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Abstract

Recently, various multimodal networks for Visually-
Rich Document Understanding(VRDU) have been pro-
posed, showing the promotion of transformers by integrat-
ing visual and layout information with the text embeddings.
However, most existing approaches utilize the position em-
beddings to incorporate the sequence information, neglect-
ing the noisy improper reading order obtained by OCR
tools. In this paper, we propose a robust layout-aware mul-
timodal network named XYLayoutLM to capture and lever-
age rich layout information from proper reading orders pro-
duced by our Augmented XY Cut. Moreover, a Dilated Con-
ditional Position Encoding module is proposed to deal with
the input sequence of variable lengths, and it additionally
extracts local layout information from both textual and vi-
sual modalities while generating position embeddings. Ex-
periment results show that our XYLayoutLM achieves com-
petitive results on document understanding tasks.

1. Introduction

While significant progress has been made in natural lan-
guage processing and visual understanding [5, 7, 8, 20],
less attention has been paid to their challenging variant
in the multimodal document understanding domain. The
Visually-Rich Document Understanding (VRDU) [28] task
requires combining the abundant image, text, and layout
information from scanned/digital-born documents (images,
PDFs, etc.) Such technology can benefit a great variety of
scenarios such as report/receipt understanding, automatical
form filling, and document relation extraction. As a result, it
is in great need of effective and efficient VRDU approaches.

To this end, researchers have developed sophisticated

*Corresponding author.

pipelines for tackling this task [2, 10, 16, 18, 28–30]. Gen-
erally speaking, early attempts can be divided into the cate-
gories of textual-based [4,6,10], convolution-based [12,15,
24,26,34] and GCN-based [19] methods. Text-based meth-
ods, e.g., XLM-RoBERT [6] and InfoXLM [4], usually rely
on the representation ability of self-supervised models like
Bert [7] pretrained on large datasets. Convolution-based
method Chargrid [15] utilized a fully convolutional network
that predicted a segmentation mask and bounding boxes for
document representation. More recently, [19] introduces a
Graph Convolutional Networks based model to fuse the tex-
tual and visual feature from scanned documents.

Although attempts like LayoutLM [28], Lay-
outLMv2 [30] and LayoutXLM [29] have been made
to tackle document understanding in a multimodal manner,
they still confront two limitations: (1) They rely on the
tokens and boxes from OCR [31] tools without exploring
the effect of reading orders. The proper reading orders
refer to the well-organized readable token sequences,
which may not be unique. Intuitively, the reading order
of input tokens is crucial to many tasks such as language
translation [27] and VQA [33]. For example, the meaning
of a sentence may be changed when we shuffle the words,
resulting in mistakes during language translation. A
common solution is to use position embeddings to denote
such sequential order of input tokens. However, we find
that multimodal models with widely-used relative position
embeddings still suffer improper reading order. Proper
reading orders implicitly include the layout information,
which is essentially needed in VRDU tasks. (2) They
usually leverage fixed-length absolute/relative position
embeddings in transformers. Once the model is trained, it
can not deal with the test data with longer token sequences.
Although bilinear interpolation on position embeddings
can be applied to the longer sequence, the performance is
not satisfying. Recently, Conditional Position Encoding
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(b) descending by X+Y
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(c) OCR-based XY Cut
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Figure 1. An example from XFUN dataset. The reading order is
denoted by the indices in the boxes while the red ones mean their
orders are improper.

(CPE) [5] is proposed to deal with inputs of variable lengths
in image classification tasks. It reshaped the input tokens
to 2D features and dynamically extracted local neighbor
context from input tokens with convolutions. However,
since CPE is designed for only visual tokens, it can not
handle 1D textual tokens in VRDU tasks.

In this paper, we propose an improved version of Lay-
outLMv2 [30], XYLayoutLM. Instead of pretraining on
large private/public document understanding datasets, XY-
LayoutLM focuses on the generation of position embed-
dings with two under-explored limitations in VRDU, i.e.,
improper reading orders, and the disability of dealing with
longer sequence, as mentioned above.

Although it seems a fundamental requirement of multi-
modal tasks to have proper reading orders, it is non-trivial to
directly obtain such reading orders from documents due to
various formats, e.g., tables, and columns. Specifically, we
show a form from XFUN [29] dataset in Figure 1. The de-
fault reading order is noisy. Based on the boxes obtained by
OCR tools, traditional sorting approaches such as arranging
the tokens in a top-to-bottom and left-to-right way are not
satisfying. For example, we list two simple heuristic rules
in this figure, namely (a) descending first by Y-axis then
X-axis, (b) descending by Y+X conditioned on the left-top
points of the token boxes. However, the red indices in Fig-
ure 1 still highlight the tokens with improper reading orders.
Finally, we utilize the XY Cut [11] (c) and successfully ob-
tain one proper reading order. Interestingly, some tokens in
the same row may have different locations due to the noise
in OCR recognition. It fails two heuristic rules which need
the accuracy location of tokens. However, we can still ob-
tain a series of proper reading orders for training by our
proposed Augmented XY Cut as an augmentation strategy.

For input sequences of variable lengths, we utilize a
novel Dilated Conditional Position Encoding (DCPE) mod-
ule to adaptively generate position embeddings according
to their input lengths with the dilated convolutions for ex-

tracting local layouts. We demonstrate that the XYLay-
outLM can lead to better performance than previous Lay-
outLMs [28–30], which will benefit a great variety of real-
world document understanding applications. We summa-
rize our contributions as follows.

• For the first time, Augmented XY Cut is proposed and
utilized to sort the input tokens for generating different
proper reading orders in VRDU tasks. It extracts and
leverages the layout information to achieve competi-
tive performances.

• To deal with input sequences of variable lengths, we
propose a Dilated Conditional Position Encoding as
the position embedding generator to adaptively process
the 1D textual and 2D visual tokens. Benefitting from
proper reading orders, DCPE can further extract rich
local layouts of input tokens with dilated convolutions.

• Comprehensive experiments are conducted on VRDU
datasets. Our XYLayoutLM achieves competitive per-
formance among all listed VRDU approaches on se-
mantic entity recognition and relation extraction tasks.

2. Related Works
2.1. Visually-Rich Document Understanding

Recently, transformers-based methods have been proved
to be effective on many computer vision [5, 8, 20] and nat-
ural language process [4, 7, 10] domains. Among them,
[28–30] proposed a series of transformer-based models fo-
cusing on VRDU tasks. As our baseline, LayoutXLM [28]
is the multilingual version of LayoutLMv2 [30]. They
achieved impressive results by successfully combining tex-
tual, layout, and visual features. However, those methods
may feed the input tokens to the transformer in the improper
reading order caused by OCR tools on complex documents,
which will harm VRDU performance. In this paper, we
pay more attention to the under-explored challenge, i.e., the
proper reading order of input tokens, which is significant to
the model performance.

2.2. Positional Encoding

Positional encodings are commonly employed to in-
corporate the order of sequences because self-attention is
permutation-equivalent. Existing research can be grouped
into two categories: absolute and relative position encod-
ings. When the transformer-based model was first proposed
by [27], they designed a delicate sin-cos function as the ab-
solute positional encoding. After that, [7] used a learnable
absolute embedding which is an embedding of the same
length to the input sequence. It can be jointly updated with
the network weights during training. Recently, by consid-
ering the distance between tokens, [25] proposed to change
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position embedding from absolute way into the relative way.
However, they can not handle the longer sequences with
fixed-length position encodings. To this end, Conditional
Position Encoding (CPE) [5] was proposed to deal with
the input sequence of variable lengths in the image classi-
fication task. It generates position embeddings conditioned
on the local context extracted by 2D convolutional layers.
However, CPE can not be used in multimodal networks due
to the 1D text features in document understanding tasks.

2.3. Reading Order Detection

Reading order detection [1, 3, 9, 17, 21, 22] aims to cap-
ture proper reading orders for documents. Generally speak-
ing, humans tend to read documents left-to-right and up-
to-bottom ways. However, such simple sorting rules may
fail due to the tokens extracted by OCR tools on complex
documents. Recently, [35] proposed a multimodal network
for reading order detection with a large benchmark made
by tremendous complex documents. However, compared to
our method, the labor for collecting 500k standard Word
files and the time for training a LayoutReader [35] can-
not be ignored. Meanwhile, the inference time for Lay-
outReader on reading order detection is much longer than
our method(see Appendix). In this paper, we proposed a
simple yet effective augmentation algorithm based on XY
Cut [11] to obtain different proper reading orders.

3. Methodology
3.1. Overview

The overall XYlayoutLM architecture is depicted in Fig-
ure 2. The model takes the images, textual tokens, and text
locations (boxes) as the input. Visual tokens are obtained by
adaptively pooling the feature map of ResNeXt-101 to 7×7.
Then we flatten and concentrate it with the textual tokens to
form the input token sequence following [29]. Two individ-
ual position embedding generators are utilized for encod-
ing the tokens into position embeddings and box embed-
dings. Different from the baseline model LayoutXLM [29],
our XYLayoutLM has two advantages: (1) An Augmented
XY Cut module is proposed to sort the input tokens for dif-
ferent proper reading orders, which will contribute to the
model performances by leveraging the layout information
in reading order. (2) Instead of generating position embed-
dings with fixed-length MLPs, we propose the Dilated Con-
ditional Position Encoding (DCPE) module to handle the
input tokens of variable lengths from texts and images. In
this section, we will first briefly introduce LayoutXLM [29]
and then elaborate on the above-proposed components.

3.2. Review of LayoutXLM

Recall that LayoutXLM [29] accepts inputs of three
modalities: text, image, and layout (i.e., token locations).

The input of each modality is converted to an embedding
sequence by a fixed-length MLP operated on the position
indices as shown in Figure 2. The text and image embed-
dings are concatenated, plus the layout embedding to get the
input embedding. After that, the input embeddings are en-
coded by a transformer with the spatial-aware self-attention
mechanism within and between modalities. Finally, the vi-
sual/text token representations outputted by the transformer
are used in the document understanding tasks. Since the ar-
chitecture of self-attention layers is not our main concern,
we omit it here and refer readers to [29, 30] for the details.

3.3. Proper Reading Orders

How to obtain proper reading orders of documents like
forms and receipts is an open question. Intuitively, it is pos-
sible to infer how token boxes are aligned and where signif-
icant horizontal and vertical gaps are present from projec-
tion profiles. Hence, the projection profiles of token boxes
can be used to determine the reading order. In this section,
we first introduce the projection profiles of token boxes and
then present the Augmented XY Cut algorithm.
Projection Profiles. Suppose we are given a set of token
boxes B = {bi}Ki=1, where each bi = [xi

1, y
i
1, x

i
2, y

i
2] ∈

Z4 denotes a box and K is the number of OCR extracted
tokens. We also define the minimum and maximum token
locations in B as (xmin, ymin) and (xmax, ymax). Then
the horizontal mapping Hbi of box bi is formulated as a
indicative function:

Hbi(y) =

{
1, yi1 ≤ y ≤ yi2

0, otherwise
(1)

where y ∈ Z[ymin,ymax]. For a location y on Y-axis, Hbi(y)
effectively mean whether y is in the projection interval
[yi1, y

i
2]. Based on Hbi , we can define the horizontal projec-

tion profile of the set B by summing all horizontal mapping
functions of individual boxes:

HB(y) =

K∑
i=1

Hbi(y). (2)

The values of HB(y) represent how many token boxes are
projected onto the Y-axis that covers the input variable y.

Similar to HB(y), the vertical projection profile of B can
be denoted as follows:

VB(x) =

K∑
i=1

Vbi(x), (3)

where

Vbi(x) =

{
1, xi

1 ≤ x ≤ xi
2

0, otherwise
(4)

is the vertical mapping on bi with x ∈ Z[xmin,xmax].
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Figure 2. The overview of XYLayoutLM. Different from LayoutXLM, our XYLayoutLM proposes Augmented XY Cut and DCPE to
extract and utilize layout information for multimodal document understanding. Best viewed in Adobe Acrobat DC.

Valleys in Projection Profiles. For simplicity, let us take
the horizontal projection profile HB as an example. As we
mentioned before, after we have projected the token boxes
B to Y-axis to get corresponding intervals {[yi1, yi2]}Ki=1,
HB(y) is like a histogram for counting the intervals that
cover y. As a result, there might be some valleys in the his-
togram. The valley here is defined as y∗ ∈ Z[ymin,ymax]

that meet the condition HB(y
∗) = 0. There is no token

box in the valleys. Thus, valleys of projection profiles can
determine where the division has to take place.
Augmented XY Cut Algorithm. Traditional XY Cut is
a heuristic divide and conquer algorithm first proposed by
[23] to segment a sentence into words according to the val-
ues of every pixel. In 1995, [11] utilized it to decompose
documents (like newspapers) by applying XY Cut on the
connected components. However, no current work explores
the XY Cut in multimodal models or other deep learning
transformers for obtaining proper reading orders.

As mentioned in the introduction, the token locations are
often recognized with noise. Instead of expensive human
annotations of reading orders, we propose an augmenta-
tion strategy on these noisy locations to generate different
proper reading orders during network training. We believe
the proper reading orders implicitly contain important lay-
out information, significantly benefiting document under-
standing tasks. We only perform traditional XY Cut as a
pre-process during the inference stage.

With the projection profiles and valleys defined above,
Augmented XY Cut can be explained as follows. To bet-
ter introduce it, we construct an XY Tree for recording the
reading order while performing Augmented XY Cut. As
shown in Algorithm 1 and Figure 2(b), we take the boxes
set B as input, and the algorithm will output an index ar-
ray O = {s(i)}Ki=1 as one proper reading order. At first,

we create a root node without any index. Then, unlike
traditional XY Cut, we propose an augmentation strategy
based on three thresholds: λx, λy, θ. Specifically, λx(λy)
are thresholds that determine whether we shift a box on X-
axis (Y-axis). If so, we will shift a box with θ · vx(θ · vy)
pixels in one direction. For every box, we generate two ran-
dom values vx, vy from N(−1, 1). If |vx| > λx(|vy| > λy),
then this box will be shifted with θ · vx(θ · vy) pixels with
the direction according to the sign of vx(vy). In this paper,
we set hyper-parameters as 0.5, 0.5, 5 by default according
to the experimental results.

At each step, the projection profiles are calculated in ei-
ther horizontal or vertical directions. Then a division is per-
formed at the valleys in the corresponding projection profile
to obtain several clusters. Their token boxes are gathered as
the new child nodes of XY Tree in descending order. To
obtain a proper reading order of length K is now divided
into sub-tasks in each cluster with the number of boxes as
the sequence length. The process is repeated recursively un-
til no sufficient valleys are left in both profiles. If a cluster
has more than one box and it can not be divided by both
horizontal and vertical projection profiles, then the reading
order inside this cluster will follow the heuristic rules, e.g.,
descending first by Y-axis then X-axis. Finally, the output
reading order is obtained by collecting the indices on leaves
of the XY Tree w.r.t the tree height.

To better explain the generation of XY Tree, we take Fig-
ure 2(b) as an example. In the first step, we horizontally
project all seven boxes to the Y-axis by calculating the val-
ues of horizontal projection profile HB(y). We find there
is only one valley and then perform a division to get two
clusters in descending order according to their location on
Y-axis (see 1 and 2∪3∪4∪5∪6∪7 in Figure 2(b)). The first
cluster only has one element, i.e. box 1, and thus it is the
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Algorithm 1 Augmented XY Cut Algorithm

Require: boxes: B = {bi}Ki=1, thresholds: λx, λy, θ
Ensure: proper reading order: O = {s(i)}Ki=1

1: Create a root node. ▷ Init XY Tree
2: Do augmentation on B with λx, λy, θ. ▷ Augmentation
3: Find the valleys of horizontal (HB) or vertical (VB)

projection profiles.
4: Do divisions at valleys. Whenever divisions are made,

create a new child node. At each recursion level, hori-
zontal and vertical divisions alternate.

5: Do Step 3-4 recursively until no further divisions are
possible.

6: Gather the indices on leaves as output O.

first leaf of XY Tree. The second cluster has six elements
with the candidate order array 2∪ 3∪ 4∪ 5∪ 6∪ 7 and thus
is fed to the second step with vertical projection profiles. In
the second step, two valleys are detected, and thus, the or-
der of 2 and 7 are decided as the leaves of XY Tree while
3 ∪ 4 ∪ 5 ∪ 6 still need further divisions. By iteratively per-
forming horizontal and vertical projections, we can obtain
the final reading orders on the tree leaves. The pseudo-code
is shown in the Appendix.

3.4. Dilated Conditional Position Encoding

Conditional Position Encoding (CPE) [5] aims to gen-
erate a various-length position embedding for different in-
puts in image classification task. Specifically, it reshapes
the flattened input sequence X back to X ′ in the 2D visual
space. Then, convolutional layers are repeatedly applied to
the X ′ to produce the positional embedding E with proper
kernel and padding size to keep the resolution. Finally, the
position embedding E is flattened and added to the token
embeddings as the transformer input.

However, simply replacing the MLP in LayoutXLM to
CPE reduces the performance in VRDU tasks. One reason
is the wrong neighbors of input tokens due to the improper
reading order. Since CPE conditions on local context with
convolutions, wrong neighbors will harm the model perfor-
mances. Another reason is that CPE is designed specialized
for image classification. The input visual tokens of image
classification are 16 × 16 patches, and they can be natu-
rally reshaped to 2D for local context extraction. However,
in multimodal tasks, we also have 1D textual tokens in our
input. These textual tokens only have 1D relations, so that
they can not be reasonably reshaped to 2D.

The first problem is solved with a proper reading order
obtained by using our Augmented XY Cut. In this section,
we propose Dilated Conditional Position Encoding (DCPE)
to tackle the second problem, i.e., how to extract 1D local
layouts from texts. As shown in Figure 2(a), our DCPE pro-
cesses the textual and visual features individually. Specif-

ically, DCPE reshapes the 2D visual features and gener-
ates their position embeddings following the CPE. While
for textual features, we utilized 1D convolutions to extract
1D local layouts. The encoded embeddings from the texts
and images are concentrated as the final output.

Another observation is that multimodal tasks often need
larger receptive fields while capturing local layouts. For ex-
ample, in the sentence “he is a very handsome boy”, the
relation of “he” and “boy” is essential but can not be suc-
cessfully captured by standard 1D convolutions due to the
small convolution kernel size (e.g., 3). To this end, we adopt
dilated convolution [32] to replace standard convolutions,
aiming for long-range neighbor information with larger re-
ceptive fields. Let l be the dilation rate and the dilated con-
volution ∗l can be formulated as:

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t) (5)

where F, k are the input feature map and filter. By re-
peatedly stacking dilated convolutions with different dila-
tion rates l > 1, the DCPE module will pay more atten-
tion to the long-range neighbor information. Besides, the
dilated convolutions have the same parameters as standard
convolutions given the same kernel size, which means our
DCPE will not increase the model complexity. Note that
new parameters in DCPE are initialized by Xavier and up-
dated with the whole model during training.

4. Experiments
4.1. Setup

Datasets. Following LayoutXLM [29], we conduct exper-
iments on widely used VRDU datasets FUNSD [14] and
XFUN [29]. FUNSD is a form understanding dataset for
scanned documents. It contains 199 annotated forms with
31485 words. XFUN is a benchmark for multilingual Form
Understanding by extending the FUNSD to 7 other lan-
guages, including Chinese, Japanese, Spanish, French, Ital-
ian, German, and Portuguese, with 1393 fully annotated
forms. Each language includes 199 forms, where the train-
ing set includes 149 forms, and the test set includes 50
forms. These two datasets provide the official OCR annota-
tions (bounding boxes and tokens) as the input.
Tasks. We focus on two tasks from VRDU, Semantic Entity
Recognition (SER) and Relation Extraction (RE). Specifi-
cally, SER assigns each token a semantic label from a set
of four predefined categories: question, answer, header, or
other. For RE, following [29], we construct the set of re-
lation candidates by generating all possible pairs of input
tokens. We utilize a specific embedding layer for every pair
to generate token type embedding as the token relation rep-
resentation. The representations of head and tail are con-
catenated and fed into a bi-affine classifier. The F1 score is
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Task Methods XFUN Avg. ZH JA ES FR IT DE PT
XLM-RoBERT [6] 0.7047 0.8774 0.7761 0.6105 0.6743 0.6687 0.6814 0.6818

InfoXLM [4] 0.7207 0.8868 0.7865 0.6230 0.7015 0.6751 0.7063 0.7008
LayoutXLM [29] 0.8056 0.8924 0.7921 0.7550 0.7902 0.8082 0.8222 0.7903
LayoutXLM+CPE 0.8047 0.8776 0.7909 0.7551 0.7908 0.8063 0.8227 0.7898

SER

XYLayoutLM 0.8204 0.9176 0.8057 0.7687 0.7997 0.8175 0.8335 0.8001
XLM-RoBERT [6] 0.4769 0.5105 0.5800 0.5295 0.4965 0.5305 0.5041 0.3982

InfoXLM [4] 0.4910 0.5214 0.6000 0.5516 0.4913 0.5281 0.5262 0.4170
LayoutXLM [29] 0.6432 0.7073 0.6963 0.6896 0.6353 0.6415 0.6551 0.5718
LayoutXLM+CPE 0.6399 0.7059 0.6968 0.6812 0.6238 0.6399 0.6474 0.5723

RE

XYLayoutLM 0.6779 0.7445 0.7059 0.7259 0.6521 0.6572 0.6703 0.5898

Table 1. Comparison with different methods on the XFUN w.r.t F1 score (↑), where “SER” denotes the semantic entity recognition and
“RE” denotes the relation extraction.

Methods Modality SER
BERT [7] Language 0.6026

RoBERTa [6] Language 0.6648
BROS [13] Language 0.8121

LayoutLMv1 [28] Language + Layout+ Vision 0.7927
LayoutXLM [29] Language + Layout+ Vision 0.8276
DocFormer [2] Language + Layout+ Vision 0.8334
SelfDoc [18] Language + Layout+ Vision 0.8336

StructuralLM* [16] Language + Layout 0.8514
XYLayoutLM Language + Layout+ Vision 0.8335

Table 2. Comparison with different methods on the FUNSD w.r.t
F1 score (↑). The * means StructuralLM use the LARGE model
while others use BASE models.

SER REMethods ZH ES ZH ES
LayoutXLM 0.8924 0.7550 0.7073 0.6896

+ CPE 0.8776 0.7306 0.7059 0.6812
+ 2×CPE 0.8819 0.7412 0.7082 0.6820

+ 2×DCPE 0.8952 0.7548 0.7097 0.6843
+ XY Cut 0.8903 0.7562 0.7281 0.7175

+ Aug XY Cut 0.9023 0.7570 0.7389 0.7213
+ Aug XY Cut & CPE 0.9037 0.7597 0.7401 0.7236

+ Aug XY Cut & DCPE 0.9176 0.7687 0.7445 0.7259

Table 3. Ablation studies of XYLayoutLM on XFUN (Chinese,
English) for SER and RE tasks w.r.t F1 score (↑). 2× means we
use two convolutional layers in this module.

used as the evaluation metric for both two tasks.
Model variants. We init the weight of our XYLayoutLM
with pretrained LayoutXLMBASE . We set hidden size
d = 768 and use a 12-layer 12-head transformer. The visual
backbone is ResNeXt101-FPN, and the visual features are
from its P2 layer in FPN following LayoutXLM.
Training details. We use the same hyper-parameters with
LayoutXLM for fair comparisons on two datasets. On

SER REMethods ZH ES ZH ES
default order 0.8924 0.7550 0.7073 0.6896

remove-pos-embed 0.8842 0.7477 0.6941 0.6682
descending (Y,X) 0.8857 0.7486 0.7297 0.7179
descending (X,Y) 0.8561 0.7343 0.6858 0.6549
descending (X+Y) 0.8844 0.7513 0.7235 0.7086

XY Cut 0.8903 0.7562 0.7281 0.7175
Aug descending (Y,X) 0.8925 0.7543 0.7331 0.7212

Aug XY Cut (0.5, 0.5, 1) 0.8913 0.7568 0.7282 0.7178
Aug XY Cut (0.2, 0.2, 5) 0.9011 0.7586 0.7387 0.7202
Aug XY Cut (0.5, 0.5, 5) 0.9023 0.7600 0.7389 0.7213
Aug XY Cut (0.7, 0.7, 5) 0.8918 0.7541 0.7260 0.7166

Aug XY Cut (0.5, 0.5, 10) 0.8702 0.7399 0.6920 0.6894

Table 4. F1 scores (↑) of baseline LayoutXLM based on different
reading orders on XFUN (Chinese, English).

XFUN, the learning rate and batch size are set as 5× 10−5

and 32 for the SER task, respectively. We train the model
with 1000 iterations for convergence. For the RE task, the
batch size is 8 with 2500 iterations for training. While on
the FUNSD, the batch size is 16, and we train the model for
1000 iterations following [30].

4.2. Main Results

Here we compare our method with textual-based meth-
ods XLM-RoBERT [6], InfoXLM [4] and LayoutXLM [29]
on XFUN. The results are shown in Table 1. From the ta-
ble we can observe that XYLayoutLM achieves the best
performance among the listed methods. More specifi-
cally, among the multimodal methods, XYLayoutLM out-
performs the original LayoutXLM [29] by 1.48% F1 score
on the XFUN dataset for the SER task. Besides, our XY-
LayoutLM achieves a 0.6779 F1 score in RE task, which is
an obvious improvement beyond the baseline LayoutXLM
(0.6432). Similar conclusions are drawn on the FUNSD
dataset as shown in Table 2. Our XYLayoutLM achieves
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DCPE SER RE
Text Image ZH ES ZH ES

Conv2d Conv2d 0.9037 0.7597 0.7059 0.6812
Conv1d Conv1d 0.9091 0.7613 0.7066 0.6832
Conv1d Conv2d 0.9140 0.7625 0.7256 0.7106

D-Conv1d Conv2d 0.9163 0.7669 0.7440 0.7244
Conv1d D-Conv2d 0.9149 0.7642 0.7427 0.7211

D-Conv1d D-Conv2d 0.9176 0.7687 0.7445 0.7259

Table 5. F1 scores (↑) of XYLayoutLM based on different DCPE
architectures on XFUN (Chinese, English).

comparable performances with latest methods like Doc-
Former [2] and SelfDoc [18]. Note that StructuralLM* [16]
uses the LARGE model to get the best performance while
other methods in this table only use the BASE model.

Another observation is that only using CPE [5] on the
LayoutXLM for position embeddings generation harms the
performances on all tasks. This observation verifies our
claim on the weakness of CPE for multimodal networks as
mentioned in Section 3.4.

4.3. Ablation Studies

We perform SER experiments on the Chinese and En-
glish subsets of the XFUN dataset for the ablation studies.
First, we show the impact of progressively integrating our
different components: the DCPE and Augmented XY Cut
module, to the baseline in Table 3. Then we explore differ-
ent settings of each component individually.
Analysis for Components. As shown in Table 3, we first
use the CPE to generate position embeddings instead of
MLP in LayoutXLM, which decreases about 0.2% F1 score.
It can be explained that the local context obtained by CPE
for position embeddings generation is noisy due to the un-
reasonable reading order and wrong neighbors. In the third
and fourth rows, we replace the CPE with our proposed
DCPE with dilated convolutions, resulting in an improve-
ment on all tasks. Note that 2× means we stack two convo-
lutional layers in each module since only one dilated con-
volutions may lose the information in the holes.

However, the performance gain of only using DCPE suf-
fers from improper reading orders. Next, we only add XY
Cut to the baseline, leading to significant improvements of
F1 score on both SER (1%) and RE (3%) tasks, which ver-
ifies the essential effect of proper reading order. Further-
more, when we only perform Augmented XY Cut (Aug XY
for short in table), its improvement is satisfactory. The last
two rows show the performances of CPE and DCPE asso-
ciated with Augmented XY Cut. We can observe that our
DCPE achieves much better results than CPE because of the
larger receptive fields on both textual and visual features.

Moreover, benefiting from the Augmented XY Cut,
the improvements of DCPE are highly promoted. When

adapted to the baseline model in the default improper read-
ing order, DCPE only gains 0.1% F1 score improvement on
the Chinese subset of XFUN in the SER task. However,
after Augmented XY Cut, the improvement comes to 1.5%.

In total, the whole improvements of XYLayoutLM upon
baseline LayoutXLM indicates the effectiveness of our two
contributions, Augmented XY Cut and DCPE.
Analysis for Augmented XY Cut. The token reading order
is an essential factor of the effective document understand-
ing method. Thus, to evaluate the improvement achieved by
our proposed Augmented XY Cut, we conduct experiments
on XFUN with different reading orders based on the base-
line LayoutXLM as shown in Table 4. When we removed
all the position embeddings as shown in the second row,
the performance decreased for SER and RE tasks, which
indicates the importance of position embeddings for incor-
porating the reading order. The next four rows are heuris-
tic rules for sorting tokens, i.e., descending first by Y-axis
then X-axis, first by X-axis then Y-axis, by Y+X based on
the left-top point of the token box and traditional XY Cut.
However, their performances are not satisfying compared to
the baseline. Finally, by using our Augmented XY Cut, the
model achieves the best performance. Note that we set the
hyper-parameter λx, λy, θ as 0.5, 0.5, 5 since it has slightly
better performance than other choices.
Analysis for DCPE. Besides the ability to deal with
various-length inputs, the DCPE module also plays a critical
role in our XYLayoutLM for gathering local layouts from
both textual and visual features. Thus, we compare several
settings inside the DCPE module to improve its effective-
ness. As presented in Table 5, with the replacement of stan-
dard convolutional layers to dilated ones for textual and vi-
sual tokens, the network performance improves steadily and
achieves the peak F1 score when using dilated convolutions
for both textual and visual tokens. Another observation is
that 1D convolutions can better extract textual features than
2D ones, which also verifies our claim on the reasons for
the failure of CPE in multimodal networks.

With these ablation studies, we conclude that in XYLay-
outLM: the Augmented XY Cut and DCPE module all play
essential roles w.r.t. the final performance.

4.4. Visualizations

Effects on attention scores. We have shown that XYLay-
outLM can have better performance than the original base-
line LayoutXLM. However, because the Augmented XY
Cut and DCPE provide the layout information implicitly in
the position embeddings, it is interesting to see the attention
weights of the transformers. Given a document, the size of
the attention score is 561× 561 following LayoutXLM (512
textual tokens and 49 visual tokens). We visualize the at-
tention score matrix from different attention layers of one
sample with the same reading order in Figure 3. Note that
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1st layer                                   12th layer

XYLayoutLMLayoutXLM

1st layer                                   12th layer

Figure 3. Visualizations of the attention scores from one sample based on LayoutXLM and XYLayoutLM. The attention score maps are
from the twelveth attention head in the first/twelveth attention layer. Best viewed in color.

Default order

After XY Cut

Figure 4. Visualizations of Augmented XY Cut on input tokens.
The reading order is shown as the red indices.

Ground-truth LayoutXLM XYLayoutLM

Figure 5. Predictions of LayoutXLM and XYLayoutLM for SER
task. The red words are the ground truth. The blue and green
words are the prediction of LayoutXLM and XYLayoutLM, re-
spectively. Best viewed in color.

these attention score maps are all from the twelfth attention
head without normalization.

From Figure 3 we can draw the following conclusions.
The attention weights of XYLayoutLM are larger than Lay-
outXLM in most layers, which means XYLayoutLM can
better capture the attention and relations among tokens.
Moreover, benefiting from DCPE, XYLayoutLM can ex-
tract more layout information from the local neighbors since
the bright lines in XYLayoutLM are bolder.

Augmented XY Cut. We visualize the tokens reading order
before and after our proposed Augmented XY Cut in Fig-
ure 4. The figure shows that our XY Cut successfully sorts
the input tokens in proper reading order.

Performances on XFUN. The visualization of XYLay-
outLM and LayoutXLM on the XFUN dataset is shown in
Figure 5. The red color in this figure denotes the ground
truth, while the blue and green colors mean the predicted
categories of LayoutXLM and XYLayoutLM, respectively.
The figure shows that our XYLayoutLM can classify tokens
better in challenging situations than LayoutXLM.

5. Conclusion

In this work, we introduced XYLayoutLM, a simple yet
effective multimodal network for document understanding.
Our model contains two related contributions, i.e., Aug-
mented XY Cut for proper reading order and DCPE for
generating various-length position embeddings with local
layout information. Moreover, it achieves competitive re-
sults on several VRDU datasets. We hope our work could
inspire designing new frameworks to tackle the challenging
document understanding tasks.
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Graliński. Lambert: Layout-aware language modeling for
information extraction. In ICDAR, 2020. 1, 2

[11] Jaekyu Ha, Robert M Haralick, and Ihsin T Phillips. Recur-
sive xy cut using bounding boxes of connected components.
In ICDAE, 1995. 2, 3, 4

[12] Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang. A
table detection method for pdf documents based on convolu-
tional neural networks. In DAS, 2016. 1

[13] Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang,
Daehyun Nam, and Sungrae Park. Bros: A pre-trained
language model focusing on text and layout for better key
information extraction from documents. arXiv preprint
arXiv:2108.04539, 2021. 6

[14] Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe
Thiran. Funsd: A dataset for form understanding in noisy
scanned documents. In ICDARW, 2019. 5

[15] Anoop Raveendra Katti, Christian Reisswig, Cordula Guder,
Sebastian Brarda, Steffen Bickel, Johannes Höhne, and
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