore a global loss for
geometric constraint, which is used to guide the prediction
of 3D positions from the ground truth 2D localization. On
the other hand, by optimizing Eq. 4, Ĥ is also enforced to
be closer to the ground truth homography matrix. Another
advantage of homography loss is that it is differentiable. It
can be a plug-and-play module for any monocular 3D ob-
ject detector, and servers as a strong spatial constraint for
3D localization of objects.

3.4. Case Study

As our novel homography loss can be plugged into any
3D object detector, we take the state-of-the-art detectors,
ImVoxelNet [34] and MonoFlex [42], as examples, and il-
lustrate how to seamlessly integrate our loss function into
the network. As the main algorithm has been explained in
Sec. 3.3, more details of the selection of predicted boxes
and training strategies are presented here.

Anchor based method. ImVoxelNet [34] is a one-stage
anchor-based monocular 3D detector, which transforms 2D
image features into 3D space and regresses the positions of
objects in BEV like LiDAR-based 3D detectors. Anchors
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Table 1. 3D object detection performance of Car category on KITTI test set. The best scores are marked in bold (compared with monocular
3D detection methods that do not use extra data). ’Extra Data’ lists the required extra information for each method, including Depth
pretrained from a much larger dataset, Temporal information from multi frames, LiDAR with point cloud information and Shape of extra
labelled 3D instance keypoints. All runtime values are collected from KITTI benchmark as well as the official paper and code.

Method Extra Data AP3D|R40
APBEV |R40 Time(s)

Easy Moderate Hard Easy Moderate Hard

Mono-PLiDAR [40] Depth 10.76 7.50 6.10 21.27 13.92 11.25 0.10
PatchNet [22] Depth 15.68 11.12 10.17 22.97 16.86 14.97 0.40
D4LCN [8] Depth 16.65 11.72 9.51 22.51 16.03 12.55 0.20

MonoRUn [4] Depth 19.65 12.30 10.58 27.94 17.34 15.24 0.07
Kinematic3D [2] Temporal 19.07 12.72 9.17 26.69 17.52 13.10 0.12
DDMP-3D [37] Depth 19.71 12.78 9.80 28.08 17.89 13.44 0.18

Aug3D-RPN [11] Depth 17.82 12.99 9.78 26.00 17.89 14.18 0.08
DFR-Net [45] Depth 19.40 13.63 10.35 28.17 19.17 14.84 0.18
CaDDN [32] LiDAR 19.17 13.41 11.46 27.94 18.91 17.19 0.63
MonoEF [44] Depth 21.29 13.87 11.71 29.03 19.70 17.26 0.03

Autoshape [20] Shape 22.47 14.17 11.36 30.06 20.08 15.59 0.04

M3D-RPN [1] - 14.76 9.71 7.42 21.02 13.67 10.23 0.16
SMOKE [19] - 14.03 9.76 7.84 20.83 14.49 12.75 0.03
MonoPair [7] - 13.04 9.99 8.65 19.28 14.83 12.89 0.06
RTM3D [17] - 14.41 10.34 8.77 19.17 14.20 11.99 0.05

PGD-FCOS3D [38] - 19.05 11.76 9.39 26.89 16.51 13.49 0.03
M3DSSD [21] - 17.51 11.46 8.98 24.15 15.93 12.11 0.16
MonoDLE [24] - 17.23 12.26 10.29 24.79 18.89 16.00 0.04

MonoRCNN [35] - 18.36 12.65 10.03 25.48 18.11 14.10 0.07

ImVoxelNet [34] - 17.15 10.97 9.15 25.19 16.37 13.58 0.20
ImVoxelNet(+homo) - 20.10 12.99 10.50 29.18 19.25 16.21 0.20

MonoFlex [42] - 19.94 13.89 12.07 28.23 19.75 16.89 0.03
MonoFlex(+homo) - 21.75 14.94 13.07 29.60 20.68 17.81 0.03

with IoU > 0.6 will be considered as positives for training
and each ground truth object will be assigned by several
positive anchors that are served as potential proposals.

To calculate homography, we need to specify one-to-one
matching point pairs for the predicted boxes and the ground
truth boxes. Therefore, we choose the one with the highest
classification score from positive proposals as a representa-
tive, which also keeps the consistency between classifica-
tion and regression. As anchor-based detectors always pro-
duce stable proposals during training, we add the homogra-
phy loss at the beginning of training and train the network
from scratch. The loss function defined below consists of
four parts, i.e., location loss Lloc, focal loss for classifica-
tion Lcls, cross-entropy loss for direction Ldir , and addi-
tional homography loss Lhomo:

L = 1
Npos

(λclsLcls + λlocLloc + λdirLdir + λhomoLhomo), (5)

where Npos is the number of positive anchors, λcls =
1.0, λloc = 2.0, λdir = 0.2, λhomo = 0.2. Note that, apart
from Lhomo, other loss terms and balancing weights are all
adopted from [34].

Anchor-free based method. MonoFlex [42] is a one-
stage monocular 3D detector based on CenterNet [43],
which predicts projected 3D center, box (including depth,
dimension, and orientation), and keypoints in different
heads. As it is an anchor-free detector, the location of the

representative box is automatically assigned as the 3D pro-
jected center in the heatmap head without selection. And
the depth is regressed in the final head. The main difference
is the training policy.

As 3D projected center and depth can define the coor-
dinates in the image view and Bird’s Eye View, these two
components are the main contributors for homography loss.
But the depth head is very unstable at the beginning of train-
ing, and the locations in the Bird’s Eye View is also of
low confidence, making the homography matrix distorted.
Therefore, two strategies are proposed to solve the prob-
lem. Firstly, we make a delay by adding our homography
loss after 40 epochs when the depth head is consistent and
reliable. Secondly, we replicate the predicted boxes by us-
ing one of the components (3D projected center and depth),
while replacing the other one with its ground truth values.
Therefore, homography loss can be replicated three times
and ensembled together. The main loss function can be de-
scribed as a combination of classification loss for heatmap
Lhm, regression loss for box size and rotation Lbox, regres-
sion loss for keypoints of 3D boxes Lkp, and additional ho-
mography loss Lhomo:

L = 1
Npos

(λhmLhm + λboxLbox + λkpLkp + λhomoLhomo), (6)

where Npos is the number of positive predictions, λhm =
1.0, λbox = 1.0, λkp = 1.0, λhomo = 0.2.
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Table 2. 3D object detection performance of Car category on
KITTI validation set.

Method AP3D|R40
APBEV |R40

Easy Moderate Hard Easy Moderate Hard

M3D-RPN [1] 14.53 11.07 8.65 20.85 15.62 11.88
MonoPair [7] 16.28 12.30 10.42 24.12 18.17 15.76

MonoRCNN [35] 16.61 13.19 10.65 25.29 19.22 15.30
MonoDLE [24] 17.45 13.66 11.68 24.97 19.33 17.01

ImVoxelNet(+homo) 21.44 14.88 12.08 29.85 21.17 17.77
MonoFlex(+homo) 23.04 16.89 14.90 31.04 22.99 19.84

Table 3. 3D object detection performance of Pedestrian and Cy-
clist on KITTI test set.

Method Pedestrian AP3D|R40
Cyclist AP3D|R40

Easy Moderate Hard Easy Moderate Hard

PGD-FCOS3D [38] 2.28 1.49 1.38 2.81 1.38 1.20
MonoEF [44] 4.27 2.79 2.21 1.80 0.92 0.71
D4LCN [8] 4.55 3.42 2.83 2.45 1.67 1.36

M3D-RPN [1] 4.92 3.48 2.94 0.94 0.65 0.47
DDMP-3D [37] 4.93 3.55 3.01 4.18 2.50 2.32
DFR-Net [45] 6.09 3.62 3.39 5.69 3.58 3.10
M3DSSD [21] 5.16 3.87 3.08 2.10 1.51 1.58

Aug3D-RPN [11] 6.01 4.71 3.87 4.36 2.43 2.55
MonoFlex [42] 9.43 6.31 5.26 4.17 2.35 2.04
MonoPair [7] 10.02 6.68 5.53 3.79 2.12 1.83
MonoRUn [4] 10.88 6.78 5.83 1.01 0.61 0.48

ImVoxelNet(+homo) 12.47 7.62 6.72 1.52 0.85 0.94
MonoFlex(+homo) 11.87 7.66 6.82 5.48 3.50 2.99

4. Experiments

4.1. Setup

Dataset and Evaluation Metrics. Our proposed method
is evaluated on KITTI 3D Object Detection benchmark
[10], which includes 7481 images for training and 7518 im-
ages for testing. The training set is split into 3712 sam-
ples for training and 3769 samples for validation as sug-
gested in [6]. The classes are Car, Pedestrian, and Cyclist
with three difficulty levels for each class, i.e., Easy, Moder-
ate, and Hard. The official KITTI leaderboard is ranked on
Moderate difficulty. Our method is evaluated on KITTI test
set by submitting the detection results to the official server.
For a fair comparison with other methods, we use official
metrics, average precision (AP) with an IoU threshold of
0.7 for Car and 0.5 for both Pedestrian and Cyclist. In all
experiments, the AP3D|R40

results are reported for a com-
prehensive comparison with previous studies.

Implementation Details. We use the official imple-
mentations of ImVoxelNet [34] with ResNet50 [12] and
MonoFlex [42] with DLA34 [41] as their backbones. We
follow all the experimental settings of the original code and
add our homography loss as an auxiliary loss. For ImVox-

elNet [34], we add the loss at the beginning and train 24
epochs. As for MonoFlex [42], the homography loss is
added after 40 epochs and we train the network 80 epochs in
total. We name these two new implementations as ImVox-
elNet(+homo) and MonoFlex(+homo), respectively.

4.2. Quantitative Results

Results of Car category on KITTI test set. As demon-
strated in Tab. 1, the proposed method MonoFlex(+homo)
achieves superior results on Car category compared with
the previous methods, even including those with extra data,
such as depth or LiDAR point clouds. To be specific,
MonoFlex(+homo) achieves 1.81%, 1.05%, and 1.00%
gains on the easy, moderate and hard settings, respectively.
Besides, our ImVoxelNet(+homo) achieves 2.95%, 2.02%,
and 1.45% gains over the original baseline, which shows its
robustness and effectiveness.

Results of Car category on KITTI validation set. We
also present our model’s performance on the KITTI vali-
dation set in Tab. 2. Specifically, our method achieves the
SOTA performance compared with the previous methods.
Compared to MonoPair [7], our ImVoxelNet(+homo) and
MonoFlex(+homo) get performance gain by 2.58%/4.59%
for moderate setting at the 0.7 IoU threshold. This shows
that our method is more capable of detecting hard examples
in autonomous driving scenes by adding homography loss
as an additional constraint.

Pedestrian/Cyclist detection on KITTI test set. For
Pedestrian and Cyclist, we present the detection perfor-
mance in Tab. 3. Our method MonoFlex(+homo) leads to
the competitive performance in both categories. This shows
our homography loss can also improve the performance for
detecting small objects, e.g., human. MonoFlex(+homo)
outperforms all other approaches in the Pedestrian category,
with an 0.88% improvement from the previous best method
(7.66% vs 6.78%). A possible reason is that human’s stand-
ing point is a more reliable reference for computing the ho-
mography matrix.

4.3. Ablation Study

We conduct ablation studies to analyze the effects of our
loss on Car category of the KITTI validation set. The de-
fault evaluation metric is AP3D|R40

.

4.3.1 Calculating Homography

To calculate the homography matrix, we use qgt and Q̃pred

(Type 1) to construct the geometric constraints. Similarly,
qpred and Q̃gt (Type 2) can also be selected. Therefore, we
compare the performance of these two types in ImVoxel-
Net(+homo) and MonoFlex(+homo). The results are listed
in Tab. 4 and 5. We can see that for those methods that pre-
dict in BEV domain like ImVoxelNet, Type 2 is more suit-
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Table 4. Different settings of ImVoxelNet are evaluated on the
validation set. By default, as shown in the top row, we combine
homography type 2 (Sec. 4.3.1), representative proposal type 1
(Sec. 4.3.2), and weight of 0.2 (Sec. 4.3.4) with homography loss
to obtain the best performance. Each row evaluates one specific
setting compared with the default choice. The bottom row shows
the comparison with projection loss (Sec. 5.1).

Homo Proposal Weight Loss AP3D|R40

1 2 1 2 3 None 0.1 0.2 0.5 1.0 +homo +proj Easy Moderate Hard

" " " " 21.44 14.88 12.08

✓ ✓ ✓ ✓ 21.35 14.63 11.60

✓ ✓ ✓ ✓ 19.41 14.21 11.63
✓ ✓ ✓ ✓ 20.29 14.26 11.60

✓ ✓ ✓ ✓ 20.20 13.85 11.41
✓ ✓ ✓ ✓ 21.01 14.19 11.53
✓ ✓ ✓ ✓ 20.43 14.13 11.48
✓ ✓ ✓ ✓ 19.27 13.99 11.53

✓ ✓ 20.51 14.13 11.49

able. As for those who predict in 2D images like MonoFlex,
Type 1 gets higher performance. Therefore, the prediction
domain can affect the final performance. So how to choose
a proper type will finally depend on the specific application.

4.3.2 Representative Proposals

In anchor-based methods like ImVoxelNet, several anchors
will be assigned to the same ground truth box based on IoU
threshold. Therefore, we need to select the representative
proposal from these positive proposals. Here, we have three
strategies of selection: 1) the proposal with the highest clas-
sification score, 2) the proposal with the highest IoU score,
3) the average proposal of all positive anchors. We con-
duct the ablation experiment in Tab. 4. The result shows
that the one with the highest classification score achieves
the best performance at 14.88% of the moderate setting. It
also shows our homography loss can strengthen the consis-
tency between regression and classification heads.

4.3.3 Replicated Losses

For anchor-free methods, such as MonoFlex, the depth re-
gression head can be very unstable at the beginning of train-
ing. To solve this problem, we refer to the replicated strat-
egy in [27] and propose a replicated proposal strategy here
to strengthen the robustness. The homography loss is repli-
cated 3 times in total to get a reliable homography matrix.
We conduct the ablation by four different settings: 1) qpred

+ Depthpred (the predicted depth), 2) qpred + Depthgt

(the ground truth depth). 3) qgt + Depthpred. 4) ensem-
ble by adding the aforementioned three losses together. The
results are shown in Tab. 5. We observe that the ensemble
strategy has a better result due to sufficient constraints.

Table 5. Different settings of MonoFlex are evaluated on the val-
idation set. By default, as shown in the top row, we combine ho-
mography type 1 (Sec. 4.3.1), ensembled losses (Sec. 4.3.3), and
weight of 0.2 with homography loss to achieve the best result.

Homo Replicated losses Weight Loss AP3D|R40

1 2 1 2 3 Ensemble 0.2 +homo Easy Moderate Hard

" " " " 23.04 16.89 14.90

✓ ✓ ✓ ✓ 22.37 16.48 14.41

✓ ✓ ✓ ✓ 21.92 16.54 13.84
✓ ✓ ✓ ✓ 22.48 16.62 14.49
✓ ✓ ✓ ✓ 22.51 16.69 14.46

4.3.4 Loss Weight

To determine the final loss weight of ImVoxelNet(+homo)
and MonoFlex(+homo), we also conduct experiments on
loss weights. The results are shown in Tab. 4. We observe
superior performance when the loss weight is 0.2. There-
fore, we apply this configuration in training and get the final
performance. For MonoFlex(+homo), we also do the same
experiments and get 0.2 as a result. It shows our homogra-
phy loss can be served as an auxiliary loss for detection.

4.4. Qualitative Results

From the qualitative results demonstrated in Fig. 5, with
the proposed homography loss function, we can get superior
performance for normal objects in the scene. Even for very
challenging cases, such as small objects (distant Pedestrian
and Car), and extremely truncated objects, our method can
still successfully detect those well.

5. Discussions
5.1. Difference with Projection Loss

As shown in Eq. 2, the calibration parameters of the cam-
era can be used to project a single predicted 3D keypoint
onto a 2D image plane which will be further constrained
by its corresponding 2D ground-truth value. It means that
each training sample is considered individually, and the pre-
dicted 3D positions are also refined and optimized indepen-
dently during network training. This is the key idea of the
commonly used projection loss. However, for calculating
the homography matrix, all pairs of correspondences will
be involved in the computation, each pair of corresponding
2D/3D points will contribute two linear equations for solv-
ing Eq. 3. During backpropagation of the gradient of Eq. 4,
Ĥ is gradually optimized, that is to say, all the predicted
Q̃pred that are used for calculating the homography matrix
will also be refined according to the chain rule. Therefore,
homography loss can be leveraged to globally constrain the
optimization of 3D localization. We compare projection
loss with the proposed homography loss as shown in Tab. 4.
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Figure 5. We visualize the results of 3D object detection using ImVoxelNet(+homo) on KITTI val set, where the orange represents the
ground truth and our predicted results are colored in blue. The left column shows results of the network trained on the Car category only,
and the right column is trained on three categories including Car, Pedestrian, and Cyclist. It is worth noting that, with the homography loss,
it is possible to detect small targets and even truncated objects.

Table 6. Depth range statistics at the 0.7 and 0.5 IoU threshold.

Metric ImVoxeNet Depth Range (m)

0-10 10-20 20-30 >30

KITTI
Moderate
AP3D|R40

baseline@0.7 35.45 17.48 1.23 0.17
+homo@0.7 35.99 20.48 2.17 0.20
baseline@0.5 78.57 59.34 15.24 3.31
+homo@0.5 81.57 61.68 18.44 4.07

5.2. Depth Range Statistics

In order to investigate why homography loss is useful for
improving the accuracy of 3D detection. We design an ex-
periment that divides the depth range into several segments
as shown in Tab. 6 and gets the statistics for each interval.
For fairness, the evaluation metric is also AP3D|R40

on the
Car category of the KITTI validation set with the difficulty
of moderate level. Obviously, we can see that in the area of
10 meters away, the effect of the detection algorithm with
homography loss is much better than that of the baseline.
Especially in the range of 10-20m, we obtain 3.0% and
2.34% gains over the baseline method with different IoU
thresholds, respectively. This shows that our loss function
is more effective for small target detection. The reason is
that, as elaborated in Eq. 3, the ground truth 2D position
qgt on the image plane is used as guidance to correct the
predicted 3D position Q̃pred. The relative geometric rela-
tionship of objects on the image plane will be transferred to
the corresponding 3D objects on BEV plane by homogra-
phy loss. In other words, the improvement of the detection
effect of distant objects in Tab. 6 is due to the homography

relationship, which refines the inaccurate estimated 3D po-
sitions to satisfy the overall geometric constraint.

5.3. Limitations

As stated in Sec. 3.3, we assume that the ground plane is
flat and use the simplified 2D coordinates Q̂ = [x, y]T on
BEV plane to replace the original 3D points Q = [x, y, z]T .
However, in practice, as pointed out in [44], usually the road
is not smooth and has slight fluctuation, it will influence the
accuracy of 3D detection.

6. Conclusion
In this paper, we propose a differentiable loss function,

named as homography loss, which is a plug-and-play mod-
ule that can be integrated into any monocular 3D detector,
to help globally optimize the 3D positions of all the objects,
instead of taking each object as an independent sample dur-
ing training. Homography loss also fully exploits the inher-
ent connection between 2D image space and 3D Bird’s Eye
View and constrains the optimization of 3D positions under
the guidance of 2D localization, which is demonstrated to
be useful for detecting small targets or highly truncated ob-
jects. In the future work, we will consider how to avoid the
assumption of flatness of the ground.
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