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Abstract

Deep neural networks have achieved impressive perfor-
mance in a variety of tasks over the last decade, such as au-
tonomous driving, face recognition, and medical diagnosis.
However, prior works show that deep neural networks are
easily manipulated into specific, attacker-decided behaviors
in the inference stage by backdoor attacks which inject ma-
licious small hidden triggers into model training, raising
serious security threats. To determine the triggered neurons
and protect against backdoor attacks, we exploit Shapley
value and develop a new approach called Shapley Prun-
ing (ShapPruning) that successfully mitigates backdoor at-
tacks from models in a data-insufficient situation (1 image
per class or even free of data). Considering the interaction
between neurons, ShapPruning identifies the few infected
neurons (under 1% of all neurons) and manages to protect
the model’s structure and accuracy after pruning as many
infected neurons as possible. To accelerate ShapPruning,
we further propose discarding threshold and ϵ-greedy strat-
egy to accelerate Shapley estimation, making it possible to
repair poisoned models with only several minutes. Exper-
iments demonstrate the effectiveness and robustness of our
method against various attacks and tasks compared to ex-
isting methods.

1. Introduction
Over the past years, Deep Neural Networks (DNNs) play

a great role in machine learning and are applied in many
critical domains such as face recognition [39], image gen-
eration [11, 12], autonomous driving [7], and medical diag-
nosis [22, 45]. However, because of a lack of transparency
and interpretability [21, 27, 44], DNNs are easy to be ma-
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nipulated by an adversary into attacker-decided behaviors
and make serious mistakes in security-related areas, causing
serious threats and concerns. For example, it has been ob-
served that adding deliberate and small distortion to the im-
ages in inference stage(i.e., adversarial examples) can cause
misclassification in neural network classifiers [15].

Backdoor attacks, on the other hand, are a different type
of attack, making use of opacity and overfitting of DNNs
to create a maliciously trained network which achieves
state-of-the-art performance on normal samples but behaves
badly on specific attacker-chosen inputs. Gu et al. [16]
demonstrates that, compared with adversarial examples,
backdoor attacks can cause wrong predictions in models
with much smaller distortion. Meanwhile, for black-box
models like DNNs, it is difficult to identify the backdoor,
and we can only use the test dataset to judge whether they
are poisoned. Thus, the backdoor attack is more impercep-
tible and dangerous [1,8]. Furthermore, as training on cloud
or directly using the third-party trained models becomes
more common today [47], backdoor attacks have more ac-
cess to the models’ training procedure. Thus, it is much
easier for them to inject triggers into models in recent years.

The vulnerabilities to backdoor attacks raise concerns
about the security of DNNs [24], and many defense meth-
ods have been proposed, trying to mitigate backdoor from
the models e.g. Fine Pruning [25], Neural Cleanse [41],
GangSweep [48] etc. However, these methods need a rela-
tively large amount of clean data (e.g. 10% of training data
required in Neural Cleanse), and can’t locate poisoned neu-
rons accurately (e.g. pruning 70% of all neurons in Fine
Pruning). To determine the poisoned neurons and mitigate
backdoor, we introduce Shapley value and propose a Shap-
Pruning framework to guide detecting the attacked neurons,
which successfully mitigates backdoor in the given models.
Shapley value is a concept from game theory and is used
to allocate worth to cooperative players [2, 13, 36]. We use
Shapley value to attribute the overall backdoor behavior to
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Figure 1. Shapley Pruning Framework. Our framework consists of four components, trigger and data reverse, detection, Shapley estimation,
backdoor mitigation, and can effectively remove backdoor in models.

each neuron and find neurons with the largest Shapley value
which are the most responsible for backdoor behavior in
models. Compared to prior work, our ShapPruning method
can handle the data-insufficient situation and needs only a
tiny amount of data (e.g. one image per class or even free
of clean data) and prunes a very small number of neurons
(about 1% of all the neurons), to maintain a good classifi-
cation accuracy (under 1% accuracy decline in most cases)
and clean backdoor clearly.

Our contributions are summarized as follows:

• We introduce Shapley value into the backdoor area and
propose a backdoor mitigation method called Shapley
Pruning which can locate and prune poisoned neurons
accurately with the reversed trigger.

• We also propose discarding threshold and ϵ-greedy to
accelerate Shapley value’s estimation, which yields a
more accurate estimation with much less time.

• Our method considers the relationship between neu-
rons and locates the attacked neurons accurately with
few images. As a result, it can prune only 1% of all
neurons to recover the model with a small accuracy de-
crease (accuracy declines 0.1% in the GTSRB dataset
and the attack success rate drops to 0.4%). Moreover,
our method is robust in different situations.

• We utilize information in model’s batch normalization
layer and propose a data-free backdoor cleanse method
with mixture-mode ShapPruning.

2. Related Work
Many defense methods have been proposed to deal with

the security threats of backdoor attacks. From the perspec-

tive of the defender, there are two main settings to mitigate
backdoor, i.e., model available defense and data available
defense. Data available defenses usually use anomaly de-
tection to detect and eliminate abnormal images in the poi-
soned training dataset [6, 40], or weaken the influence of
backdoor dataset during model training [23, 33, 38]. How-
ever, in many cases, datasets are unavailable due to privacy
concerns and what we can have access to is only trained
models which might be injected malicious backdoor at-
tacks. Thus, model available defense attract more attention.
Our work considers this setting and focuses on clean data
insufficient situations to recover poisoned models.

There is a broad body of literature trying to solve this
problem. Fine Pruning [25] uses the activation of each neu-
ron on clean data to determine which neurons to prune. But,
because deep neural networks are complicated, using acti-
vation to guide neuron pruning ignores the correlation be-
tween neurons and can’t locate the poisoned neurons accu-
rately. Neural Cleanse [41] tries to reverse triggers and uses
an unlearning way to patch the model. To improve Neural
Cleanse, GangSweep [48], Tabor [17], and DeepInspect [3]
were proposed to use GANs [14] and interpretable AI to
generate better-reversed triggers. However, these methods
can’t accurately locate the neurons under attack, and their
performance, to some extent, depends on fine-tuning. As a
result, they usually need a relatively large amount of clean
data and prune a large number of neurons. When clean data
is insufficient, the performance of these methods declines.
Besides, DeepInspect [3] is fragile, limited, and the data
reverse used by this method is based on a single-layer net-
work and a small face dataset situation [10]. Unlike the
previous method, our method can mitigate backdoor from
the poisoned models with only few images (even without
clean data) and prune only a few neurons.
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3. Method
We present our Shapley Pruning framework in this sec-

tion. Firstly, we introduce Shapley value to DNNs and give
its definition. Then, we give an algorithm for estimating
Shapley value where we propose ϵ-greedy and discarding
threshold to accelerate its estimation. Since Shapley value
is evaluated on backdoor dataset, we involve trigger reverse
synthesis to generate that dataset. Finally, we involve im-
age recovery and propose a data-free backdoor mitigation
method. An overview of our framework is given in Fig. 1.

3.1. Shapley Value

In DNNs, since there are a large number of neurons
and complicated interactions between them, it is difficult
to quantify each neurons’ contribution to the overall output.
To tackle this problem, we introduce Shapley value which,
as one of the most important concepts in cooperative game
theory, can allocate values to each player using the average
of marginal values [2], and be used to determine the con-
tribution of each neuron to the overall output [13]. We can
treat a network as an n-player game with each neuron as
a player. Let N be the set of all n neurons in the neural
networks, denoted by N = {1, . . . , n} and m be a metric
function evaluating performance of players. In neural net-
works, m can be a score function such as accuracy or loss.
The marginal contribution of neuron i can be defined as:

margin(i) = m(C ∪ {i})−m(C) (1)

where C is a subset of players not containing i, i.e., ex-
pressed as C ⊂ N\i. With the marginal contributions,
Shapley value ϕ for neuron i can be defined using the aver-
age of them as follows [36]:

ϕi(m) =
1

n

∑
C⊂N\i

PC · (m(C ∪ i)−m(C)) (2)

where PC = (n−c−1)!c!
(n−1)! represents the relative importance

of subset C , and c is the cardinality of C. In the next sub-
section, we will provide an algorithm for computing Shap-
ley value for each neuron.

3.2. Estimation for Shapley Value

From Eq. (2), Shapley value can be expressed as the av-
erage of marginal contributions of the neuron in all possi-
ble orders. We define O as a permutation of neurons and
Af i(O) means a subset of neurons after neuron i in the or-
der O. π(N) is all possible orders of neurons. Then, Shap-
ley value of neuron i can be rewritten as follows [2]:

ϕi(m) =
∑

O∈π(N)

1

n!
(m(Af i(O) ∪ i)−m(Af i(O)))

i = 1, . . . , n

(3)

Eq. (3) shows that computing ϕi is equivalent to calculating
the expectation of a random variable. Despite that estimat-
ing Shapley value exactly is time-consuming as it involves
n! permutations of all neurons in deep neural networks, we
can approximate it by applying the Monte-Carlo estima-
tion [9] which first samples permutations of neurons and
then calculates the average of marginal contributions with
those sampled permutations. Further, we propose discard-
ing threshold and ϵ-greedy acceleration to estimate Shapley
value more fast and precisely.

Discarding threshold. The main computational cost in
estimating Shapley value is computing the marginal con-
tribution of each neuron. For a small subset of neurons
Af i(O), our experiments find that after removing a small
portion of neurons, ASR (attack success rate) of the net-
works will reduce to a low rate sharply. Thus, the marginal
contribution of neurons after that can be negligible, and we
can avoid calculating it, which saves substantial computa-
tional cost. Moreover, we mainly focus on top-k neurons
which are the most important in ASR when the network
structure is complete and the performance is normal. Thus,
we propose to discard neurons’ marginal value after ASR
is below a threshold, e.g. 0.2. Note that we do not set the
marginal value of the neurons to be zero after the model’s
performance reduces to a low rate. This is because if the
neurons with larger Shapley value are in the latter part of the
permutation, the marginal value of those neurons will be set
to zero, making their Shapley value underestimated, espe-
cially when the number of average iterations is small. Our
experiments also demonstrate that setting to zero can cause
fluctuation and randomness in Shapley estimation, which
needs a large average iteration to offset that negative effect.

ϵ-greedy acceleration. Since we focus on neurons with
top-k largest Shapley values, neurons with larger Shapley
value should be calculated more times to be estimated more
precisely and get a more accurate sorting of them. However,
because of discarding threshold, the neurons after ASR is
under a threshold will be discarded and lose the opportu-
nity to be computed. To improve their calculation times, we
should assign neurons with the top Shapley values a higher
probability to be at the front of the permutations. To this
end, we propose an ϵ-greedy based acceleration.

ϵ-greedy algorithm [42], as an optimization method, se-
lects the best choice with probability 1−ϵ and chooses from
all the choices randomly with probability ϵ. ϵ-greedy algo-
rithm is usually used in reinforcement algorithm and helps
find the best choice in the action space [19]. Thus, to im-
prove estimation efficiency, we follow this idea and propose
an ϵ-greedy based algorithm, balancing exploration and uti-
lization in finding the top-k Shapley value neurons. We di-
vide neurons into two groups based on the current Shap-
ley value, estimated by the current average of each neu-
rons’ marginal values, top-m and the other (m ≥ k). We
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randomly permute neurons before the average iteration is
smaller than l. Then after l, we utilize ϵ-greedy, choosing
a random neuron from top-m with probability 1 − ϵ and
choosing from the others with probability ϵ iteratively, and
get a permutation to prune the neurons.

3.3. Trigger Reverse Synthesis

We choose ASR as the metric function to estimate each
neurons’ Shapley value, and therefore, we need the back-
door dataset to calculate ASR. Furthermore, backdoor at-
tacks manipulate DNNs to specific behaviors only on trig-
gered images, indicating that the poisoned neurons are only
activated on the backdoor images rather than normal im-
ages. Thus, reversing triggers from the backdoor networks,
as an important part, can help the removal of backdoor neu-
rons in poisoned models. Intuitively, backdoor attacks make
use of DNNs’ overfitting feature to create a shortcut for the
trigger to cause DNNs’ misclassification. We can use the
trigger reverse synthesis to reverse backdoor trigger in the
models and generate the reversed backdoor dataset [41].

We first inject class-specific reversed trigger Tc into
clean images and get the triggered image ac as follows:

ac = (1−Mc)⊙ a+Mc ⊙ Tc (4)

where Mc represents the mask for class c, deciding the lo-
cation and intensity of trigger being injected into original
images, a represents the original image, Tc represents the
trigger patter for class c and ⊙ means Hadamard product.
Similar to adversarial example generation, we optimize on
networks’ misclassification and trigger size to reverse back-
door. We use Cross-Entropy loss to optimize misclassifica-
tion of triggered images to class c and L1 norm of the mask
to optimize the trigger size. We sum the above objectives
and get the equation as follows:

min
Mc,Tc

CE(yc, f(ac)) + λ · |Mc|1 for a ∈ A (5)

where yc represents label for class c, A represents clean im-
ages available, CE(·) represents Cross-Entropy loss, |Mc|1
represents L1 norm of the mask, and λ represents the trade-
off parameter.

From the above method, we can get the reversed trigger
for each target class. However, judging whether the network
is poisoned and which is the target label is still a problem.
Intuitively, since backdoor training produces a shortcut for
the backdoor trigger in the poisoned models, the reversed
trigger for the target label is the smallest among all the
classes. Thus, we can get the reversed trigger and target
label by finding the smallest trigger in trigger reverse syn-
thesis.

Backdoor model detection. First, the L1 norm of the
reversed trigger for the target label is much smaller than the

others. Thus, L1 norm for the target label can be seen as
an outlier from the other triggers, and we can use anon-
amly detection method to find the target label. We em-
ploy MAD (Median Absolute Deviation) to judge whether
the models are poisoned. By MAD, supposing that mask
norms obey normal distribution [34], any anomaly index
I = di/MAD larger than a specific value will be treated
as an outlier, where di is the absolute deviation between
triggers’ L1 norm and their median.

However, in experiments, we find that the reversed trig-
gers for some classes can’t converge to a small L1 norm, and
their norms are abnormally larger than expected, causing a
false positive in backdoor detection. Different from [41],
since we only focus on whether the smallest reversed trig-
ger is an outlier, we can just apply MAD to the set of the
triggers whose norms are smaller than the median to avoid
anomaly large norms. We define their deviations’ set as
Dsmall = {d1, . . . , dl}. Furthermore, because normal dis-
tribution is symmetrical, the median of Dsmall can be used
to replace the median of all labels’ deviation as MAD. Then,
we can use MAD to estimate the standard deviation σ of the
distribution of norms and use it to detect backdoor model
with confidence probability p, expressed as follows:

σ =
MAD

Φ−1( 34 )
≈ 1.4826 ·MAD (6)

di
σ

≤ d = Φ−1(
p+ 1

2
), di = d1, d2, · · · , dl (7)

where Φ(·) represents cumulative probability distribution of
standard normal distribution and d represents max bound
for di/σ with probability p. The norm with the deviation
larger than σ · Φ−1(p+1

2 ) is an outlier and the model has
been poisoned.

3.4. Data-free Backdoor Mitigation

As we mentioned above, we can mitigate backdoor from
models with few images using ShapPruning. Then we fur-
ther research on a no clean data situation and propose a data-
free ShapPruning method. To help data-free backdoor mit-
igation with Shapley estimation, we need to reverse train-
ing images from the poisoned models first. Recent works
in transfer learning show that the batch normalization layer
(BN layer) can be used to recover better images from the
trained models and improve transfer efficiency [5, 18, 43].
Furthermore, because backdoor attacks only poison a very
small portion of training datasets, they won’t affect the in-
formation in BN layers, and thus, we can use BN layers to
better reverse images. Then we can express the difference
of the mean and variance between the recovered data and
original training data in the model’s each BN layer as fol-
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lows:

Lbn(x) =
∑
i

div(N(µi(x), σi(x))), N(µi, σi)) (8)

where div(·) represents divergence, N(µi(x), σi(x)) repre-
sents mean and variance of recovered data x on BN layer
i, and N(µi, σi) represents mean and variance recorded in
BN layer i. Furthermore, considering the image prior infor-
mation, we got the prior loss as follows:

Lpr(x) = α1LV (x) + α2Lnorm(x) (9)

where LV (x) represents the variation of images, Lnorm(x)
represents images’ norm, and α1, α2 are hyper-parameters.
Then, with the analysis above, we use the total loss Ltotal

to reconstruct the training images from poisoned models for
estimating Shapley value:

Ltotal(x) = αCE(f(x), y) + βLbn(x) + γLpr(x) (10)

where CE(·) represents the Cross Entropy loss, f(·) rep-
resents the trained model, y represents the target label to
reconstruct images and α, β, γ are hyper-parameters.

Mixture-mode. Furthermore, because there is still a dif-
ference between clean images and recovered images, our
experiments find that there is a larger accuracy degrada-
tion during data-free ShapPruning. Therefore, we propose
a mixture-mode and try to combine information of Acc (ac-
curacy) and ASR. We calculate Shapley value of Acc and
ASR separately and find neurons with top-k ASR Shapley
value and bottom-l Acc Shapley value to prune. And our ex-
periments demonstrate that this way can help us locate the
neurons which are only important to backdoor but not over-
all accuracy, locating poisoned neurons more accurately.

3.5. Pruning Based on Estimated Shapley Value

Finally, we summarize our framework illustrated in
Fig. 1. We first use trigger reverse synthesis to get the re-
versed trigger and the target label. Then we inject the trigger
into clean data (in the data-free situation, clean data is re-
covered from poisoned models), and get the reversed back-
door dataset. Then, using ASR as a measurement, we im-
plement the accelerated Shapley value estimation method
to get top-k neurons with the largest Shapley value. Fi-
nally, we prune the target network with the top neurons,
fine-tune the network with the clean data available, and of-
fer backdoor-free networks to the users.

4. Experiment
We evaluate our backdoor defense method with five

mainstream tasks against five common attacks, BadNets
Attack [16], Trojan Attack [26], Physical Key Attack [4],
Input-Aware Attack [30] and WaNet Attack [31] in data-
insufficient situations on VGG [37] and ResNet [20], and

design a series of experiments to test its effectiveness and
robustness.

4.1. Experimental Setup

We compare ShapPruning with four existing meth-
ods Fine Pruning (FP) [25], Neural Cleanse (NC) [41],
GangSweep (GS) [48] and DeepInspect (DI) [3] on the
following five datasets (1).MNIST (2).CIFAR10 (3).CI-
FAR100 (4).GTSRB (5).YouTubeFace.

Attack configurations for BadNets. In our experi-
ments, BadNets poisons images with a random colored
square shown in Fig. 2. The trigger sizes are 5 × 5 or
10 × 10 to test our defense’s robustness against different
trigger sizes. We resize the images to 96 × 96, and thus,
the trigger size is about 1% of the image size and injection
ratio is 1%. Our experiments are based on a VGG11-based
model which is usually used in model compression tasks.

Attack configurations for Trojan Attack. We generate
the trojan trigger shown in Fig. 5 with an initial square mask
using gradient descent. Then, with the generated trigger,
we fine-tune the trained model on the linear layers to inject
backdoor into pre-trained models.

Attack configurations for Physical Key Attack. Phys-
ical Key Attack uses a pair of commodity glasses shown in
Fig. 5 rather than a small square to inject backdoor into the
model and can be more imperceptible.

Attack configurations for Input-Aware Attack. It uses
a generator to generate sample-specific triggers. We set the
Input-Aware Attack in all-to-one mode and attain a model
with 99.41% ASR with the same setting in [30].

Attack configurations for WaNet Attack. It uses
warping-based triggers to generate sample-specific, unde-
tectable triggers. We defend against WaNet based on the
same setting in [31].

Available data. We suppose the defender can only get
a small amount of clean data, specifically, one image per
class in the few-shot setting e.g. only 10 images available
for MNIST and CIFAR10. Furthermore, we propose a more
strict condition in Sec. 4.5 where only the poisoned models
are available but no clean data to help mitigate the backdoor.

4.2. Shapley Pruning

In this subsection, we compare ShapPruning with other
defense methods and prove its effectiveness.

Trigger reverse synthesis. We first use trigger reverse
synthesis to get the reversed trigger in Figs. 2 and 5 where
we find the reversed triggers and original triggers are in a
similar location of the images, but have a relative differ-
ence in shape and color, caused by the insufficiency of data.
Also, trigger reverse synthesis penalizes L1 norm, caus-
ing reversed triggers smaller than the original ones. These
mismatches lead to some performance degradation in the
backdoor mitigation compared with defense with the origi-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Original and reversed triggers in BadNets. (a), (c), (e),
(g) are original triggers for CIFAR10, YouTubeFace, MNIST, GT-
SRB with the size of 10× 10, 10× 10, 5× 5, 5× 5 respectively.
(b), (d), (f), (h) are reversed triggers for CIFAR10, YouTubeFace,
MNIST, GTSRB using trigger reverse synthesis.

nal trigger. However, despite the differences, ShapPruning
can still locate the poisoned neurons precisely and mitigate
backdoor with different trigger sizes.

Pruning based on Shapley value. With the reversed
poisoned data, we prune neurons in the order produced by ϵ-
greedy and compute ASR decline in output iteratively, find-
ing 50 average iterations are precise enough for estimating
Shapley value and locating poisoned neurons. We compare
our method with other three common methods including
Fine Pruning (FP), Neural Cleanse (NC), and GangSweep
(GS). From Tab. 1, ShapPruning mitigates backdoor best in
poisoned models at the price of a tiny accuracy decline with
only one image per class. On the contrary, other methods
can’t clean backdoor attacks with that few images. Espe-
cially, all the other defenses perform weaker in MNIST and
CIFAR10 with only 10 clean images, which are fewer than
the other two datasets, GTSRB and YouTubeFace.

We suppose the poor performance of Neural Cleanse
(NC) and GangSweep (GS) is caused by both the gap be-
tween the original and reversed trigger, and the weak gen-
eralization of training with a small amount of clean data.
We explain the trigger gap’s influence on mitigation degra-
dation with the concepts from adversarial training. Neu-
ral Cleanse or GangSweep is similar to adversarial train-
ing [35, 46], which meets with performance degradation
and poor generalization against different attacks. Thus, NC
or GS, similar to adversarial training, behaves poorly with
bigger trigger gaps, which is also found in [32]. Further-
more, we show Acc and ASR fluctuation during ShapPrun-
ing and Fine Pruning in Fig. 3. It demonstrates that Shap-
Pruning can remove backdoor with only 1% of total neu-
rons, compared with about 25% neurons removal in Fine
Pruning. Fine Pruning, with that number of neurons pruned,
may cause network structure changes and accuracy decline.
Also, the insufficiency of clean data can weaken fine-tuning
process and cause large accuracy fluctuation, especially in
MNIST and CIFAR10 with only 10 images.

Defense against different attacks. We also defend
against different attacks to test our method’s robustness.
We first show reversed triggers in Fig. 5, where an ob-
vious reversed gap is found. Based on the reversed trig-
gers, we use different defense methods to mitigate back-
door, shown in Tab. 1. Also, we defend against Input-Aware
Attack and WaNet Attack which both inject sample-specific
triggers into images to activate the backdoor. Our experi-
ment demonstrates that although there are different triggers
for different samples, sample-specific attacks still rely on a
small number of sensitive neurons to activate backdoor and
our method can find them precisely.

Time consumption. We conducted our experiments on
Titan RTX GPU with 24GB memory and recorded time
consumption for different methods in mitigating backdoor
attacks. We compare our method with Neural Cleanse in
GTSRB and find our method only consumes 585.95 sec-
onds with 50 average iterations’ Shapley estimation to get
results in Tab. 1 after 671.13 seconds spent on trigger re-
verse. On the contrary, Neural Cleanse consumes 704.54
seconds which is 1.7x faster than our method. However,
Neural Cleanse needs much more data and can’t completely
remove triggers in the few-shot setting. Furthermore, our
method is time-saving and needs much less clean data com-
pared with training a clean model from scratch.

4.3. Defense with Different Data Amounts

Previous methods need a large amount of clean data to
mitigate backdoor, and thus, we want to explore the influ-
ence of the amount of clean data on backdoor mitigation.
We compare mitigation results in Acc and ASR using Fine
Pruning and ShapPruninig with different amounts of clean
data in Fig. 4. Our experiment illustrates that backdoor miti-
gation performance improves with the amount of clean data
rising and there is a significant fluctuation in ASR during
Fine Pruning with just 1 image per class. We attribute it
to the lack of data to activate some normal neurons and
there may be low activation values in many neurons, some
of which are not poisoned. Furthermore, since data insuffi-
ciency weakens fine-tuning, Fine Pruning performance de-
clines further. Similarly, ShapPruning with 300 images for
each class performs best. But with the improvement of the
data amount, backdoor mitigation is promoted to a rela-
tively small extent. Furthermore our method performs the
best in different experiments among all these defense meth-
ods with the same amount of data.

4.4. Acceleration Comparison

In this subsection, we compare our method of ϵ-greedy
with T-MAB [13] which uses Bernstein error bounds [28,
29] and find our method can more precisely and efficiently
locate neurons with the largest top-k Shapley values under
the same average iterations. We estimate Shapley value of
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Figure 3. Acc and ASR fluctuation when pruning neurons guided by ShapPruning or Fine Pruning. (a)-(d) are for ShapPruning with max
3% of all the neurons pruned and (e)-(h) are for Fine Pruning with max 25% of all the neurons pruned.

Benchmark Before FP [25] NC [41] GS [48] ShapPruning ShapPruning/o
(%) Acc ASR Acc↑ ASR↓ Acc↑ ASR↓ Acc↑ ASR↓ Acc↑ ASR↓ Acc↑ ASR↓

MNIST 99.02 100.00 97.00 3.02 98.64 29.87 95.30 80.33 98.99 0.34 99.06 0.56
CIFAR10 86.05 99.57 35.39 10.19 78.98 46.32 83.45 100.00 85.63 0.06 85.66 0.03
GTSRB 97.03 99.60 96.26 6.16 96.69 4.76 96.63 1.11 96.94 0.49 97.16 0.46

YouTubeFace 98.93 99.82 97.49 0.61 95.66 7.38 90.90 0.58 98.61 0.35 98.67 0.34
Input-Aware 99.41 99.37 98.12 2.66 99.32 43.55 88.85 32.05 99.29 0.15 99.35 0.24

Trojan Attack 97.08 92.06 16.32 2.56 95.01 2.01 96.33 10.91 96.03 0.98 96.44 0.64
Physical Key 98.39 100.00 90.70 0.05 98.49 64.34 97.21 54.21 95.94 0.60 97.26 0.08

WaNet 98.21 98.10 37.90 10.82 97.92 97.11 96.28 90.24 97.54 0.93 97.73 0.32
ResNet-18 95.17 100.00 17.03 0.79 90.44 43.10 89.46 57.73 92.25 0.48 92.71 0.20
ResNet-34 98.37 99.98 97.93 0.19 98.65 0.25 56.84 6.55 98.49 0.07 98.51 0.05

Table 1. Different defenses methods against five common attacks and two common architectures (VGG and ResNet), where ShapPruning/o
represents ShapPruning with original trigger. The first four lines show defenses against BadNets on four common datasets, the fifth to
eithth lines show defenses against four different attacks (Input-Aware Attack on MNIST, Trojan Attack on GTSRB, Physical Key on
YouTubeFace and WaNet on GTSRB), and the ninth and tenth lines show defenses against ResNet (ResNet-18 on GTSRB and ResNet-34
on YouTubeFace). We record their Acc (higher is better) and ASR (lower is better) in the table.

neurons with 50 average iterations using these two methods.
Meanwhile, we use the Monte-Carlo estimation of 5000 av-
erage iterations as the actual Shapley value for this task.
We arranged neurons randomly before 30 average iterations
and set ϵ to be 0.5 and 0.3 in 30-40 and after 40 iterations
in ϵ-greedy. We then compare these two methods’ top-50
neurons and find them whether in the top-70 neurons in
the MC experiment. Our experiments find that there are
46 neurons in our methods’ top-50 neurons in top-70 of ac-
tual value. On the contrary, there are only 27 neurons found
in T-MAB. We attribute the inaccuracy of T-MAB to that
Bernstein error bound is too conservative and consumes too
much time to determine which neurons’ Shapley values are
too small to calculate. On the contrary, our method com-
bines exploration and utilization, getting more accurate es-
timations more efficiently.

4.5. Data-free Backdoor Mitigation

The experiment results with the few-shot setting men-
tioned above demonstrates that ShapPruning is robust
against different attacks and architectures. Then, we further
introduce our ShapPruning framework into a data-free situ-
ation. Firstly, we try to reverse the training images from the
poisoned model and show them in Fig. 6, where we com-
pare our reversed images with model inversion attack [10]
used in DeepInspect. Because DeepInspect’s model inver-
sion method is usually used in shallower networks e.g. mul-
tilayer perceptron, the recovery results degrade sharply in
VGG or ResNet. Furthermore, the similarity between the
recovered images and real images influences trigger reverse
and neuron activation, thus deciding backdoor defense per-
formance. With the help of information in batch normaliza-
tion layers, our method reconstructs better images.
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(c) Acc and ASR for Shapley Pruning

Figure 4. Fine Pruning and ShapPruning with different sizes of datasets on CIFAR10. We test on 4 datasets with different amounts of clean
data with 1 image, 50 images, 100 images, 300 images per class respectively for Fine Pruning and 1 image, 50 images, 300 images per
class respectively for ShapPruning.

Benchmark Before FP [25] NC [41] DI [3] ShapPruning
(%) Acc ASR Acc↑ ASR↓ Acc↑ ASR↓ Acc↑ ASR↓ Acc↑ ASR↓

CIFAR10 86.51 100.00 27.27 0.00 82.48 56.71 48.35 30.26 83.04 0.90
CIFAR100 62.08 99.98 35.39 10.19 47.12 27.82 53.76 81.44 59.51 0.89

Trojan Attack 97.08 92.06 22.49 71.32 95.17 2.82 84.43 33.24 96.21 0.14

Table 2. Different defense methods against different attacks and architectures in the data-free situation.

(a) (b) (c) (d)

Figure 5. Trigger synthesis for Physical Key Attack and Trojan
Attack. (a), (c) are examples of poisoned data for Physical Key
Attack and Trojan Attack, and (b), (d) are the reversed trigger gen-
erated by trigger synthesis for Physical Key and Trojan Attack.

Then we utilized the backdoor mitigation methods on the
recovered images. Specifically, Fine Pruning (FP), Neu-
ral Cleanse (NC), and our ShapPruning method are con-
ducted on our recovered images and DeepInspect (DI) is
conducted with its original method. To test our methods’ ro-
bustness, we evaluate on different attacks and architectures.
We defend against BadNets on CIFAR10 and CIFAR100
with VGG16 and ResNet34 separately. Furthermore, we
also defend on the different attack e.g. Trojan Attack. The
results are shown in Tab. 2. With better-recovered images
and robustness of mixture-mode ShapPruning, our method
mitigates backdoor clearly with a small accuracy decline.

5. Conclusions

In this work, we propose Shapley Pruning framework to
detect and mitigate backdoor attacks from poisoned mod-
els. Our method considers the interaction between neu-
rons, locates the few infected neurons precisely, and pro-
tects models’ structure and accuracy while pruning as many

Figure 6. Images recovered for ShapPruning (Ours) and DeepIn-
spect. The first line is ours and the second line is DeepInspect.

infected neurons as possible. Compared to prior work, our
method mitigates backdoor successfully, using much fewer
images (or even no clean data) and pruning much fewer
neurons (about 1% of total neurons) than previous meth-
ods. Furthermore, we mitigate backdoor with only less than
1% accuracy decline in most situations. Also, our accel-
eration method, discarding threshold and ϵ-greedy, can ef-
fectively reduce time consumption and help complete most
tasks in just several minutes. Our method needs to reverse
backdoor triggers for computing ASR in estimating Shaley
value, which may be time-consuming. A more efficient and
direct way is to use clean data for computing Shapley value
to find the neurons in the model which contribute most to
backdoor attacks, and we leave it to future work.
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