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Figure 1. Our DepthFormer architecture achieves state-of-the-art multi-frame self-supervised monocular depth estimation by improving
feature matching across images during cost volume generation.

Abstract

Multi-frame depth estimation improves over single-
frame approaches by also leveraging geometric relation-
ships between images via feature matching, in addition to
learning appearance-based features. In this paper we re-
visit feature matching for self-supervised monocular depth
estimation, and propose a novel transformer architecture
for cost volume generation. We use depth-discretized epipo-
lar sampling to select matching candidates, and refine pre-
dictions through a series of self- and cross-attention lay-
ers. These layers sharpen the matching probability between
pixel features, improving over standard similarity metrics
prone to ambiguities and local minima. The refined cost vol-
ume is decoded into depth estimates, and the whole pipeline
is trained end-to-end from videos using only a photometric
objective. Experiments on the KITTI and DDAD datasets
show that our DepthFormer architecture establishes a new
state of the art in self-supervised monocular depth estima-
tion, and is even competitive with highly specialized su-
pervised single-frame architectures. We also show that
our learned cross-attention network yields representations
transferable across datasets, increasing the effectiveness of
pre-training strategies. Project page: https://sites.
google.com/tri.global/depthformer.

1. Introduction
Feature matching is a fundamental component of

Structure-from-Motion (SfM). By establishing correspon-
dences between points across frames, a wide range of tasks
can be performed, including depth estimation [5,15,16,18],

ego-motion estimation [33, 34, 58], keypoint extraction [58,
59], calibration [17, 66], optical flow [30, 51, 77], and scene
flow [24, 25]. Within these tasks, self-supervision enables
learning without explicit ground-truth [15, 82], by using
view synthesis losses obtained via the warping of informa-
tion from one image onto another, obtained from multiple
cameras or a single moving camera. While more challeng-
ing from a training perspective [16, 18, 72], self-supervised
methods can leverage arbitrarily large amounts of unlabeled
data, which has been shown to achieve performance com-
parable to supervised methods [18,72], while enabling new
applications such as test-time refinement [17, 56, 72] and
unsupervised domain adaptation [20].

Single-frame self-supervised methods use multi-view in-
formation only at training time, as part of the loss calcula-
tion [15, 16, 18, 56, 82]. In contrast, multi-frame methods
use multi-view information at inference time, traditionally
by building cost volumes [32, 57, 72, 74] or correlation lay-
ers [24, 61, 62]. These methods learn geometric features
in addition to appearance-based ones, which leads to better
performance relative to single-frame methods [61, 72, 74].
However, multi-frame calculation relies heavily on feature
matching to establish correspondences between frames, us-
ing only image information. Because of that, correspon-
dences will be noisy and often inaccurate [16,18,74] due to
ambiguities and local minima caused by lack of texture, rep-
etitions, luminosity changes, dynamic objects, and so forth.

In this paper we introduce a novel architecture designed
to improve self-supervised feature matching (Figure 1), fo-
cusing on the task of monocular depth estimation. We build
a cost volume between target and context image features us-
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ing differentiable depth-discretized epipolar sampling, and
propose a novel attention-based mechanism to refine per-
pixel matching probabilities. We show that the refined prob-
abilities are sharper and more representative of the underly-
ing 3D structure than traditional similarity metrics [70]. The
resulting multi-frame cost volume is converted into depth
estimates directly, via high-response window filtering, and
in combination with single-frame features from a separate
network, to account for failure cases in cost volume gen-
eration. Through extensive experiments, we show that our
feature matching refinement module leads to a new state of
the art in self-supervised depth estimation, and that it can be
directly transferred between datasets with minimal degra-
dation thanks to its strong geometric grounding. Our main
contributions are:

• We introduce a novel architecture, the DepthFormer,
that improves multi-view feature matching via
cross- and self-attention combined with depth-
discretized epipolar sampling.

• Our architecture leads to state-of-the-art depth esti-
mation results. It outperforms other self-supervised
multi-frame methods by a large margin, and even sur-
passes supervised single-frame architectures.

• Our learned attention-based matching function is
transferable across datasets, which can significantly
improve convergence speed while decreasing memory.

2. Related Work
2.1. Self-Supervised Depth Estimation

The work of Godard et al. [15] introduced self-
supervision to the task of depth estimation by framing it
as a view synthesis problem, and minimizing an image re-
construction objective [70]. Originally proposed for stereo
pairs, the same self-supervised framework was later ex-
tended to the monocular setting [82], with the addition of
a pose network to estimate camera motion between frames.
Although more challenging and restrictive, due to limita-
tions such as scale ambiguity [18] and inability to model
dynamic objects [16], monocular self-supervision enables
learning from raw videos, which makes it much more scal-
able to large amounts of data from different sources. Fur-
ther improvements in the past few years, in terms of view
synthesis [16,56], camera geometry modeling [17,66], net-
work architectures [18], domain adaptation [20, 21, 49, 81],
scale disambiguation [18], and other sources of supervi-
sion [17,19], have led to performance comparable to or even
surpassing supervised approaches [18, 37, 72].

2.2. Multi-Frame Depth Estimation

Depth estimation from a single image is inherently an
ill-posed problem, since an infinite number of 3D scenes

could result in the same 2D projection [22]. Single-frame
networks learn appearance-based cues that are suitable for
depth estimation (e.g., vanishing point distance, location
relative to the ground plane), however these cues are usually
based on strong assumptions and will fail with the right ad-
versarial attacks [65]. Multi-frame depth estimation meth-
ods circumvent this limitation by using multiple images at
test time, which enables the learning of additional geomet-
ric cues from feature matching across frames. Although
other frameworks for multi-view depth estimation are avail-
able, e.g., test-time refinement [5,44,56] and recurrent neu-
ral networks [38, 48, 79], here we focus on methods that
explicitly reason about geometry during inference.

Stereo methods simplify this feature matching process
by considering fronto-parallel rectified image pairs with
known baseline [2,35,41,45,75]. Multi-view stereo (MVS)
is a generalization of the rectified setting, that operates on
images with arbitrary overlaps [23, 27, 31, 43, 76]. Most
MVS approaches, however, are supervised and assume
known camera poses (either as ground-truth or obtained
through COLMAP [55]). Similarly, recently implicit rep-
resentation methods have also enabled multi-view self-
supervised learning [28, 71, 78, 80], including extensions
to depth estimation [8, 73]. However, such methods focus
on over-fitting to simple scenes with static objects and sur-
rounding high-overlapping views, which limits their gener-
alization to large-scale datasets [4, 7, 13, 18].

Importantly, the use of known camera poses, stereo pairs,
supervision and/or static scenes, side-steps some of the
main limitations of monocular self-supervised learning. A
few methods [72, 74] have recently enabled depth and ego-
motion estimation in this setting by combining a multi-
frame cost volume with single-frame features. However,
they still rely on hand-crafted similarity metrics: Many-
Depth [72] uses sum of absolute differences (SAD); and
MonoREC [74] uses structural similarity (SSIM). As we
shown in our experiments, these metrics are prone to ambi-
guity and local minima, leading to sub-optimal correspon-
dences. Our attention-based mechanism is designed to im-
prove multi-frame matching for cost volume generation.

2.3. Attention for Depth Estimation

After transforming the field of natural language pro-
cessing [67], attention-based architectures are becoming in-
creasingly popular in computer vision [9,40,42,50]. In [26],
a depth-attention volume is used to guide the learning of in-
door planar surfaces, while [53] uses attention for depth de-
coding. Similarly, [39] uses patch-wise attention over con-
volutional features, and [50] eliminates convolutional en-
coding by proposing a fully attention-based backbone. In
[29] a self-attention mechanism is used to process a con-
volutional feature embedding, and depth is decoded via in-
tegration over a discretized disparity cost volume. More
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(a) Cross-attention cost volume generation from two images. (b) Depth-discretized epipolar sampling for cost volume generation.

Figure 2. Diagram for our proposed cross-attention cost volume generation. Two images (target It and context Ic) are processed by a
feature extraction networkF and, for each target featureF(u, v),D matching candidatesF(u′i, v′i) are sampled from the depth-discretized
epipolar line Et→cu,v . A series of L self- and cross-attention layers is then used to refine this initial matching distribution. The output is a
cross-attention cost volume At→c, containing the matching probability of each target feature relative to its epipolar candidates, given by
the corresponding estimated cross-attention value αL(ui, vi).

related to our work, [40] proposes self- and cross-attention
over rectified images, followed by cost volume decoding
into depth estimates. Their approach, however, is super-
vised and operates on the simpler stereo setting. A self-
supervised monocular attention-based method is proposed
in [52], using a spatio-temporal module to leverage both
geometric and appearance information. However, by focus-
ing on 3D points for attention, they forego the epipolar con-
straints we use to determine matching candidates.

3. Self-Supervised Depth with Transformers
3.1. Monocular Depth Estimation

The standard self-supervised monocular depth and
ego-motion architecture consists of (i) a depth network
fD(It; θD), that produces depth maps D̂t for a target im-
age It; and (ii) a pose network fT (It, Ic; θT ), that predicts
the relative transformation for pairs of target It and con-
text Ic images. This pose prediction is a rigid transforma-
tion T̂t�c =

(
R̂t�c t̂t�c

0 1

)
∈ SE(3). We train these two

networks jointly by minimizing a photometric reprojection
error [15, 82] between the original target image It and the
synthesized target image Ît, obtained by projecting pixels
from Ic onto It using predicted depth and pose. The syn-
thesized image is obtained via grid sampling with bilinear
interpolation [82], and is thus differentiable, which enables
gradient back-propagation for end-to-end training.

3.2. Cross-Attention Cost Volumes

3.2.1 Monocular Epipolar Sampling

A diagram of our proposed cross-attention cost volume gen-
eration procedure is shown in Figure 2a. Two H ×W × 3
input images, target It and context Ic, are encoded to pro-
duce C-dimensional features Ft and Fc at 1/4 the original

resolution. For each feature fuvt ∈ Ft, corresponding to
pixel pt = {u, v}, matching candidates are sampled from
Fc along its epipolar line Euvt→c, as shown in Figure 2b. We
use spatial-increasing discretization (SID) [11] to uniformly
sample depth values in log space. AssumingD bins ranging
from dmin to dmax, each depth value di is given by:

log(di) = log(dmin) +
log(dmax/dmin) ∗ i

D
(1)

AH/4×W/4×D×C feature volume Ct→c is generated
from these matching candidates. Each (u, v, i) cell receives
sampled features Fuvt→c = Fc〈u′i, v′i〉 , for i ∈ [0, · · · , D],
where 〈〉 is the bilinear sampling operator and (u′, v′) are
projected pixel coordinates such that:

z′i

u′iv′i
1

 = KRt→c

K−1

uv
1

 di + tt→c

 (2)

where Rt→c and tt→c are relative rotation and translation
between frames, and K ∈ R3×3 are pinhole camera intrin-
sics. In practice, relative rotation and translation are pre-
dicted by the pose network, and K is assumed known and
constant, although this assumption can be relaxed [17, 66].

3.2.2 Cross-Attention Matching

An attention module [67] is then used to compute the sim-
ilarity between Ft and Ct→c. More specifically, we use L
multi-head attention layers, splitting the C feature channel
dimensions into Nh groups such that Ch = C/Nh. Feature
updates are computed per head and each may have different
representations, which increases expressiveness. For each
attention head h, a set of linear projections are used to com-
pute queries Qh from the target features Ft, and keys Kh
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(a) SSIM (b) Cross-Attention

(c) Matching probability distribution along depth bins for different pixels relative to their depth-discretized epipolar candidates. The blue line shows SSIM values (Equation 9),
the red line shows cross-attention values αL after refinement (Section 3.2), and the green dot marks the corresponding ground-truth depth value (used only for comparison).

Figure 3. Cost volume visualization. In (a) and (b), each of the H ×W ×D cells is colored based on its corresponding normalized SSIM
or cross-attention value. Even though the decoded depth maps (top right) look similar, our proposed cross-attention cost volume produces
sharper distributions, as further evidenced in (c) where we present various per-pixel matching distributions over depth bins. Our proposed
attention-based similarity significantly increases the sharpness of these distributions, eliminating ambiguities and local minima.

and values Vh from the feature volume Ct→c:

Qh = FtWQh
+ bQh

Kh = Ct→cWKh
+ bKh

(3)
Vh = Ct→cWVh + bVh

withWQh
,WKh

,WVh ∈ RCh×Ch , and bQh
,bKh

,bVh ∈ RCh .
Similarities are normalized per-bin using softmax to obtain
the attention values αh ∈ RNh×D:

αh = softmax
(QThKh√

Ch

)∣∣∣∣∣
D

(4)

The output values V ∈ RC are obtained as a weighted
concatenation of per-head output values:

V =
(
α1V1 ⊕ · · · ⊕ αNhVNh

)
WO + bO (5)

where WO ∈ RC×C and bO ∈ RC , and ⊕ is the con-
catenation operation. Similarly, per-bin attention values
α = 1

Nh

∑
h αh are obtained by averaging over the num-

ber of heads. This process is repeated L times, each using
the output values to update the feature volume for key and
value calculation, such that Cl+1

t→c = V l. The final attention
values are used to populate a cross-attention cost volume
At→c, a H/4×W/4×D structure encoding the similarity
between each feature in Ft and its matching candidates in
Ct→c. Each (u, v, i) cell of At→c receives the correspond-
ing attention value α(u′i, v

′
i) from the last cross-attention

layer L as the similarity metric for feature matching.
In Figure 3 we show the impact of our proposed cross-

attention matching refinement procedure. In Figure 3a the
input features are used directly to build a similarity cost vol-
ume using SSIM (Equation 9), similar to [72, 74], and in
Figure 3b we use the refined cross-attention weights gener-
ated from the same features. After refinement the matching

distributions are sharper (see Figure 3c for per-pixel exam-
ples), resulting in a more robust cost volume without the
ambiguities and local minima found in other non-learned
appearance-based similarity metrics.

3.2.3 Self-Attention Refinement

Similar to [54], we alternate cross-attention between target
Ft and sampled context features Ct→c with self-attention
among epipolar-sampled context features. In this setting,
queries Q′h are also calculated from Ct→c, such that:

Q′h = Ct→cW ′Qh
+ b′Qh

(6)

The self-attention refinement step takes place after each
cross-attention layer, and is repeated L−1 times. It is omit-
ted from the last iteration because cross-attention weights α
from the last layer L are used to populate At→c, not output
values V , so self-attention updates are not required.

3.3. Cost Volume Decoding

3.3.1 High-Response Depth Decoding

We use a localized high-response window [64] to estimate
continuous depth values from discretized bins, thus increas-
ing robustness to multi-modal distributions [40]. A diagram
is shown in Figure 4a, and below we describe each step.
For each pixel puv , the argmax operation is used to find
the index huv of the most probable α alongside its sam-
pled epipolar line Euvt→c. A 1-dimensional 2s+1 window is
placed around huv , and a re-normalization step is applied:

α̃i =
αi∑
i ai

, for i ∈ [h− s, h+ s] (7)

such that its sum is 1. The depth value for puv is calculated
by multiplying this re-normalized distribution with the cor-
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(a) High-response window

(b) Input image

(c) Maximum attention

(d) High-response depth

Figure 4. High response depth estimation from a cross-attention
cost volume. Instead of a weighted sum of all candidates, we use
a window centered on the most probable candidate.

responding depth bins:

d̂H =
∑

i∈[h−s,h+s]

diα̃i (8)

The normalized attention values can also be used as a mea-
sure of matching confidence, as shown in Figure 4c. In par-
ticular, maximum attention values have a clear tendency to
decrease at longer depth ranges and particularly towards the
vanishing point, which is expected due to resolution degra-
dation and small motion between frames. We leverage this
novel matching confidence metric by masking out pixels
with maximum attention value below a certain threshold
λmin, both from the high response loss calculation and the
decoded features (Figure 4d). Evaluation for these interme-
diate depth maps are provided in Table 2.

3.3.2 Context-Adjusted Depth Decoding

Because our proposed cross-attention cost volume is re-
gressed over epipolar lines, it lacks surrounding context in-
formation. To address this limitation, we use a context ad-
justment layer similar to [40], where estimated depth values
are adjusted via conditioning with input images. This ad-
justment is residual, with the output being added to the nor-
malized high-response depth map D̂H before it is restored
using the same statistics. For more details, including quali-
tative examples, please refer to the supplementary material.

3.3.3 Multi-Scale Depth Decoding

Generating cost volumes from monocular information has
two main limitations: (i) it requires ego-motion, and will
fail if the camera is static between frames; (ii) it assumes
a static world, and will fail in the presence of dynamic
objects. To circumvent these limitations, recent meth-
ods [72, 74] have proposed combining multi-frame cost
volumes with features from a single-frame depth network.
These features are then decoded jointly, which makes pre-
dicted depth maps robust to multi-frame failure cases.

Figure 5. Decoding architecture used in our experiments. A
single-frame depth network is augmented to include multi-frame
cross-attention features (Section 3.2), generating depth maps at
multiple scales in addition to those generated directly from multi-
frame attention (Sections 3.3.1 and 3.3.2).

Our multi-scale decoding architecture is shown in Fig-
ure 5. The cross-attention cost volume (Figure 2a) is first
masked out, removing pixels with low matching confidence,
and then concatenated with single-frame features from It
encoded by a separate network. A bottleneck convolu-
tional layer is used to combine these two feature maps,
and the output is decoded to produce S depth estimates at
multiple increasing resolutions. Similar to [72], we use a
teacher-student training procedure, improving the perfor-
mance of multi-frame predictions via the supervision of a
single-frame depth network in areas where cost volume gen-
eration fails. This single-frame depth network is trained
jointly, sharing the same pose predictions, and discarded
during evaluation.

3.4. Training Loss

We train our self-supervised depth and ego-motion archi-
tecture end-to-end using only the photometric reprojection
loss, consisting of a weighted sum between a structure sim-
ilarity (SSIM) [70] and absolute error (L1) terms:

Lp = α
1− SSIM(It, Ît)

2
+ (1− α) ‖It − Ît‖ (9)

Following standard procedure, we also use depth regular-
ization [15] to enforce smoothness in low-textured regions:

Ls =
1

HW

∑
u,v

|δud̂uv|e−||δuIuv|| + |δvd̂uv|e−||δvIuv|| (10)

These two terms are combined to produce the final training
loss L = Lp + λsLs, which is aggregated across all pre-
dicted depth maps: D̂H (high response, Section 3.3.1), D̂C

(context adjustment, Section 3.3.2), and D̂M (multi-scale,
Section 3.3.3) as follows:

L = λHLH + λCLC +

S∑
i=1

1

2i
LMi

(11)
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Figure 6. Predicted depth maps on the KITTI dataset, obtained from SSIM (argmin) and cross-attention (high response) cost volumes,
as well as the decoded depth estimation output (full resolution). Corresponding quantitative results are reported in Table 2.

(a) Input target image (b) High-response depth (c) Decoded depth

Figure 7. Predicted depth maps on the DDAD dataset.

4. Experiments
4.1. Datasets

KITTI [13] The KITTI dataset is the standard benchmark
for depth evaluation. To compare with other methods, we
adopt the training protocol from Eigen et al. [10], with
Zhou et al.’s [82] filtering of static frames, resulting in
39810/4424/697 training, validation, and test images.
DDAD [18] The DDAD dataset is a novel benchmark
for depth evaluation, with denser ground-truth and longer
ranges, which is particularly challenging for multi-frame
methods. Following [18], we use only the front camera,
resulting in 12560/3950 training and validation images.
Cityscapes [6] We use the Cityscapes dataset to test the
generalization properties of our proposed cross-attention
module. We use the 2975 training images with their 30-
frame sequences, for a total of 89250 images.
VKITTI2 [3] The Virtual KITTI 2 dataset contains re-
constructions of five sequences from the KITTI odometry
benchmark [14], for a total of 12936 samples in varying
weather conditions and time of day.
Parallel Domain [1] The Parallel Domain dataset, recently
introduced in [20], contains procedurally-generated and
fully annotated renderings of urban driving scenes. It con-
tains 42000/8000 training and validation samples.
TartanAir [69] TartanAIR is a synthetic photo-realistic
dataset for visual SLAM. We train on monocular videos,
and following [63] select context images only if the aver-

age optical flow magnitude is between 8 and 96 pixels. Our
total training set consists of 189696 images.

4.2. Implementation Details

Our models are implemented using PyTorch [47] and
trained across 8 Titan V100 GPUs. We use the Adam op-
timizer [36], with β1 = 0.9 and β2 = 0.999, and a batch
size of 1 per GPU. Our networks are trained for 50 epochs,
with an initial learning rate of 2 · 10−4 that is halved every
20 epochs. Following [72], we freeze the pose and single-
frame teacher network for the final 5 epochs. We use frame
t−1 as context for cost volume calculation, and frames t−1
and t+1 for loss calculation. Our training and network pa-
rameters are: SSIM weight α = 0.85, smoothness weight
λs = 10−4, high-response and context-adjusted weights
λH = λC = 0.5, minimum attention λmin = 0.1, high-
response window size s = 1, epipolar depth bins D = 128,
attention dimension C = 128, attention heads h = 8, at-
tention layers N = 6, number of output scales S = 4. For
more details, please refer to the supplementary material.

4.3. Depth Evaluation

To validate our DepthFormer architecture, we conducted
a thorough comparison of its performance relative to other
published methods. Our findings targeting the KITTI
dataset, considered the standard benchmark for this task,
are summarized in Table 1. We consistently outperform
all other considered methods by a large margin, including
single-frame and multi-frame methods, and even those that
leverage additional information in the form of semantic la-
bels [5,17,19] or synthetic data [20,21,29,49,81]. In partic-
ular, we significantly improve upon ManyDepth [72], that
uses a similar depth decoding strategy but relies directly
on the sum of absolute differences (SAD) as the similar-
ity metric, without any feature matching refining strategy.
Our architecture also compares favourably to single-frame
supervised methods, outperforming the current state of the
art (more details in the supplementary material).

In Table 2 we show intermediate depth estimation results

165



Method
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tic
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an
tic Lower is better Higher is better

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Struct2Depth [5] X 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Gordon et al. [17] X 0.128 0.959 5.230 0.212 0.845 0.947 0.976
GASDA [81] X 0.120 1.022 5.162 0.215 0.848 0.944 0.974
SharinGAN [49] X 0.116 0.939 5.068 0.203 0.850 0.948 0.978
Monodepth2 [16] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Patil et al. [48] X 0.111 0.821 4.650 0.187 0.883 0.961 0.982
PackNet-SFM [18] 0.111 0.785 4.601 0.189 0.878 0.960 0.982
GUDA [20] X 0.107 0.714 4.421 — 0.883 — —
Johnston et al. [29] 0.106 0.861 4.699 0.185 0.889 0.962 0.982
Wang et al. [68] X 0.106 0.799 4.662 0.187 0.889 0.961 0.982
MonoDEVSNet [21] X 0.104 0.721 4.396 0.185 0.880 0.962 0.983
TC-Depth [52] X 0.103 0.746 4.483 0.185 0.894 — 0.983
Guizilini et al. [19] X 0.102 0.698 4.381 0.178 0.896 0.964 0.984
ManyDepth [72] X 0.098 0.770 4.459 0.176 0.900 0.965 0.983

DepthFormer X 0.090 0.661 4.149 0.175 0.905 0.967 0.984

Table 1. Depth estimation results on the KITTI Eigen test split [10], for distances up to 80m with the Garg crop [12] and half resolution
(640 × 192 or similar). Multi-Fr. indicates the use of multiple frames at test time; Synthetic the use of additional synthetic training data;
and Semantic the use of additional semantic information.

Method AbsRel↓ RMSE↓ δ < 1.25↑
SAD Depth (argmin) 0.647 17.662 0.575
SSIM Depth (argmin) 0.632 17.124 0.598

High-Response Depth 0.264 10.919 0.714
Context-Adjusted Depth 0.167 6.367 0.808

Decoded Depth (1/8) 0.095 4.336 0.892
Decoded Depth (1/4) 0.091 4.201 0.900
Decoded Depth (1/2) 0.090 4.146 0.904
Decoded Depth (Full) 0.090 4.149 0.905

Table 2. Intermediate depth estimation results of our architec-
ture on the KITTI dataset (Table 1, Figure 6).

from the various outputs of our architecture, with qualita-
tive examples in Figure 6. By replacing SAD or SSIM cost
volumes with our cross-attention cost volume with high-
response depth self-supervision, we already significantly
improve performance, from an Abs.Rel. of 0.647 and 0.632
to 0.264. These results are further improved after con-
text adjustment, to account for low confidence matches, oc-
clusions and inaccuracies in epipolar projection, achieving
0.167. Finally, by combining multi-frame cross-attention
with single-frame features for joint decoding, to reason over
multi-frame failure cases, we achieve the reported result of
0.090. Interestingly, decoded depth maps at lower resolu-
tions perform almost as well as the full resolution output.
We attribute this behavior to the cross-attention cost vol-
ume, that is calculated at a lower resolution (1/4) and con-
nected to the decoder via skip connections. Although high
resolution decoding is beneficial, it is not necessary for our
reported state-of-the-art performance.

We also performed experiments on the DDAD dataset,
which is a more challenging benchmark due to its longer
depth ranges and larger number of dynamic objects.

Method AbsRel↓ SqRel↓ RMSE↓ δ < 1.25↑
Monodepth2 [16] 0.213 4.975 18.051 0.761
PackNet-SFM [18] 0.162 3.917 13.452 0.823
GUDA† [20] 0.147 2.922 14.452 0.809
ManyDepth [72] 0.146 3.258 14.098 0.822

DepthFormer 0.135 2.953 12.477 0.836

Table 3. Depth estimation results on the DDAD validation split
[18], for distances up to 200m without any cropping (Figure 7).
The symbol † indicates supervision from synthetic data.

Even under these conditions, our DepthFormer architecture
achieves state-of-the-art results, as shown in Table 3, with
qualitative examples in Figure 7.

4.4. Ablation Analysis

In Table 4 we provide an analysis of the different com-
ponents used in our DepthFormer architecture, including
depth estimation results and memory requirements. Firstly,
we analyze the impact of our proposed cross-attention mod-
ule, showing that it is crucial for the reported state-of-
the-art performance. We also show that optimizing the
cross-attention cost volume itself, via self-supervision on
the high-response and context-adjust depth maps, is key to
our reported performance as well. This is expected, since
without them the cross-attention features are only used in
the context of joint single-frame decoding, rather than opti-
mized to generate multi-frame-only depth estimates as well.
Similarly, removing self-attention calculation from context
features also degrades results. We also ablated different
high-response and context-adjusted weights, achieving sim-
ilar results between λH = λC = [0.1, 1.0].

We also experimented with different variations of our
architecture, obtained by modifying the number of atten-
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Method Depth Evaluation GPU (GB)

AbsRel↓ RMSE↓ δ < 1.25 ↑ train test

W/o cross-attn. 0.099 4.430 0.900 3.8 2.9
W/o cross-attn. loss 0.103 4.581 0.892 12.1 5.3
W/o self-attn. 0.094 4.259 0.901 12.2 5.3

16 depth bins 0.101 4.595 0.894 6.6 3.2
48 depth bins 0.095 4.330 0.900 8.9 4.8
96 depth bins 0.092 4.181 0.903 12.5 5.4

32 attn. channels 0.104 4.761 0.885 8.7 3.7
48 attn. channels 0.098 4.332 0.894 9.6 4.3
96 attn. channels 0.093 4.207 0.899 12.5 5.5

2 attn. layers 0.094 4.388 0.901 11.4 6.1
4 attn. layers 0.093 4.321 0.901 13.3 6.2

DepthFormer 0.090 4.149 0.905 15.2 6.4

Table 4. Ablation analysis of the various components of our ar-
chitecture, including depth evaluation and GPU requirements.

tion layers N , attention feature channels C, and depth bins
D. These show a clear overall trend that increasing cross-
attention network complexity leads to improved results.
This is further evidence that better feature matching is ben-
eficial to depth estimation, but also shows that competitive
results can still be obtained with simpler configurations. We
leave further exploration of more complex architectures, as
well as efficiency improvements [42, 60], to future work.

4.5. Cost Volume Generalization

Our proposed architecture is modular, in the sense that
the cross-attention network can be separated from the joint
single-frame decoding architecture. In this section we ex-
plore to which extent we can re-utilize cross-attention cost
volumes between datasets, building on the well-studied in-
tuition [40, 46, 52, 61, 74] that geometric features are more
transferable than appearance-based ones. To this end, we
design three experiments, considering the KITTI dataset as
target and multiple other datasets as source. In hot swap,
we replace the cross-attention network trained on the target
dataset with one trained on a source dataset, maintaining the
same single-frame and pose networks, without further train-
ing. In fine-tune (mono), we train the single-frame and pose
networks from scratch, and use a frozen cross-attention net-
work pre-trained on a source dataset. In fine-tune (all) we
follow the same setting, but also jointly optimize the pre-
trained cross-attention network on the target dataset. To
fully leverage synthetic data, the VKITTI2, PD, and Tar-
tanAir models are pre-trained with depth supervision (us-
ing a Smooth L1 loss) and use ground-truth relative poses.
Real-world datasets (DDAD and Cityscapes) are pre-trained
using the self-supervised loss described in Section 3.4.

Results for these experiments are reported in Table 5. In-
terestingly, swapping the cross-attention network between
datasets results in only a small degradation in performance,
of around 5%. This indicates that the learned matching

Dataset Variation AbsRel↓ RMSE↓ δ < 1.25 ↑

DDAD
Hot swap 0.098 4.364 0.899
Fine-tune (mono) 0.099 4.336 0.902
Fine-tune (all) 0.091 4.187 0.904

Cityscapes
Hot swap 0.097 4.339 0.897
Fine-tune (mono) 0.096 4.291 0.899
Fine-tune (all) 0.090 4.138 0.905

VKITTI2
Hot swap 0.094 4.302 0.898
Fine-tune (mono) 0.094 4.232 0.899
Fine-tune (all) 0.091 4.192 0.904

P. Domain
Hot swap 0.102 4.432 0.888
Fine-tune (mono) 0.097 4.295 0.897
Fine-tune (all) 0.090 4.110 0.904

TartanAir
Hot swap 0.102 4.532 0.886
Fine-tune (mono) 0.095 4.397 0.897
Fine-tune (all) 0.091 4.187 0.905

KITTI —– 0.090 4.149 0.905

Table 5. Cross-attention cost volume generalization results on
the KITTI dataset, for different pre-trained source datasets.

function is robust to distribution shifts between datasets. In
fact, we achieved nearly identical results when only train-
ing the single-frame and pose networks from scratch, us-
ing a frozen cross-attention network pre-trained on a source
dataset. However, because the cross-attention network is
not optimized (i.e., it is kept frozen), training iterations are
both faster (around 100%, from 7.3 to 14.2 FPS) and re-
quire less memory (around 20%, from 15.3 to 12.4 GB).
Once convergence in this setting is achieved, we can repro-
duce the reported state-of-the-art results by fine-tuning all
networks for only 5 epochs, instead of the 50 required when
training the entire architecture from scratch.

5. Conclusion

This paper proposes a novel attention-based cost vol-
ume generation procedure for multi-frame self-supervised
monocular depth estimation. Our key contribution is a
cross-attention module designed to refine feature matching
between images, improving upon traditional appearance-
based similarity metrics that are prone to ambiguity and lo-
cal minima. We show that our cross-attention module leads
to more robust matching, that is decoded into depth esti-
mates and trained end-to-end using only a photometric ob-
jective. We establish a new state of the art on the KITTI
and DDAD datasets, outperforming other single- and multi-
frame self-supervised methods, and our results are even
comparable to state-of-the-art single-frame supervised ar-
chitectures. We also show that our learned cross-attention
module is highly transferable, and can be used without fine-
tuning across datasets to speed up convergence and decrease
memory requirements at training time.
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[50] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. arXiv:2103.13413,
2021. 2

[51] Anurag Ranjan, Varun Jampani, Lukas Balles, Deqing Sun,
Kihwan Kim, Jonas Wulff, and Michael J. Black. Com-
petitive collaboration: Joint unsupervised learning of depth,
camera motion, optical flow and motion segmentation. In
CVPR, 2019. 1

[52] Patrick Ruhkamp, Daoyi Gao, Hanzhi Chen, Nassir Navab,
and Benjamin Busam. Attention meets geometry: Geom-
etry guided spatial-temporal attention for consistent self-
supervised monocular depth estimation. In 3DV, 2021. 3,
7, 8

[53] Assem Sadek and Boris Chidlovskii. Self-supervised atten-
tion learning for depth and ego-motion estimation. In IROS,
2020. 2

[54] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning feature
matching with graph neural networks. In CVPR, 2020. 4

[55] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, 2016. 2

[56] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
Feature-metric loss for self-supervised learning of depth and
egomotion. In ECCV, 2020. 1, 2

[57] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
PWC-Net: CNNs for optical flow using pyramid, warping,
and cost volume. In CVPR, 2018. 1

[58] Jiexiong Tang, Rares Ambrus, Vitor Guizilini, Sudeep Pil-
lai, Hanme Kim, Patric Jensfelt, and Adrien Gaidon. Self-
Supervised 3D Keypoint Learning for Ego-Motion Estima-
tion. In CoRL, 2020. 1

[59] Jiexiong Tang, Hanme Kim, Vitor Guizilini, Sudeep Pil-
lai, and Rares Ambrus. Neural outlier rejection for self-
supervised keypoint learning. In ICLR, 2020. 1

[60] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler.
Efficient transformers: A survey. ArXiv:2009.06732, 2020.
8

[61] Zachary Teed and Jia Deng. Deepv2d: Video to depth with
differentiable structure from motion. In ICLR, 2020. 1, 8

[62] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 1

[63] Zachary Teed and Jia Deng. Droid-slam: Deep vi-
sual slam for monocular, stereo, and rgb-d cameras.
arXiv:2108.10869, 2021. 6

[64] Stepan Tulyakov, Anton Ivanov, and François Fleuret. Prac-
tical deep stereo (pds): Toward applications-friendly deep
stereo matching. In NeurIPS, 2018. 4

[65] Tom Van Dijk and Guido De Croon. How do neural networks
see depth in single images? In ICCV, 2019. 2

[66] Igor Vasiljevic, Vitor Guizilini, Rares Ambrus, Sudeep Pillai,
Wolfram Burgard, Greg Shakhnarovich, and Adrien Gaidon.
Neural ray surfaces for self-supervised learning of depth and
ego-motion. In 3DV, 2020. 1, 2, 3

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2,
3

[68] Jianrong Wang, Ge Zhang, Zhenyu Wu, Xuewei Li, and Li
Liu. Self-supervised joint learning framework of depth esti-
mation via implicit cues. arXiv:2006.09876, 2020. 7

[69] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Se-
bastian Scherer. Tartanair: A dataset to push the limits of
visual slam. In IROS, 2020. 6

169



[70] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
2004. 2, 5

[71] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. NeRF−−: Neural radiance fields
without known camera parameters. arXiv:2102.07064, 2021.
2

[72] Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel
Brostow, and Michael Firman. The Temporal Opportunist:
Self-Supervised Multi-Frame Monocular Depth. In CVPR,
2021. 1, 2, 4, 5, 6, 7

[73] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu,
and Jie Zhou. Nerfingmvs: Guided optimization of neural
radiance fields for indoor multi-view stereo. In ICCV, 2021.
2

[74] F. Wimbauer, N. Yang, L. von Stumberg, N. Zeller, and D
Cremers. Monorec: Semi-supervised dense reconstruction
in dynamic environments from a single moving camera. In
CVPR, 2021. 1, 2, 4, 5, 8

[75] Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Song Wang, and
Lili Ju. Spatial correspondence with generative adversarial
network: Learning depth from monocular videos. In ICCV,
2019. 2

[76] Youze Xue, Jiansheng Chen, Weitao Wan, Yiqing Huang,
Cheng Yu, Tianpeng Li, and Jiayu Bao. Mvscrf: Learning
multi-view stereo with conditional random fields. In ICCV,
2019. 2

[77] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learn-
ing of dense depth, optical flow and camera pose. In CVPR,
2018. 1

[78] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
CVPR, 2021. 2

[79] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao,
Yu Liu, and Youliang Yan. Exploiting temporal consistency
for real-time video depth estimation. In ICCV, 2019. 2

[80] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020. 2

[81] Shanshan Zhao, Huan Fu, Mingming Gong, and Dacheng
Tao. Geometry-aware symmetric domain adaptation for
monocular depth estimation. In ICCV, 2019. 2, 6, 7

[82] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, 2017. 1, 2, 3, 6

170


