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Abstract

Mirrors generally lack a consistent visual appearance,
making mirror detection very challenging. Although recent
works that are based on exploiting contextual contrasts
and corresponding relations have achieved good results,
heavily relying on contextual contrasts and corresponding
relations to discover mirrors tend to fail in complex
real-world scenes, where a lot of objects, e.g., doorways,
may have similar features as mirrors. We observe that
humans tend to place mirrors in relation to certain objects
for specific functional purposes, e.g., a mirror above the
sink. Inspired by this observation, we propose a model to
exploit the semantic associations between the mirror and
its surrounding objects for a reliable mirror localization.
Our model first acquires class-specific knowledge of the
surrounding objects via a semantic side-path. It then uses
two novel modules to exploit semantic associations: 1)
an Associations Exploration (AE) Module to extract the
associations of the scene objects based on fully connected
graph models, and 2) a Quadruple-Graph (QG) Module
to facilitate the diffusion and aggregation of semantic
association knowledge using graph convolutions. Extensive
experiments show that our method outperforms the existing
methods and sets the new state-of-the-art on both PMD
dataset (f-measure: 0.844) and MSD dataset (f-measure:
0.889). Code is available at https://github.
com / guanhuankang / Learning - Semantic -
Associations-for-Mirror-Detection.

1. Introduction
Mirrors appear everywhere in our daily life. In gen-

eral, they lack a consistent appearance, as their appearances
mainly depend on their surroundings. Due to this special
property, the presence of mirrors can affect many vision
tasks [7, 53]. They are also considered as a potential haz-
ardous factor for computer vision tasks [49]. Hence, mirror
detection is important.

There are a few works that address the mirror detection
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Figure 1. Existing mirror detection methods based on learning
contextual contrasts [47] or corresponding relations [24] falsely
identify some distractors (e.g., the doorway in the 1st row and the
painting in the 2nd row) as mirrors, and miss the mirror (3rd row)
when the mirror is captured at an oblique angle to the camera along
with some occluding lights. In contrast, our method considers the
semantic associations between mirrors and their surrounding ob-
jects (e.g., the vanity table in the 1st row and the sink in the 2nd

and 3rd rows), yielding accurate results.

problem [24, 30, 47]. Yang et al. [47] propose a model
to learn contextual contrasts/discontinuities between mir-
ror and non-mirror regions, while Lin et al. [24] propose
a model to learn object correspondences between mirror
and non-mirror regions. On the other hand, Mei et al. [30]
propose to learn depth discontinuities between mirror and
non-mirror regions in RGBD images. All these methods
are essentially based on learning a binary relationship be-
tween mirror and non-mirror regions. While they may be
effective in simple scenes, relying on learning a binary rela-
tionship between mirror and non-mirror regions can easily
fail in real-world scenes, in which there are many objects
(or distractors) that may possess similar properties, such as
doorways, windows, wardrobe doors and photo frames.

In this work, we observe that humans typically place mir-
rors in certain relationships with some specific objects for
functional purposes. For example, we usually put a mir-
ror above the vanity table in the bedroom to help with the
morning makeup (the top image in Figure 1) or above a
sink in the washroom to allow us to check our look after
washing our faces or hands (the second and third images
in Figure 1). This observation aligns with studies in cogni-
tive neuroscience [2, 3, 18, 32] that the surrounding objects
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can provide a complementary and effective source of con-
textual information, helping the visual system to locate the
target object quickly and confidently. Based on this obser-
vation, we propose to learn the semantic knowledge of mir-
rors and their surrounding objects, and explore the semantic
associations between them to help detect and locate mirrors
more reliably. As shown in Figure 1, since existing meth-
ods, e.g., [24, 47], rely on learning the contextual contrasts
or correspondence relations, they can easily be confused by
objects that are similar to mirrors, such as the doorway in
the top image and the painting in the second image. In con-
trast, our approach based on learning the semantic associ-
ations can correctly detect the mirrors but not objects that
look like mirrors in the first two images, and is able to iden-
tify the mirror in a difficult case as shown in the third image
in which the mirror is in an oblique angle to the camera to-
gether with some lights hanging around it.

The proposed model follows an encoder-decoder archi-
tecture. In parallel to an encoder-decoder, we add a se-
mantic side-path for scene object discovery and semantic
knowledge learning. Our model includes two novel mod-
ules to exploit semantic associations: 1) an Associations
Exploration (AE) Module to explore scene object associ-
ations, and 2) a Quadruple-Graph (QG) Module to facili-
tate diffusion and aggregation of the semantic association
knowledge. The AE module includes a scene-aware GCN
to model the mutual relationships between objects, and a
spatial-aware GCN for spatial relationship inference. The
QG module employs self-attention [39] and reversed self-
attention mechanisms to facilitate the propagation of knowl-
edge. Both AE and QG modules are built with graph con-
volutions, enabling an efficient long-range semantic con-
text aggregation. We conduct comprehensive experiments
to demonstrate the effectiveness of our approach and show
that our method outperforms relevant state-of-the-art meth-
ods, both quantitatively and qualitatively, on two mirror de-
tection benchmarks, PMD [24] and MSD [47].

Our main contributions of this work are as follows:

• We present a novel mirror detection approach that
learns the semantic associations between mirrors and
their surrounding objects for reliable mirror detection.

• We propose a novel Associations Exploration (AE)
Module to infer scene object associations with fully
connected graph models, and a novel Quadruple-
Graph (QG) Module to facilitate the diffusion and
aggregation of semantic association knowledge using
graph convolutions. We verify the effectiveness of the
proposed modules with comprehensive studies.

• Extensive experiments show that our method outper-
forms existing state-of-the-art methods both quantita-
tively and qualitatively on the two popular mirror de-
tection benchmarks, PMD [24] and MSD [47].

2. Related Work
Mirror Detection. Early mirror segmentation solutions

rely on the user to specify where the mirrors are via inter-
actions [7] or attach specialized hardware to the camera to
help detect mirrors [42, 53]. Recently, Yang et al. [47] pro-
pose the first mirror detection benchmark (MSD) and the
first deep network for automatic mirror detection by lever-
aging multi-scale contrasts/discontinuities around the mir-
ror boundaries. Lin et al. [24] further propose another mir-
ror detection benchmark (PMD) with a higher image diver-
sity/complexity, along with a deep network (PMD-Net) that
extracts correspondences between the mirror content and its
surrounding real objects to help locate the mirror regions.
Most recently, Mei et al. [30] propose a depth-aware mirror
detection method to detect mirrors from RGBD data. Tan et
al. [38] perform a depth refinement for 3D mirror planes on
RGBD datasets.

Despite the success, these deep methods [24, 30, 47]
are all based on learning a binary relation between mir-
ror and non-mirror regions, e.g., contextual contrasts [47],
content correspondences [24], and depth discontinuity [30].
While these are useful features for mirror detection, they
can be easily confused by objects (or distractors) with simi-
lar properties to mirrors, e.g., doorways, windows and photo
frames. On the other hand, [30] requires RGBD images as
input, which may not always be available. In this work, we
propose to learn the semantic relations between mirrors and
their surrounding objects, which can help differentiate mir-
rors from distractors more reliably. Our focus here is on
RGB image-based mirror detection.

Graph Convolutional Networks. Graph Convolutional
Networks (GCNs) [19] are a kind of neural networks for
handling graph data. In recent years, GCNs are becom-
ing very popular and are widely adopted in many appli-
cations [10, 21, 22, 25, 27, 34, 41, 43, 44, 46], due to their
flexibility, generality and powerful learning ability. For ex-
ample, Wu et al. [44] employ a GCN to panoptic segmenta-
tion to bridge the information across thing-class and stuff-
class. Yan et al. [46] employ graph convolutions to update
the target similarity based on context pairs for person re-
identification. Chen et al. [10] propose a graph convolution
based unit (GloRe unit) for graph reasoning in the interac-
tion space to model relations between distant regions.

In this work, we construct graph convolutional net-
works [19] as key components of our model to exploit se-
mantic associations and facilitate the diffusion and aggrega-
tion of information for mirror detection.

Semantic Contexts. A semantic context generally refers
to the co-occurrence and spatial relationships among ob-
jects. It plays an important role in many vision tasks,
such as object categorization [33], semantic segmenta-
tion [50,58], and object detection [1,31]. Recently, Zhang et
al. [51] propose a co-occurrence feature network to learn
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Figure 2. Architecture of our proposed model. We first feed the input image into the semantic side-path (upper-left) for learning the
semantic prior, SP, and class-specific knowledge, K. SP and K are then forwarded to the AE module (light green block) for extracting
semantic association knowledge, Yout, which is merged to the encoder (middle) via a gating module [14]. The proposed QG modules
(light yellow blocks) are inserted at high-level positions of the multi-stage encoder to facilitate the propagation of semantic association
knowledge. We further enhance the high-level representations with rich spatial information by joining the feature maps of the same size
from the bottom-up pathway. S∗ are intermediate/final score maps, where ∗ ∈ {g, α, β, 1, 2, 3, 4, o}.

object co-occurrence relations for semantic segmentation.
Wan et al. [40] introduce a semantic prior to the crowd
counting problem for eliminating the side effect of noisy
false alarms presented at the density maps. Zhang et al. [52]
enhance the semantic features by leveraging captioning as
an auxiliary semantic task to facilitate salient object detec-
tion. Siris et al. [36] explore a scene context-aware learning
approach to salient object detection.

In contrast, semantic contexts in the mirror detection
problem are still unexplored, partly due to the lack of
semantic annotations. To address this limitation, in this
work, we first collect semantic annotations for the PMD
dataset [24], which contains diverse real-world images for
mirror detection, and then propose to explore semantic as-
sociations using graph convolutions to provide a long-range
relation modeling.

3. Our Approach

Figure 2 shows the architecture of the proposed model.
We first feed the input image into the semantic side-
path for learning the semantic prior, SP, and class-specific
knowledge, K. The semantic prior provides a scene-aware
knowledge, allowing the Associations Exploration (AE)
Module to model object relationships, while the class-

specific knowledge contains semantic representations in
high-dimensional spaces.

The AE module aims to extract semantic association
knowledge by modeling the mutual relationships among the
scene objects in fully connected graph structures. The ex-
tracted semantic association knowledge is merged to the en-
coder (the middle part of Figure 2) via a gating module [14],
which serves as a fusion block here, consisting of a two-
layer MLP for dynamic weights computation.

The encoder is built based on multi-stage ResNeXt [45]
as in previous works [24,47]. However, as the conventional
CNNs are inefficient in performing long-range context ag-
gregation and message passing, we propose a Quadruple-
Graph (QG) Module to facilitate diffusion and aggregation
of knowledge using graph convolutions. We embed the
QG module in the last two stages of the multi-stage en-
coder. Since high-level representations contain more se-
mantic knowledge but less spatial information while low-
level representations preserve rich spatial information but
lack semantic knowledge, we upsample the high-level rep-
resentations and combine them with the low-level represen-
tations of the same resolution via lateral connections [26]
(the right part of Figure 2) in order to recover the spatial in-
formation to produce a fine-grained prediction. Finally, we
fuse intermediate score maps (S1/2/3/4) from the decoder
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(a) Input (b) SP (c) Sg (d) Sα (e) So w/ crf (f) GT

Figure 3. Visualization of the semantic maps and score maps
extracted by our model. Given the input images, our model ac-
quires the semantic prior SP (b) with the help of the semantic side-
path. The AE module extracts semantic association knowledge,
and discover the potential mirrors (c). Although the SP maps show
the contents inside the mirrors instead of the mirrors, the Sg maps
can roughly indicate where the mirrors are. After the first QG
module, the Sα maps (d) are already much closer to the GT. Fi-
nally, we enhance the high-level features with spatial information
by adding low-level features to obtain fine-grained predictions (e).

blocks to produce the output mirror score map, So.
For the rest of this section, we first introduce the seman-

tic side-path in Section 3.1, and then describe the AE mod-
ule in Section 3.2 and QG module in Section 3.3. Finally,
we present the training strategy in Section 3.4.

3.1. Semantic Side-Path

The purpose of the semantic side-path is to discover the
surrounding objects and capture the class-specific knowl-
edge. To do it, we perform a pixel-wise semantic segmen-
tation step [12, 28, 54] with the semantic side-path. Specifi-
cally, we first collect the semantic annotations for the PMD
dataset [24], which contains lots of common objects with
diverse real-world scenes. Note that PMD [24] was origi-
nally collected from six public datasets: ADE20K [56, 57],
NYUD-V2 [35], COCO-Stuff [6], SUNRGBD [37], Pascal-
Context [31] and MINC [4]. Except for MINC [4], the
other five datasets already include the semantic annotations.
Hence, we simply exclude all images from MINC and all
the test images from the other five datasets. We then use the
remaining images in PMD, together with the corresponding
semantic annotations, to form our training set (with a total
of 4,746 images) for training our semantic side-path.

Our semantic side-path is based on ResNet50 [16] with
the multi-grid method [8]. The dense prediction from the

semantic side-path represents our semantic prior (denoted
as SP ∈ RH×W×C , where H and W are the height and
width of the prediction; C indicates the number of classes),
as shown in the upper left of Figure 2. The feature maps
from the last stage of ResNet50 is the desired class-specific
knowledge (denoted as K ∈ RH×W×D, where D indicates
the number of dimensions). The semantic prior SP and the
class-specific knowledge K are then forwarded to the AE
module to discover semantic association knowledge. Fig-
ure 3(b) shows that the semantic side-path can extract rich
contexts from the input image for mirror detection. Fig-
ure 3(c-e) show the gradual refinement of the score maps
through the exploitation of the semantic associations.

3.2. The Associations Exploration (AE) Module

We note that existing semantic segmentation methods
usually fail to detect the mirrors in the input images. Rather,
they would segment the mirror contents, as shown in Fig-
ure 3(b). Hence, instead of directly feeding the semantic
context from the semantic side-path to the encoder for mir-
ror detection, we propose to include the AE module to help
extract the semantic associations among the scene objects
and discover potential mirror signals.

When designing the AE module, we draw inspiration
from our observation that mirrors, as a kind of man-made
objects, are usually placed in relation to certain objects in
order to achieve specific functional purposes, e.g., a mirror
above the sink. Hence, knowing where the sink is, we may
infer where the mirror may appear. To achieve this goal, we
first propose a scene-aware GCN to model the mutual rela-
tions between mirrors and their surrounding scene objects,
and then a spatial-aware GCN to infer the spatial relation-
ships, as shown in Figure 2 (bottom left).

Both GCNs in the AE module are based on the following
definition of graph convolution1 [19]:

Y = σ(AXΘ), (1)

where X, Y are the input and output features, respectively.
Θ is a set of learnable parameters. σ is a non-linear acti-
vation function. The adjacent matrix A, which is the key
component of the two GCNs, is usually approximated as
normalized similarity matrix [22, 23].

For the scene-aware GCN, we define the adjacent matrix
A1 as:

SP ∈ RH×W×C 7→ SP ∈ RHW×C , (2)

K ∈ RH×W×D 7→ K ∈ RHW×D, (3)
Σ = W1 KW2, (4)

A1 = SPΣ SPT , (5)

1For simplicity, we have omitted some basic operations such as permu-
tation, residual connection and upsampling in our description.
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where SP is the semantic prior, and K is the class-specific
knowledge. Σ ∈ RC×C is a learnable covariance matrix to
allow the adjustment of correlations between different kinds
of objects. W1 ∈ RC×HW and W2 ∈ RD×C are learnable
parameters for data dependent covariance matrix learning.

For the spatial-aware GCN, we define the adjacent ma-
trix A2 as:

(A2)ij = distance(loci, locj), (6)

where distance(·, ·) is a distance function to measure the
2D distance between two input pixels. We use the Manhat-
tan distance in our implementation.

As suggested by [22], we use max pooling and bi-
linear interpolation in the graph projection and re-projection
phases, to save computation time and preserve the original
spatial relations. However, unlike [22], our scene-aware
GCN is constructed based on two inputs, semantic prior
(SP) and class-specific knowledge (K), to explicitly model
the associations among different scene objects. The spatial-
aware GCN is a simple yet efficient component to build up
spatial relationships. As shown in the 1st and 2nd rows of
Figure 3, despite the weak mirror signals in the SP maps,
the Sg maps could recover distinct mirror signals, benefited
by the AE module that takes the surrounding objects into ac-
count to uncover the “invisible” mirrors by inferring where
the mirrors may be from the associated objects, e.g., the
sink.

3.3. The Quadruple-Graph (QG) Module

From Figure 3(c), we can see the detected mirror signals
in the Sg maps but they are not very accurate. For exam-
ples, the mirror signals in the 1st and 2nd rows are not very
strong. It may be difficult to tell exactly where the mirrors
are. Although the mirror signals in the 3rd and 4th rows are
much stronger, they contain false positives (the lady in the
3rd row and the window in the the 4th row). Our analysis
is that the semantic association knowledge obtained by the
AE module concentrates at local regions, resulting in the in-
complete mirror score maps. To address this limitation, we
propose a Quadruple-Graph (QG) Module to facilitate dif-
fusion and aggregation of semantic association knowledge.
Inspired by [48], we propose to perform long-range mes-
sage passing in two separated streams, to separately model
intra-class and inter-class contexts. In addition, as conven-
tional convolutions are not efficient in long-range modeling,
we employ graph convolutions here to build our QG mod-
ule, for better long-range relation modeling.

Figure 4 shows the structure of the proposed QG mod-
ule. It consists of four graph convolutional networks: one
MHSA GCN, one MHRA GCN and two spatial-aware
GCNs. We build the four GCNs based on Eq. 1, but with
different adjacent matrices due to their different design pur-
poses. Specifically, the MHSA (multi-head self-attention)

Figure 4. Quadruple-Graph Module. The QG module con-
sists of four GCNs: one MHSA GCN, one MHRA GCN and two
spatial-aware GCNs. MHSA (multi-head self-attention) GCN fo-
cuses on intra-class correlations based on a self-attention mecha-
nism. MHRA (multi-head reversed attention) GCN focuses on
inter-class correlations by reversing the self-attention matrix to
construct the adjacent matrix. Two spatial-aware GCNs conduct
spatial relationship inferences. These two information flows are
merged together via a gating module [14].

GCN focuses on intra-class correlations. We apply a self-
attention mechanism [39] on the input features Fin to de-
rive the adjacent matrix, As = softmax(QKT

√
d
), where

softmax is a softmax function and Q,K are the query and
key, respectively, of dimension d from the reshaped Fin.
The MHRA (multi-head reversed attention) GCN focuses
on inter-class correlations. We define the reversed attention
matrix Ar = 1.0 − As. Following [39], we adopt a multi-
head mechanism on the MHSA GCN and the MHRA GCN.
The two spatial-aware GCNs are the same as that used in the
AE module (see Eq 6). Finally, we merge the two streams
together via a gating module [14] to produce the output.

As shown in Figure 3(d), we can see that the first QG
module already produces a significant performance im-
provement. Compared to the Sg maps, the Sα maps are
much better. While they cover the mirror regions more ac-
curately, the false positive signals in the Sg maps are signif-
icantly suppressed.

3.4. The Loss Function

We use the Lovász-Softmax loss [5] to supervise the in-
termediate score maps, and use both Lovász-Softmax and
binary cross-entropy (BCE) losses to supervise the final out-
put, So. The total loss is as follows:

Loss =
∑

i∈{g,α,β,1,2,3,4,o}

ℓls(Si, GT )+ ℓbce(So, GT ) (7)

where ℓls is the Lovász-Softmax loss. ℓbce is the BCE loss.
S∗ (∗ ∈ {g, α, β, 1, 2, 3, 4, o}) represent the intermediate
and the final score maps, as shown in Figure 2.
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Table 1. Quantitative comparison between our method and ten related methods. We report max f-measure, IoU, accuracy and MAE. Best
results are marked in red, and the second best results are marked in blue.

Method PMD Dataset [24] MSD Dataset [47]
f-measure↑ IoU↑ Accuracy↑ MAE↓ f-measure↑ IoU↑ Accuracy↑ MAE↓

GCPANet [11] 0.7548 58.01 95.59 0.04428 0.8477 74.76 93.11 0.06929
EGNet [55] 0.7987 60.17 96.34 0.03676 0.8238 66.68 91.54 0.08479

BDRAR [59] 0.7433 58.43 95.66 0.04346 0.8619 75.37 93.50 0.06510
DSC [17] 0.7548 59.81 95.65 0.04372 0.8479 75.36 92.82 0.07206

CPNet [48] 0.7342 56.36 94.85 0.05175 0.8314 69.86 92.44 0.07603
GloRe [10] 0.7743 61.25 95.61 0.04411 0.8600 76.10 93.07 0.06957

PSPNet [54] 0.8057 60.44 96.13 0.03920 0.8459 67.99 92.19 0.07875
DeepLabv3+ [9] 0.8096 64.08 96.43 0.04001 0.8750 77.48 94.13 0.05932
MirrorNet [47] 0.7775 62.50 96.27 0.04101 0.8597 77.41 92.75 0.07257
PMD-Net [24] 0.8276 62.40 96.80 0.08782 0.8691 76.88 93.94 0.06130

Ours 0.8437 66.84 96.82 0.04935 0.8887 79.85 94.63 0.05421

4. Experiments
4.1. Datasets and Evaluation Metrics

We experiment on the two popular 2D mirror detection
benchmarks, PMD [24] and MSD [47].

PMD [24]: This dataset consists of 5,095 training im-
ages and 571 test images. It contains diverse real-world
images that cover a variety of scenes and common objects,
making it a very challenging dataset.

MSD [47]: This dataset consists of 3,063 training im-
ages and 955 test images. As most of the images are taken
in close shots, they contain mostly large mirrors and lack
contexts. In addition, a lot of images are also similar to
each other. As a result, this dataset is less challenging.

To evaluate the results, we use max f-measure, Intersec-
tion over Union (IoU), accuracy, and Mean Absolute Error
(MAE).

4.2. Implementation Details

We adopt ResNet50 [16] with the multi-grid method [8]
as our semantic side-path. We train it on the collected se-
mantic annotations (see Section 3.1). After training the
semantic side-path, we freeze its weights during the fol-
lowing fine-tune stages. That is we share the same se-
mantic side-path across the two mirror datasets, PMD [24]
and MSD [47]. We use ResNeXt-101 [45] pre-trained on
ImageNet-1K [13] as our encoder backbone. We use the
Glorot initialization2 [15] to initialize our GCNs. We train
our model on a single NVIDIA TESLA V100 graphic card.
The detail training settings are listed in Table 2. We ap-
ply CRF [20] as post-processing during inference. We use
a combination of random horizontal flipping, random rota-
tion, random center cropping, and adding random noises as
the data augmentation method.

2In Pytorch: torch.nn.init.xavier uniform (tensor, gain=1.0).

4.3. Quantitative Results

To fully evaluate our approach, we compare it with 10
different related methods, including mirror detection meth-
ods, MirrorNet [47] and PMD-Net [24], salient object de-
tection methods [11, 55], shadow detection methods [17,
59], and semantic segmentation methods [9, 10, 48, 54].

For a fair comparison, we re-train all the methods and
test them under the same dataset, i.e., either PMD or MSD.
Table 1 shows the quantitative results. We can see that
the proposed method outperforms all the other methods
on almost all the metrics on the two datasets. In par-
ticular, our f-measure/IoU scores surpass the second best
scores by 1.95%/4.31% and 1.57%/3.06% on PMD [24]
and MSD [47], respectively. We also observe that there are
wider performance gaps between our method and the com-
pared methods on PMD than those on MSD. There are two
main reasons for this. First, since MSD contains mostly
simple scenes, most methods can work well on it and the
results are already close to the peak. In contrast, PMD con-
tains more complex real-world scenes, the performances of
different methods spread out much wider. Second, as PMD

Table 2. Experiment Settings. We show the basic settings
used in our experiments. ssp: semantic side-path trained on the
collected semantic annotations for PMD [24]. Ours-PMD: our
model trained on PMD [24]. Ours-MSD: our model trained on
MSD [47].

Experiment ssp Ours-PMD Ours-MSD
iterations 30K 40K 40K

base lr 0.01 5e-4 8e-4
lr scheduler poly poly poly
optimizer SGD SGD SGD
batch size 16 10 10

weight decay 5e-4 5e-4 5e-4
momentum 0.9 0.9 0.9
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Input EGNet [55] DSC [17] DeepLabv3+ [9] MirrorNet [47] PMD-Net [24] Ours GT

Figure 5. Qualitative Comparison. The detected mirrors and the GT mirrors are shown in green color. In general, our model produces
much favorable results compared to the other methods.

contains more objects in each image, it can provide suffi-
cient contexts to learn the semantic associations. In con-
trast, it is more difficult to learn them from MSD due to its
simple image contents.

4.4. Qualitative Results

We have also evaluated our method qualitatively. Due
to the limited space, we compare with the best perform-
ing methods from each group in Table 1, as shown in Fig-
ure 5. In general, our method produces more accurate re-
sults, compared with all the other methods. For example,
in the first and second rows, the existing mirror detection
methods, PMD-Net [24] and MirrorNet [47], both detect
some distractors that look like mirrors as mirrors. By learn-
ing semantic associations, our model can identify the mir-
rors accurately, but not the distractors. In the third row, al-
though the mirror is very small in a cluttered background,
our method can correctly detect it while all the other meth-
ods fail. The fourth row shows a scene with a mirror inside
a closet. Although it may not be easy even for humans to
locate the mirror, our method can locate it well. In the last
row, only our method can accurately locate the mirror, with-
out distracted by the wardrobe doors.

4.5. Ablation Study

To analyze the importance of each component of our
model, we conduct an ablation study as shown in Table 3.

Analysis on the Semantic Side-Path. We construct our
baseline as an encoder-decoder (see ID1). We add the se-
mantic side-path to our baseline to measure the perf. gain
of the semantic side-path (see ID2). We can see that there is
an absolute improvement of 1.15% on f-measure, indicating
the importance of semantic context to mirror detection.

Analysis on the proposed modules. We then add the
proposed modules one by one to reveal the effectiveness of
each module, as ID3, ID4, ID5 and Ours in Table 3. We can
see that both the AE and the QG modules further enhance
the performance.

Analysis on the spatial-aware GCNs. Both the AE and
the QG modules include spatial-aware GCNs, which help
perform spatial inference. We analysis the effectiveness of
these spatial-aware GCNs by removing all of them from the
full model, as ID6 in Table 3. We can see that f-measure
now drops to 0.8297 from 0.8437 (Ours), suggesting that
the proposed modules with the spatial-aware GCNs can lead
to better performances.
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Table 3. Ablation Study. We evaluate different parts of our model, and report the max f-measure and accuracy on PMD [24]. A ✓indicates
that the corresponding module/technique is selected. ssp: semantic side-path. AEM: AE module. QGM1/QGM2: QG module after the
encoder-stage3/encoder-stage4. Spat. GCNs: spatial-aware GCNs in the AE and QG modules. freeze ssp: freeze the semantic side-path
during the fine-tune stage.

Method encoder decoder ssp AEM QGM1 QGM2 Spat. GCNs freeze ssp f-measure↑ Accuracy↑
ID1 ResNeXt101 ✓ 0.8129 96.52
ID2 ResNeXt101 ✓ ✓ ✓ 0.8244 96.51
ID3 ResNeXt101 ✓ ✓ ✓ ✓ ✓ 0.8284 96.91
ID4 ResNeXt101 ✓ ✓ ✓ ✓ ✓ ✓ 0.8368 96.72
ID5 ResNeXt101 ✓ ✓ ✓ ✓ ✓ ✓ 0.8398 96.75
ID6 ResNeXt101 ✓ ✓ ✓ ✓ ✓ ✓ 0.8297 96.67
ID7 ResNeXt101 ✓ ✓ ✓ ✓ ✓ ✓ 0.8373 96.78
Ours ResNeXt101 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.8437 96.82

Table 4. Comparison on the RGBD dataset [30]. Fω
β : weighted

f-measure score [29]. BER: Balanced Error Rate. †: using depth
maps during both training and inference. ∗: results are reported
by [30]. Best performances are in red.

Method IoU↑ Fω
β ↑ MAE↓ BER↓

MirrorNet [47] 68.37∗ 0.723∗ 0.062∗ 8.66∗

PMD [24] 72.27∗ 0.775∗ 0.054∗ 10.71∗

PDNet [30] 73.57∗ 0.783∗ 0.053∗ 9.26∗

Ours 74.99 0.800 0.048 10.56
PDNet† [30] 77.77∗ 0.825∗ 0.042∗ 7.77∗

Ours† 78.43 0.834 0.041 8.16

Freeze semantic side-path. In the above experiments,
the semantic side-path is frozen to make sure the class-
specific knowledge would not be changed during the fine-
tune stage. In ID7, we try not freezing the semantic side-
path, and therefore we fine-tune the whole model. The re-
sults show that the performance of ID7 is similar to those of
ID4 and ID5. We believe that without freezing the semantic
side-path, it causes a semantic distortion, diverging the de-
sired semantic association learning procedure. In contrast,
our full model (with frozen semantic side-path) can produce
the best performance.

4.6. Comparison on the RGBD Dataset

Although our proposed method is based on RGB input,
for a more comprehensive evaluation, we would like to ex-
plore how it compares with PDNet [30], which is based on
RGBD input. We conduct the experiment on their RGBD
dataset, with and without using the depth maps. To utilize
the depth maps, we add a depth branch in the same way
as PDNet et al. [30] and combine the depth features after
the gating module (between encoder-stage2 and encoder-
stage3) using concatenation and a 1x1 convolution.

Table 4 shows the results. We can see that our method
outperforms all the other methods on IoU, Fω

β and MAE
under the same data modality, i.e., RGB or RGBD images.

Input SP Ours GT

Figure 6. Limitations. Top row: the SP map contains a large
unknown area, and our model fails to detect any mirrors. Bottom
row: the SP map contains a lot of labelling errors, resulting in an
incorrect detection of the mirror.

5. Conclusion

In this paper, we have proposed to learn the semantic
scene contexts for the mirror detection task, and proposed
a model to exploit the semantic associations between mir-
rors and their surrounding objects. Our experiments show
that while the proposed AE module can help learn semantic
associations effectively, the proposed QG module can help
detect mirrors accurately with the learned semantic associa-
tions. As a result, our proposed method produces new state-
of-the-art results on both RGB-based and RGBD-based mir-
ror detection benchmarks.

Our method does have some limitations. Our approach
relies on learning semantic knowledge and associations. If
a scene does not contain sufficient known semantics (e.g.,
Figure 6 top example) or if the mirror appears in an unusual
place (e.g., Figure 6 bottom example), our method may fail
to detect the mirror correctly.
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