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Figure 1. We present ROCA, a new end-to-end model that robustly retrieves and aligns 3D CAD models to a single image. From an RGB
image and a database of CAD models, ROCA retrieves and aligns CAD models for each object in the image. In comparison to previous
methods that perform direct pose regression, our approach leverages differentiable Procrustes optimization by predicting dense 2D-3D
correspondences in the form of depths and normalized object coordinates (NOCs). In addition, predicted 3D correspondences help to learn
retrieval of geometrically similar CAD models while simultaneously improving object alignments.

Abstract

We present ROCA 1, a novel end-to-end approach that re-
trieves and aligns 3D CAD models from a shape database to
a single input image. This enables 3D perception of an ob-
served scene from a 2D RGB observation, characterized as
a lightweight, compact, clean CAD representation. Core to
our approach is our differentiable alignment optimization
based on dense 2D-3D object correspondences and Pro-
crustes alignment. ROCA can thus provide a robust CAD
alignment while simultaneously informing CAD retrieval by
leveraging the 2D-3D correspondences to learn geometri-
cally similar CAD models. Experiments on challenging,
real-world imagery from ScanNet show that ROCA signif-
icantly improves on state of the art, from 9.5% to 17.6% in
retrieval-aware CAD alignment accuracy.

1The code is made available at https : / / github . com /
cangumeli/ROCA.

1. Introduction

2D perception systems have seen remarkable advances
in object recognition from 2D images in recent years, en-
abling widespread adoption of systems that can perform ac-
curate 2D object localization, classification, and segmen-
tation from an image [20, 31, 42]. Such advances have
spurred forward developments in many fields, from classi-
cal image understanding to robotics and autonomous driv-
ing. However, unlike the human perception of 2D images,
these systems tend to perform object recognition purely in
2D, whereas from a single RGB image, a human can per-
ceive geometric shape, structure, and pose of the objects
in the scene. In fact, such 3D understanding is crucial for
many applications, enabling possible exploration and inter-
action with an observed environment.

At the same time, there has been notable progress in es-
timating 3D object geometry from visual data [9, 16, 19,
36, 44, 45]. In particular, Mesh R-CNN [18] introduced
a formative approach to 3D object estimation from real-
world images, bridging state-of-the-art 2D object detec-
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tion with voxel-to-mesh estimation of the shape of each
detected object in an image. In contrast to this genera-
tive approach, Mask2CAD proposed to retrieve and align
CAD models from a database to produce a lightweight ob-
ject reconstruction with high fidelity given by the CAD
database [27, 35]. With significant availability of synthetic
CAD models [5,17,47], such CAD model reconstruction of
an observed scene shows strong promise in perceiving 3D
from an image, as it enables geometric estimation in a clean,
compact fashion more akin to artist-crafted 3D models, and
easily consumed for downstream applications.

However, current approaches to estimate 3D object
structure from an RGB image have largely focused on shape
representation and generation, either without any explicit
pose estimation [18], or simply regressing the object pose
directly from the 2D features of the object [15,27,28,35,37].
Thus, we propose a new CAD retrieval and alignment ap-
proach to estimate 3D perception from an image by for-
mulating a differentiable 9-DoF pose optimization directly
coupled to the object retrieval; this enables a more robust,
geometry-aware, end-to-end CAD alignment to the image.

In this work, we propose ROCA, a new method that
jointly detects object regions in a given input image
while simultaneously estimating depth and dense corre-
spondences between each 2D object region and its location
in its canonical object space. From the dense depth and cor-
respondence estimates, we then formulate a differentiable
Procrustes optimization and produce a final set of retrieved
CAD models and their 9-DoF alignments. This geometry-
aware differentiable optimization for the CAD alignment of
each object enables more robust and accurate CAD align-
ment. In addition, our method learns geometry-aware em-
beddings for CAD retrieval. Our retrieval embedding mod-
ule utilizes the canonical coordinates used in pose opti-
mization and an auxiliary shape completion objective. We
show learning geometry-aware embeddings improves both
retrieval and alignment accuracy. Overall, our method sig-
nificantly outperforms state of the art, improving by 8.1%
and 9.5% in retrieval-aware alignment accuracy and align-
ment accuracy from a single RGB image.

In summary, we propose an end-to-end architecture for
CAD model alignment to an RGB image with:

• a new differentiable pose optimization enabling
geometry-aware 2D-to-3D CAD alignment to an RGB
image,

• improved CAD retrieval by leveraging the dense object
pose correspondences and proxy CAD completion ob-
jective to inform the construction of a joint embedding
space between detected objects and CAD models,

• an interactive runtime of 53 milliseconds per image,
facilitating its use in real-time applications.

2. Related Work
2D Object Recognition. Single-image 3D understand-
ing requires strong 2D recognition capabilities. With re-
cent advances in deep learning, we now have methods that
have achieved remarkable success in image classification
[21, 42], 2D object detection [31, 32], and 2D instance seg-
mentation [20, 29]. We build our approach from the suc-
cess of 2D recognition to extend to an end-to-end 3D object
reasoning. In particular, to extract image features, we use
a Mask-RCNN [20] recognition backbone that detects and
segments objects in the image, from which we then estimate
3D CAD alignment and retrieval.

Monocular Depth Estimation. As we aim to predict 9-
DoF object alignments, we must reason about absolute ob-
ject depths. Monocular depth estimation from a single
RGB image has been extensively studied to predict abso-
lute per-pixel depths from an image. Modern monocu-
lar depth estimation frameworks typically train from pre-
trained deep convolutional networks to predict per-pixel
depth prediction in a fully convolutional fashion [14], lever-
aging learned semantic features to help resolve scale-depth
ambiguities. Recent methods have proposed using deeper
networks, multi-scale feature extractors, and alternative loss
functions [22, 30]. To extract strong geometric features, we
also predict dense depth for each detected object, leveraging
state-of-the-art depth estimation techniques [22, 30].

Single-Image Shape Reconstruction. In recent years,
many deep learning-based approaches have been developed
to reconstruct 3D shapes from a 2D image. These ap-
proaches typically employ large synthetic 3D shape datasets
[5], and render the synthetic objects for image input. Many
different shape representations have been explored, includ-
ing voxel grids [9,44], point clouds [16], polygonal meshes
[12,19,45], and neural implicit functions [36,38]. Such ap-
proaches have seen significant success in the single-object
scenario, inspiring Mesh-RCNN [18] to pioneer an ap-
proach built on 2D object recognition that generates 3D
shapes for each detected object in an RGB image, as a first
step to 3D perception in real-world images. More recent
work has also focused on estimating scene layouts and inter-
object relations [26, 37]. In contrast to these approaches
that perform object-based reconstruction from an image, we
propose to optimize for object poses by establishing dense
geometric correspondences, rather than a direct regression,
enabling more robust alignment optimization.

CAD Model Retrieval and Alignment. 3D reconstruc-
tion using CAD model priors has a long history in com-
puter vision [3, 7, 41]. Recently, with the availability of
large-scale 3D shape datasets [5], several approaches have
been introduced to perform CAD model retrieval and align-
ment to an image based on analysis-by-synthesis recon-
struction [23, 25]. While promising, these methods have
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extensive computational costs (minutes to hours), making
them ill-suited for many potential image-based reconstruc-
tion applications, such as real-time mobile or robotic appli-
cations. More recently, Mask2CAD [27] proposed a more
lightweight approach that learns to simultaneously retrieve
and 5-DoF align 3D CAD models to detected objects in
an image, building on top of a state-of-the-art 2D recogni-
tion backbone [29, 32]. Its use of a CAD representation for
lightweight object-based reconstruction and perception has
inspired a patch-based approach to improve CAD retrieval
[28], as well as extension to video input in Vid2CAD with
full 9-DoF alignment for each object (estimating scale and
depth, nor originally predicted by Mask2CAD) [35]. We
also aim to align and retrieve CAD models to reconstruct the
objects in an RGB image, but rather than directly regressing
the object pose, we formulate a differentiable optimization
based on learned, dense object correspondences, enabling
more accurate CAD alignment. Our established dense ob-
ject correspondences also enable explicit geometry-aware
retrieval, as we establish a joint embedding space between
3D CAD and 3D object correspondences.

Several recent approaches also solve for 9-DoF object
alignment in an image. For instance, Points2Objects [15]
builds from 2D object detection [13] to directly regress 9-
DoF alignments and treats object retrieval as a classifica-
tion problem, primarily demonstrating results on synthetic
renderings. In contrast to their direct bounding box regres-
sion for alignment, we formulate a differentiable alignment
based on dense geometric correspondence and perform
nearest neighbor object retrieval from a CAD database.

Learned Differentiable Pose Optimization. Traditional
pose optimization leverages correspondence finding to
solve for pose alignment, with separate stages for establish-
ing correspondences and the optimization for the best pose
under the correspondences. With the introduction of deep
learning, several methods have been proposed to bridge
such pose optimization into an end-to-end learned pipeline,
by establishing learned correspondences to inform various
pose optimization tasks, such as point cloud registration [8],
PnP optimization [6], or non-rigid tracking [4]. Most inspi-
rational to our work is the differentiable Procrustes opti-
mization of [2] for CAD model alignment to RGB-D scans.
In contrast to their work, we must reason without 3D in-
put data, and thus formulate a notably different optimiza-
tion to focus on image-based object pose estimation with
per-pixel correspondences and a weighted formulation for
robust alignment estimation.

3. Method
3.1. Overview

From an input RGB image I , its camera intrinsics π, and
a database of 3D CAD models S, we aim to represent each

object in the image as a similar CAD model in its 9-DoF
alignment to the image in metric camera space, thus pro-
viding a comprehensive lightweight, geometric reconstruc-
tion of the observed scene. An overview of our approach is
shown in Figure 2.

From the RGB image, we first detect and segment ob-
jects in 2D with a Mask-RCNN [20] backbone, while simul-
taneously estimating the object depths with a multi-scale
FPN [31]. We then estimate the 9-DoF alignment for a
detected object by using its estimated depths, 2D features,
and instance mask to regress scale and an initial transla-
tion. Moreover, we also establish learned, dense correspon-
dences to the object’s canonical space. We then formulate
a weighted Procrustes optimization to solve for the rotation
and refined translation, simultaneously estimating the op-
timization weights for robust alignment optimization. Our
approach is trained end-to-end with supervision given by
CAD models that have been aligned to RGB images.

In addition to alignment, our method learns to retrieve
geometrically similar CAD models to represent each de-
tected object. We first use the predicted Mask-RCNN ob-
ject categories to determine the object class from which
to search. We establish geometric similarity by learning
geometry-aware joint embeddings between the detected ob-
jects and CAD models, leveraging the detected objects’
canonical correspondences and 2D features; this helps to
significantly bridge the domain gap of 2D observations and
3D CADs. To additionally learn shape-guided features,
our embedding spaces are also trained jointly with a proxy
shape completion objective. This retrieval is trained end-to-
end along with the object alignment predictions and enables
CAD retrieval as a nearest-neighbor lookup from the input
CAD database at inference time.

3.2. Object Recognition and Depth Estimation

From an input image I , we leverage a strong 2D back-
bone to estimate both 2D object recognition and dense
depth. We use a ResNet-50-FPN [21, 31] to form the 2D
backbone, which produces a feature map F that then in-
forms both the 2D instance segmentation following Mask-
RCNN [20], as well as the depth estimation using a Multi-
scale Feature Fusion (MFF) [22] module. The 2D object
recognition detects objects as a set of object bounding boxes
{bi} and instance masks {mi}, and the depth estimation
produces a features map F d from the MFF layer before out-
putting the estimated depth map D. For 2D object recogni-
tion, we use a Mask-RCNN [20] backbone, and for depth
estimation, we use a ResNet-50-FPN [21, 31] with a Multi-
scale Feature Fusion [22] module that up-projects [30] and
concatenates four levels of FPN features. To up-sample
depth to full image resolution, we use a pixel-shuffle layer
[43]. We use a masked reverse Huber (berHu) [30] loss to
optimize for depth map D.
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Figure 2. Method overview. From an input RGB image, we first estimate 2D instance segmentation and dense depth for each object. For
each detected object, we then estimate dense correspondences to its canonical space as NOCs, which inform our differentiable Procrustes
optimization for geometrically-informed object alignment. We additionally leverage the NOCs to construct a joint embedding space
between estimated NOCs and voxelized CAD models to enable CAD retrieval, leveraging a proxy geometric completion loss. This enables
geometrically informed CAD retrieval, and moreover, robust CAD alignment to the image.

We additionally refine the predicted depths in the regions
of detected objects. For each detected object i with pre-
dicted 2D bounding box bi, we consider the di cropped from
D using bi and resized with nearest-neighbor interpolation
to an ROI size of 32× 32. We then apply an additional loss
to focus on object depth estimation, ||di−dgt

i ||1 + ||µ(di)−
µ(dgt

i )||1, where µ represents the average function.
We can then project the estimated per-object depths di

with the intrinsics π to obtain camera-space positions pi.

3.3. Robust Differentiable CAD Alignment

For each detected object, we then estimate its 9-DoF
alignment to the image as its translation ti, scale si, and
rotation ri.
Aggregating region features. To estimate the alignment
for a detected object i,with predicted 2D bounding box bi
and instance mask mi, we first aggregate its correspond-
ing features from F d which encode strong geometric de-
scriptors of the object. We crop the features from F d using
ROIAlign [20] in the box region bi, resulting in fdi of di-
mension 32 × 32 × 128. For each object region, we then
use a robust feature aggregation scheme to obtain a shape
descriptor ei:

ei = MLP(MaxPool(mi � PixelMLP(fdi ))) (1)

where � denotes the element-wise product operator, and
PixelMLP is a fully-connected network that operates per-
pixel and is shared over the pixels. Both MLPs use two
layers with hidden size 512, and MaxPool performs a max
pooling over the pixels in the object region to a single fea-
ture, to help increase robustness against mask and detection
errors. The final MLP output activation contains a ReLU as
well as a 30% dropout regularization.

Scale regression. We directly use predicted shape codes to
regress scale, si = MLP(ei), and optimize it with an `1
loss:

Lscale = ||si − sgt
i ||1. (2)

Note that the final affine layer produces scale estimates for
each class category, from which the scale is selected based

on the class category prediction, enabling capture of any
class-specific scale characteristics.

Initial translation estimation. We additionally predict an
initial translation estimate, based on the back-projected pre-
dicted object depths, pi, as a learned offset toi from the cen-
ter of the pi:

tinit
i = 0.5(max(pi) + min(pi)) + toi ,

toi = MLP([ei, (max(pi)−min(pi)])).

where [·, ·] denotes concatenation, and the MLP contains a
single hidden layer of size 256.

We then apply losses on the pi and tinit
i :

Lp = H
(
[max(pi),min(pi)], [max(pgt

i ),min(pgt
i )]
)

(3)

Ltrans initial = ||tinit
i − tgt

i ||2, (4)

where H denotes the Huber loss. Similar to the scale regres-
sion, we output per-category estimates from which the final
output is selected based on the predicted class category.

Normalized Object Coordinates as Correspondences. In
order to predict the final translation ti and rotation ri of the
object, we propose to predict dense correspondences to the
canonical object space, characterized as normalized object
coordinates, to inform the alignment optimization. In con-
trast to a direct regression, this enables the alignment pre-
diction to be geometrically informed and to learn the corre-
spondences that best inform the alignment energy.

That is, for each foreground pixel in mi, we predict its
corresponding 3D coordinates in the normalized object co-
ordinate (NOC) space, where the object lies in its canoni-
cal orientation is normalized into a unit cube [−0.5, 0.5]3.
Since NOCs will represent the same geometric surfaces
as the back-projected depths, we predict NOC correspon-
dences qi based on the inverse translated depth points, pre-
dicted scale, and shape code, using a lightweight MLP with
two 256-unit hidden layers:

qi = MLP([pi − tinit
i , si, ei]). (5)
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We optimize for predicted NOCs using an `1 loss w.r.t.
ground-truth NOCs:

Lnoc = ||qi − qgt
i ||1. (6)

Differentiable Robust Procrustes Optimization. At the
core of our alignment prediction, we formulate a differen-
tiable weighted Procrustes optimizer that estimates rotation
and refined translation. For each object, we have the re-
gressed scale and translation s ∈ R3 and tinit ∈ R3, NOC-
depth correspondences (q, p) ∈ RNx3, and m contains the
segmentation mask probability of each foreground NOC-
depth correspondence. For notational simplicity, now we
omit the index suffix i from the previous sections.

Our objective is to solve for an orthogonal rotation Ω ∈
SO3 such that (q � s)ΩT = (p − t). We formulate this
problem as a least squares optimization:

Ω∗ = argminΩ

N∑
k=1

ck||q̃kΩT − p̃k||22, (7)

where q̃ = q � s, p̃ = p − t, and c ∈ RN is a set of
learned, positive weights that allow for learning to upweight
more reliable correspondences. We predict c using a net-
work conditioned on shape code e and network predictions:
ck = MLP([e, s,mk, qk, p̃k]). This weight prediction MLP
contains a single 256-unit hidden layer followed by a sig-
moid. The optimization problem is then solved analytically
by differentiable weighted Procrustes optimization [8]:

UΣV = SVD(p̃T

c1 . . .
cN

 q̃) (8)

Ω∗ = U

1
1

det(VUT)

VT (9)

We optimize for the resulting rotation with an `1 loss using
the ground-truth rotation matrix:

Lrot = ||Ω∗ − Ωgt||1. (10)

Procrustes optimization can also be used to estimate transla-
tion by first zero-centering points for rotation and then using
the resulting rotation and point averages for translation [8].
We found that directly estimating translation this way re-
sulted in unstable training due to large transformations. To
this end, we instead solve for a refined translation t based
on the initial estimate tinit:

t = tinit + µc(p̃)− Ω∗µc(q̃), (11)

where µc denotes the weighted average operation w.r.t. pre-
dicted optimization weights c. We optimize for the refined
translation with the objective:

Ltrans = ||t− tgt||2. (12)

Thus, our final alignment loss is:

Lalign = wrotLrot+Ltrans+Lscale+wnocLnoc+Ltrans initial.

We can then train for alignment in an end-to-end fash-
ion, directly informing the predicted geometric correspon-
dences learned from the image input, resulting in more ro-
bust alignment estimates.

3.4. Geometry-Aware CAD Retrieval

In addition to geometric object alignment, we propose a
geometry-aware image-to-CAD retrieval that learns a joint
embedding space of CAD models and object regions.

To represent a detected object i in the image, we use its
shape code and predicted NOCs described in Section 3.3:

zi = MLP(ei) + 3DCNN(Voxelize(qi)), (13)

where zi ∈ R256, determined by the combination of an
MLP that processes the shape code ei with a single hid-
den unit of size 1024 and a final ReLU activation, as well as
a lightweight 3D convolutional network 3DCNN that oper-
ates on the 323 voxelized NOCs (the architecture is adopted
from [10], we refer to the supplemental for more architec-
ture details). To differentiably voxelize the NOCs, we use
the trilinear point cloud voxelization from PyTorch3D [40],
and normalize the resulting density grid such that each oc-
cupancy probability is ∈ [0, 1].

To encode the CAD models, we similarly represent them
as 323 occupancy grids G, which are then encoded with a
3D CNN:

z̃ = 3DCNN(G). (14)

Here, the 3DCNN is structured symmetrically to the NOC
processing network, but they do not share weights, since
NOC and CAD domains remain quite different.

Using the image and CAD representations above, our
model learns a joint embedding space. For an image re-
gion embedding zi, its corresponding positive and negative
CAD embeddings z̃+

i and z̃−i , we construct the space with
a triplet loss:

Lret = max(||zi − z̃+
i ||

2
2 − ||zi − z̃−i ||

2
2 + 0.5, 0). (15)

Since our predicted NOCs represent only the visible ob-
ject geometry rather than the complete object geometry,
whereas CAD models represent complete objects, we use
an additional proxy completion loss on the NOC encoding:

Lcomp = BCE(3DUpCNN(zi),G
+
i ) (16)

where BCE is the binary cross-entropy loss, G+
i is the pos-

itive CAD’s occupancy grid, and 3DUpCNN a 3D convo-
lutional decoder that predicts the complete object geometry
from the NOC encoding.
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Our geometry-aware retrieval is trained end-to-end with
the alignment prediction, allowing for retrieval to also in-
form the predicted NOC correspondences as well as the im-
age features. At inference time, we pre-compute CAD em-
beddings and perform a nearest-neighbor lookup for each
detected object region embedding prediction.

3.5. Implementation Details

Training. We train our approach end-to-end, using a mo-
mentum optimizer with momentum 0.9 and an initial learn-
ing rate of 1e-3, starting with 1k warm-up iterations interpo-
lating from 1e-4 [20]. The learning rate is decayed by 0.1
at iteration 60k, and training takes 80k iterations for con-
vergence. We use a batch size of 4, and 128 region pro-
posals. To regularize our model, we use a weight decay
of 1e-4 and apply random contrast, brightness, and satu-
ration augmentation, all sampled from the intensity range
[0.8, 1.25]. We use loss weights wrot = 2, wnoc = 3 to bal-
ance them with the translation and scale losses. To address
class imbalances, we weight detection, segmentation, and
alignment losses inversely proportional to the logarithm of
training class frequencies. Note that we do not weight re-
trieval losses, as more frequent classes need better retrieval.
Our 2D recognition backbone is pre-trained on ImageNet
and then COCO [33,42]. In total, training takes ≈ 20 hours
on a single RTX 3090 GPU.

Inference. For 2D object recognition at inference time, we
follow Mask-RCNN [20], filtering detections using non-
maxima suppression. Object detections with < 0.5 confi-
dence are discarded, and we use a mask probability thresh-
old of 0.7 to estimate foreground object regions for more
robust feature aggregation and alignment. For retrieval, we
use a 0.5 threshold for region segmentation. Although our
model is not optimized for speed, running the full inference
pipeline only takes 53 ms (≈ 19 frames per second), result-
ing in near real-time, interactive running speed.

Implementation. Our model implementation is based on
PyTorch [39], Detectron2 [46], and PyTorch3D [40] frame-
works. We use the weights of Detectron2 Mask-RCNN-
R50-FPN-1x model to initialize our recognition backbone.

4. Results
4.1. Data and Evaluation

Dataset. We evaluate our approach on the ScanNet25k im-
age data [11], following state of the art for CAD alignment
to images [27, 28, 35]. This contains 20k training and 5k
validation images, with training and validation images sam-
pled from videos representing different scenes. We render
Scan2CAD [1] CAD annotations into the corresponding im-
age views to obtain object detection, segmentation, depth,

Figure 3. Qualitative evaluation on RGB images from ScanNet
[11] with Scan2CAD [1] annotations. ROCA obtains more robust
and accurate object alignments in many complex scenes.

and NOC targets for training. We consider input images at
360× 480 resolution.

Alignment Accuracy. To evaluate our 9-DoF alignment
performance, we adopt the alignment accuracy metric of
Vid2CAD [35]. For each scene, we first transform per-
image 9-DoF alignment predictions to the ScanNet world
space and apply a 3D clustering to predicted alignments,
following the protocol described in [35]. Alignment accu-
racy is then computed following Scan2CAD [1]: an align-
ment is correct if the corresponding object classification is
correct, translation error ≤ 20cm, rotation error is ≤ 20◦,
and scale ratio is ≤ 20%. Alignments can be predicted up
to the total number of ground truth alignments.

Retrieval-Aware Alignment Accuracy. The previous
alignment accuracy metric, following [35], only takes into
account object classification and 9-DoF alignment. Thus,
to evaluate retrieval, we define a retrieval-aware alignment
accuracy metric. In addition to alignment correctness, this
metric enforces the correctness of the retrieved CAD model.
Candidate CAD models are those that appear in the ScanNet
scene, following retrieval in prior works [1, 2, 35].

4.2. Comparison to State of the Art

We compare our method against the state-of-the-art 9-
DoF Mask2CAD-b5 architecture [27,35]. Since the original
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Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Total3D-ODN [37] 10.0 2.9 16.8 2.8 4.2 14.4 13.1 5.3 6.7 8.5 10.4
MDR-CN [34] 5.8 5.7 0.9 9.9 5.4 28.1 11.5 11.5 8.1 9.7 15.3
Mask2CAD-b5 [27] 8.3 2.9 25.9 3.8 5.4 30.9 17.3 5.3 7.1 11.9 17.9
Ours P 14.2 7.1 18.5 6.1 13.1 30.3 17.8 17.7 9.2 14.9 (+3.0) 19.3 (+1.4)

Ours P+E 21.7 4.3 27.2 13.7 15.0 42.9 22.0 13.3 14.5 19.4 (+7.5) 26.9 (+9.0)

Ours P+E+W 18.3 10.0 28.9 15.1 14.6 41.4 23.0 15.9 16.1 20.4 (+8.5) 27.0 (+9.1)

Ours P+E+W+R 22.5 12.9 29.7 11.3 13.8 40.6 28.3 12.4 14.8 20.7 (+8.8) 26.7 (+8.8)

Ours (final) 22.5 10.0 29.3 14.2 15.8 41.0 30.4 15.9 14.6 21.5 (+9.6) 27.4 (+9.5)

Table 1. Alignment Accuracy on ScanNet [1, 11] in comparison to the state of the art and ablations. Total3D-ODN and MDR-CN are
the 3D object detectors of Total3D [37] and MDR-CenterNet [34], respectively. In both detectors, we provide ground-truth rotations in
lieu of layout estimation. Mask2CAD-b5 is Mask2CAD that predicts full 9-DoF alignment [27,35]. In our ablations, P denotes Procrustes
alignment optimization, E end-to-end training, W learned weighted optimization, and R learned retrieval without any completion proxy.
Both end-to-end training and weighted robust optimization improve alignment accuracy. Our learned retrieval and completion additionally
improve the alignment performance.

Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Mask2CAD-b5 [27] 7.5 2.9 23.3 2.8 4.2 23.0 12.0 3.5 6.0 9.5 13.8
Ours P+E+W 14.2 10.0 25.4 10.8 9.2 27.3 17.3 15.9 13.0 15.9 (+6.4) 19.4 (+5.6)

Ours P+E+W+R 21.7 12.9 27.6 5.7 10.8 30.6 19.9 9.7 11.2 16.7 (+7.2) 20.5 (+6.7)

Ours (final) 20.8 10.0 26.7 8.5 11.9 32.1 22.5 14.2 11.8 17.6 (+8.1) 21.7 (+7.9)

Table 2. Retrieval-Aware Alignment Accuracy on ScanNet [1, 11]. Mask2CAD-b5 is Mask2CAD that predicts full 9-DoF alignment
[27, 35]. We additionally evaluate different retrieval strategies: P+E+W does not use learned retrieval and instead uses Chamfer distance
as a retrieval metric, and P+E+W+R introduces learned retrieval but without proxy completion. Our final approach with learned retrieval
with proxy completion achieves the best retrieval-aware alignment performance.

Mask2CAD predicted only 5-DoF alignments, Mask2CAD-
b5 also learns to predict object depth and scale to produce
9-DoF alignments, as adapted by [35].

We additionally compare our method against state-of-
the-art single-image 3D object detectors, namely Total3D
[37] and MDR [34]. Total3D [37] predicts from a single
image the room layout, object poses and generates object
meshes. To compare with their object pose estimation, we
evaluate against their Object Detection Network (Total3D-
ODN). MDR [34] performs joint 3D object detection and
voxel-based coarse-to-fine object reconstruction. We com-
pare against their 3D CenterNet-based [13] detector (MDR-
CN). Since both methods depend on the room layout, we
provide ground truth rotation. All baselines are trained on
ScanNet25k data.

Table 1 and Table 2 evaluate alignment accuracy and
retrieval-aware alignment accuracy, respectively, in com-
parison with state of the art. Our approach outperforms
state of the art in alignment accuracy by 9.6% (81% relative)
and by 9.5% (53% relative) in class and instance averages,
due to our differentiable Procrustes-based alignment opti-
mization. Additionally, when considering retrieval-aware
alignment accuracy, ROCA improves by 8.1% (85% rel-
ative improvement) and by 7.9% (57% relative improve-
ment) over state of the art in class and instance accura-
cies. Our geometrically-grounded alignment formulation
enables significant performance improvements in categories
that are more scarcely represented in the train set (particu-
larly “bed”, “bathtub”).

Figure 3 shows a qualitative comparison of CAD re-
trieval and alignment on ScanNet images. ROCA obtains
more robust and accurate object alignments across a diverse
set of image views and object types.

4.3. Ablations

Effect of end-to-end optimization on alignment. Table 1
shows that our end-to-end Procrustes optimization notably
improves class alignment accuracy, from 14.9% to 19.4%.

Effect of learned Procrustes weights on alignment. In
Table 1, adding learned weights to end-to-end Procrustes
additionally improves robustness in alignment estimation,
resulting in an improvement of average class alignment ac-
curacy from 19.4% to 20.4%.

Effect of learned retrieval on alignment. In fact, in-
troducing learned retrieval from the predicted NOC corre-
spondences helps to improve class alignment accuracy from
20.4% to 21.5%, as shown in Table 2. Here, the learned re-
trieval can provide additional signal to the correspondence
learning, in our end-to-end formulation for joint retrieval
and alignment.

Learned retrieval performance. In Table 2, we compare
our method with a baseline retrieval approach of using a
single-sided Chamfer distance from the NOC predictions
to the database models (referred as “Ours P+E+W” in the
tables). We achieve an improved performance when lever-
aging an end-to-end, learned approach that embeds NOC
predictions into a shared space with CAD models. ROCA

4028



Figure 4. Sample predictions from our method. Our model shows promising 3D understanding ability in a wide variety of challenging
real-world images [1, 11].

Alignment Retrieval
Data class instance class instance
25k 21.5 27.4 17.6 21.7
400k 24.4 31.9 20.2 24.9

Table 3. Alignment and retrieval-aware alignment improvement
due to augmenting the training image set, by sampling more
frames from ScanNet [11] videos.

NOC noise σ 0.0 0.1 0.2 0.3
Accuracy 21.5 20.8 20.0 19.2

Table 4. Ablation of robustness to NOC noise under simulated
Gaussian noise.

additionally leverages a completion proxy loss for the re-
trieval embedding, producing the best retrieval-aware align-
ment performance.

Scaling to augmented training data. While the Scan-
Net25k benchmark contains 20k train and 5k validation im-
ages obtained by sampling every 100 frames from ScanNet
videos [11]. We consider augmenting training data by sam-
pling images more densely. We prepare a 400k training
dataset created by sampling every 5 frames, which helps to
improve our alignment and retrieval-aware alignment per-
formance, as shown in Table 3. Although such dense frame
sampling leads to stronger performance, such augmentation
can only be obtained from video datasets. Thus, we focus
on the 25k scenario, as it is more representative for image-
based reconstruction.

Robustness analysis. We show in Tab. 4 that under simu-
lated Gaussian noise in NOC predictions, our method main-
tains robustness, recovering 90% of category average align-
ment accuracy even under strong noise of N (0, 0.3).

Limitations. While ROCA shows significantly more ro-
bust and accurate CAD alignment performance to images,
various limitations remain. In particular, ROCA makes
per-object predictions independently, while global scene
context (e.g., object-object relationships) can provide ad-
ditional important signal for object alignments. Addition-

ally, while CAD alignment and retrieval can provide an im-
portant semantic reconstruction of an observed scene, CAD
databases cannot provide exact geometric matches in real-
world scenarios, as is the case with Scan2CAD [1]. Thus,
our approach is limited to approximate geometric repre-
sentations; we believe that extending a CAD retrieval ap-
proach to couple with mesh deformation approaches (e.g.,
as in [24]) is a promising direction to address more exact
geometric reconstruction.

5. Conclusion
We have presented ROCA, a robust end-to-end approach

for single-image CAD model alignment and retrieval. We
show that leveraging dense per-pixel depth and canoni-
cal point correspondences with our weighted differentiable
Procrustes optimization leads to more robust and accurate
pose predictions. Additionally, these correspondences can
be leveraged for geometry-aware end-to-end retrieval to im-
prove both retrieval and alignment performance. For chal-
lenging ScanNet/Scan2CAD image data [1,11], our method
significantly improves state-of-the-art retrieval-aware align-
ment accuracy from 9.5% to 17.6%. Our approach runs
efficiently at test time, achieving interactive speeds of 53
milliseconds per image. We hope that this can further spur
developments in 3D perception towards content creation,
mixed reality, and domain transfer scenarios.
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