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Abstract

Denoising and demosaicking are two essential steps to
reconstruct a clean full-color image from the raw data. Re-
cently, joint denoising and demosaicking (JDD) for burst
images, namely JDD-B, has attracted much attention by us-
ing multiple raw images captured in a short time to recon-
struct a single high-quality image. One key challenge of
JDD-B lies in the robust alignment of image frames. State-
of-the-art alignment methods in feature domain cannot ef-
fectively utilize the temporal information of burst images,
where large shifts commonly exist due to camera and ob-
ject motion. In addition, the higher resolution (e.g., 4K)
of modern imaging devices results in larger displacement
between frames. To address these challenges, we design a
differentiable two-stage alignment scheme sequentially in
patch and pixel level for effective JDD-B. The input burst
images are firstly aligned in the patch level by using a dif-
ferentiable progressive block matching method, which can
estimate the offset between distant frames with small com-
putational cost. Then we perform implicit pixel-wise align-
ment in full-resolution feature domain to refine the align-
ment results. The two stages are jointly trained in an end-to-
end manner. Extensive experiments demonstrate the signifi-
cant improvement of our method over existing JDD-B meth-
ods. Codes are available at https://github.com/
GuoShi28/2StageAlign.

1. Introduction

Color demosaicking and denoising are two essential
steps in digital camera imaging pipeline to reconstruct a
high quality full-color image from the sensor raw data.
Color demosaicking [9, 20, 29, 45, 46] recovers the miss-
ing color components from the color-filter-array (CFA) data
collected by the single-chip CCD/CMOS sensor, while de-
noising [21, 31, 48, 49] removes the noise in image data
caused by the photon arrival statistics and the imprecision

in readout circuitry. Since the two tasks are actually cor-
related and can be performed jointly, many joint denois-
ing and demosaicking (JDD) algorithms have been devel-
oped [5, 11, 14, 15, 23, 28], which are however focused on
single image restoration. With the prevalent use of smart-
phone cameras [1], it becomes crucial to restore images
from data with low signal-to-noise ratio due to the small
sensor and lens of smartphone cameras. To this end, per-
forming JDD with burst images (JDD-B) has become in-
creasingly popular and important in recent years [13].

Burst image processing refers to shooting a sequence of
low quality frames in a short time and computationally fus-
ing them to produce a higher-quality photograph [2, 41].
Compared with single image restoration, the key challenge
of burst image restoration lies in the compensation for shift
between frames. Previous studies often perform frame
alignment by estimating optical flow [8, 44] and applying
spatially variant kernels [32, 33, 42, 43] in the image do-
main. However, affected by noise, accurately estimating
optical flow and kernels is difficult. Recently, implicit align-
ment in the feature domain has achieved state-of-the-art per-
formance on video super-resolution [4, 40], video denois-
ing [47], as well as JDD-B [13]. However, it is found that
feature alignment is not very effective when handling im-
age sequences with large shift. For example, for the pyra-
mid feature alignment module in [40], the receptive field
of offset estimation is about 28 (3 conv layers with 3 × 3
kernels on 1/4 scale), i.e., 14 pixels along one direction.
Such a search range is too small for burst images with large
shift. Whereas, large shifts commonly exist in videos due
to the camera and object motion. On the other hand, mod-
ern image/video recorders can easily capture videos of 4K
(4096 × 2160) or UHD (3840 × 2160) resolution. As a
result, the pixel displacements between frames further in-
crease. Even some small motion of foreground objects in
4K video can cause a large value of shift.

However, precise pixel-wise alignment on full size im-
ages with large motion is very difficult and expensive. With
a naive implementation, for each pixel, we assume the off-
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Figure 1. Illustration of our network with differentiable two-stage alignment for JDD-B.

set estimation with receptive field D × D costs F × D2

multiply-adds, where F is determined by different network
structures. For input with size H×W , the offset estimation
costs F × D2 × H × W multiply-adds. One straightfor-
ward solution to handle large shift is to increase D by us-
ing 3D conv layers [27] or calculating all-range correlation
volume [24]. However, these solutions will significantly in-
crease the computational cost and they are not efficient for
images with large size.

To address these problems, we design a differentiable
two-stage alignment framework, which divides the diffi-
cult large shift alignment problem into two relatively eas-
ier alignment sub-problems, i.e., coarse alignment (CA) and
refined alignment (RA). The CA module aims to compen-
sate large shift roughly using small calculating resources.
Instead of using pixel-wise alignment, the CA module per-
forms alignment in patch level with F × D2 × (H/k) ×
(W/k) multiply-adds, where k is the patch size. Then the
RA module is used to pixel-wise align frames based on the
results of CA module with smaller receptive field Ds. Such
two-stage framework uses F × (D2/k2 + D2

s) × H × W
multiply-adds in total, which is significantly smaller than
directly aligning images using one-stage module, especially
when D is large. Specifically, we utilize block matching
(BM) based method as CA module in image domain.

To overcome the non-differentiability caused by BM and
reduce the computational cost, we propose a differentiable
progressive block matching (DPBM) method. We further
propose a corresponding loss function for DPBM to sta-
blize the training process. For the RA module, we per-
form refined pixel-wise alignment implicitly in the feature
domain using deformable convolution for accurate image
restoration. The two stages of alignments are complemen-
tary and they can enhance each other when jointly used
in our learning framework. Compared with state-of-the-
art (SOTA) method GCP-Net, our two-stage framework has
fewer learnable parameters and similar running time, but
achieves great improvement on images with large shift. The
major contributions of this work are shown as follows:

• To efficiently handle images with large shift, we pro-
pose a differentiable two-stage alignment framework,
which divides the difficult large shift alignment prob-
lem into two easier sub-problems.

• We propose a differentiable progressive block match-
ing method in CA module to reduce computational
cost and ensure that our two-stage framework can be
end-to-end trained.

Our experiments on synthetic and real-world burst image
datasets clearly show that our two-stage alignment method
achieves impressive improvement over existing methods.

2. Related Work
2.1. Joint Denoising and Demosaicking

Denoising and demosaicking are two fundamental and
correlated tasks in camera image signal processing (ISP)
pipeline with a single chip of CMOS/CCD sensor [9, 20,
29, 45, 46]. Considering that performing denoising and
demosaicking separately may accumulate errors for im-
age restoration, JDD has been widely studied in recent
years [7, 11, 13, 15, 23, 28, 36].

Gharbi et al. [11] showed that using more challenging
patches for training can reduce the moiré artifacts in JDD.
Then, more complex methods have been to obtain better
performance, e.g., two-stage network [36], auto-encoder ar-
chitecture [15] and iterative structure [23]. The mosaic-to-
mosaic framework [7] was proposed to improve the demo-
saicking performance on real-world images by finetuning
the network with burst images. Since in the Bayer pat-
tern of camera raw images, the green channel has twice the
sampling rate of red/blue channels and has higher signal-to-
noise ratio, the green channels were utilized to guide the
upsampling process [28], the feature extraction [13] and
offset estimation between frames [13]. Previous methods
mostly perform JDD on single CFA raw images and achieve
limited performance on real-world CFA image with high
noise level. Even a method has been proposed to use burst
raw image for the JDD task [13], its alignment module has
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Figure 2. Illustration of the coarse alignment process with differentiable progressive block matching (DPBM). Without loss of generality,
we show the DPBM of a patch centered at position p. “A” is the center of search region centered at p + ∆p0, while ∆p0 is 0 for target
frame r+ 1 and ∆pr+n for target frame r+ n+ 1. To reduce computational cost, we first perform matching with stride s using proposed
differentiable block matching, resulting in the matched center position “B”. Then we perform searching with stride 1 in the neighborhood
of “B”, resulting in a more accurate matched position “C”. ∆pr+1 is the displacement between “C” and “A” for frame r + 1.

small receptive field and cannot obtain visual-pleasing re-
sults on images with large shift. In this work, we propose
a new two-stage framework, which obtains great improve-
ment over [13] with similar running time.

2.2. Multi-frame and Burst Image Restoration

Multi-frame image restoration has been widely studied
in literature [4, 8, 18, 26, 32, 33, 38, 40, 42–44, 47], aim-
ing to reproduce a photo with better quality than that es-
timated from a single image. The major challenge of multi-
frame image restoration lies in how to compensate for the
motion between frames. Some popular solutions employ
optical flow [8, 44] and spatially varying kernel estima-
tion [32, 33, 42, 43]. However, the performance of these
methods is highly affected by large motion and severe noise.

Recently, performing implicit frame alignment in feature
domain has achieved state-of-the-art performance on video
super-resolution [4, 26, 38, 40], video denoising [47] and
JDD-B [13]. In such methods, the offset [38, 40] or optical
flow [4] is estimated from the deep features extracted from
neighboring frames, and the deformable convolution [6] or
wrap operator is used to compensate for shifts in feature do-
main. In [13, 40, 47], pyramidal processing is employed in
the offset estimation to deal with complex motions. How-
ever, we found that, due to the limited receptive field, im-
plicit alignment in feature domain can only achieve limited
performance for sequences with large shift. To solve this
problem, we design a differentiable two-stage alignment
scheme and demonstrate its effectiveness for JDD-B.

3. Methodology
3.1. Motivation and Network Structure

The purpose of JDD-B task is to reconstruct clean RGB
image x from a burst of noisy CFA images Y = {yt}Nt=1

and their corresponding noise maps M = {mt}Nt=1. How-
ever, previous SOTA multi-frame methods [13, 40, 47] have
limited ability to address large pixel displacement by the
small receptive fields. Thus, we propose a differentiable
two-stage alignment framework to increase the receptive
field of alignment without increasing the amount of calcu-
lation. Our framework is illustrated in Fig. 1, which divides
the difficult large shift compensation problem into two rel-
ative easier sub-problems, i.e., coarse alignment (CA) and
refined alignment (RA).

The CA module needs to compensate large shift roughly
using small computational cost. We choose block matching
(BM) based method and propose a differentiable progres-
sive block matching method to estimate the offset on low-
resolution (LR) features and output the coarsely aligned
burst images. The RA module is then developed, which
uses deformable convolution (DConv) to pixel-wise align
the burst images in high-resolution (HR) feature domain.
Finally, the fusion module estimates the clean full color im-
age of the reference frame (denoted as frame r) by using
the aligned image features. The details of each module are
described in the following sections.

3.2. Coarse Alignment in Patch Level

The coarse alignment (CA) module aims to efficiently
estimate the large offsets between frames. To meet the re-
quirements of handling burst images with complex motion
at 4K resolution, the CA module needs to have a large re-
ceptive field using small cost. Also in model training, to
suppress the effect of small noise, the GT images are usually
obtained by down-sampling high-resolution images, which
also reduces the range of motion. Thus we choose to use
BM to perform coarse alignment, which can easily mitigate
this gap between training and testing stages by increasing
the search region. To overcome the non-differentiability
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Table 1. Quantitative comparison of different JDD-B approaches on the REDS4 dataset. Following the experiment setting of [33, 43],
“Low” and “High” noise levels are corresponding to σs = 2.5× 10−3, σr = 10−2 and σs = 6.4× 10−3, σr = 2× 10−2, respectively.

Noise Level Clip Name KPN+DMN EDVR+DMN RviDeNet+DMN EDVR* RviDeNet* GCP-Net Ours

Low

Clip000 29.85/0.8398 32.15/0.8984 32.38/0.9075 32.44/0.9072 33.58/0.9285 34.96/0.9412 35.07/0.9501
Clip011 32.01/0.8496 34.29/0.9030 34.39/0.9019 34.32/0.9017 34.63/0.9044 36.21/0.9288 36.79/0.9356
Clip015 33.46/0.8770 35.42/0.9074 35.75/0.9169 35.54/0.9160 36.98/0.9327 37.74/0.9403 38.13/0.9456
Clip020 31.29/0.8613 33.56/0.9071 33.81/0.9165 33.86/0.9179 34.23/0.9230 35.92/0.9428 36.38/0.9479

Average 31.65/0.8570 33.85/0.9039 34.08/0.9107 34.02/0.9105 34.86/0.9221 36.20/0.9383 36.59/0.9448

High

Clip000 27.47/0.7437 30.18/0.8517 30.37/0.8532 30.31/0.8539 31.29/0.8803 32.57/0.9147 32.75/0.9174
Clip011 29.64/0.7886 32.26/0.8611 32.50/0.8639 32.51/0.8643 32.50/0.8710 34.20/0.8972 34.74/0.9059
Clip015 31.21/0.8310 34.01/0.8893 34.10/0.8909 34.01/0.8919 34.90/0.9068 35.94/0.9225 36.06/0.9247
Clip020 28.66/0.7938 31.65/0.8780 31.74/0.8807 31.44/0.8757 31.82/0.8822 33.61/0.9154 34.17/0.9233

Average 29.24/0.7893 32.02/0.8700 32.18/0.8722 32.06/0.8715 32.62/0.8850 34.08/0.9124 34.43/0.9178

caused by BM and reduce computational cost, we propose a
differentiable progressive block matching (DPBM) method.
Differentiable BM. We first introduce the differentiable
BM process. For a patch Pr in the reference frame r
and a query patch (Pt,i)i∈I in another frame t with in-
dices I = {1, ...,M}, the purpose of BM is to find the
best matched patch in (Pt,i)i∈I with the target patch Pr.
The normalized mean-absolute (NMA) distance is used as
the matching criterion. The NMA distance between image
patches Pt,i and Pr can be written as:

d(Pt,i, Pr) =
E[|Pt,i − Pr|]√∑M
i=1 E[|Pt,i − Pr|]2

. (1)

For traditional BM, the patch with minimum distance is
chosen as the best matched patch, which is denoted as
Pt,BM . The minimum distance is obtained by sorting
d(Pt,i, Pr)i∈I in ascending order, which is not differen-
tiable. To overcome this problem, we refer to [12, 19, 35]
and utilize continuous deterministic relaxation of BM. The
weighting factor w of d(Pt,i, Pr)i∈I can be calculated as:

wi =
exp (−d(Pt,i, Pr)/T )∑

i′∈I exp (−d(Pt,i′ , Pr)/T )
, (2)

where T is the temperature and wi becomes one-hot vec-
tor when T approaches 0. We now can obtain Pt,BM by
using Pt,BM =

∑
i∈I wiPt,i. As discussed in [19], using

small T can make w closer to one-hot, but it will result in
a larger gradient and cause the training process to be unsta-
ble. While using large T , w becomes smooth but easy to
train. Thus we regard training differentiable BM as a soft
to hard process, where T is initialized as 1× 10−2 and then
reduced to 1× 10−3 in our experiments.

Different from the differnetiable BM in [35], here we
calculate the distance between patches on LR features ob-
tained by a lightweight network, which is updated by the
gradient only from differentiable BM. We further design
some constrains for DPBM to stablize the training process,
which will be introduced in Sec. 3.5.

DPBM. The detailed process of DPBM is illustrated in
Fig. 2. Firstly, to reduce the computational cost and relieve
the impact of noise interference, we perform differentiable
BM on LR features which are obtained by a lightweight
downsampling network. The network contains three 3 × 3
convolution (conv) layers with 16 channels and two trans-
pose conv layers to downsample images into learned fea-
tures with 1/4 scale. For the LR feature patch Pr,p cen-
tered at position p in the reference frame r, the search re-
gion in its closest target frame, denoted as frame r + 1,
is set to {p ± ∆pcmax}, where ∆pcmax is the max search
range. We firstly find an approximately matched position in
{p±∆pcmax} with a stride s > 1 using differentiable BM
and denote the matched position as pa. Then we find a more
accurate matching patch in {pa ± s} with stride 1 and de-
note the matched position as pm. The shift between frames
r and r + 1 for patch P is obtained as ∆pr+1 = pm − p.

For target frame r + 2, the search region is set to {p +
∆pr+1 ±∆pcmax}, which is updated using the offset esti-
mated from frame r + 1. Usually, motion between frames
has continuity, and updating the search region using tem-
poral information can more effectively locate the matched
patch in long-term frames. In the cases where the motion
between frames changes abruptly, our DPBM is equivalent
to the standard BM. Note that the DPBM is performed on
1/4 scale LR features and the estimated offsets should be
rescaled to the original image resolution when aligning the
full resolution images.

3.3. Refined Alignment in Pixel Level

The refined alignment module aims to perform accu-
rate pixel-wise alignment on the coarsely aligned frames.
The deformable alignment with DConv [6] has proved its
success in feature alignment for various video processing
tasks [13,38,40,47]. Thus we choose to use implicit feature
alignment in our refined alignment module.

The deep features are extracted from the burst images at
the original resolution. The alignment of features of the ref-
erence frame and a target frame, denoted by Fr and Fr+1,
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(a) Noisy image (b) EDVR+DMN (c) RviDeNet+DMN (d) EDVR*

(e) RviDeNet* (f) GCP-Net (g) Ours (h) GT
Figure 3. JDD-B results on Clip 020 of the REDS4 dataset by different methods.

is described as follows. Firstly, the offset is estimated from
the deep features by using ∆pr+1 = f([Fr, Fr+1]), where
[·, ·] is the concatenation operator and f refers to the combi-
nation of several Conv layers and nonlinear functions (e.g.,
LReLU). Then the aligned feature F ′

r+1 can be obtained by
performing DConv with the estimated offset:

F ′
r+1 = DConv(Fr+1,∆pr+1). (3)

Similar to [40], we also adopt the pyramid DConv align-
ment strategy to improve the alignment performance.

3.4. Aligned Feature Fusion

In burst image restoration, the merging of aligned fea-
tures is another important step. There are three typical so-
lutions, i.e., non-directional fusion [18, 25, 40, 47], unidi-
rectional fusion [18, 37] and bidirectional fusion [4, 16, 17].
Compared with non-directional and unidirectional fusion,
bidirectional fusion can utilize long-term memory and in-
formation from both forward and backward directions [4].
Thus, we design a bi-directional gate recurrent unit (Bi-
GRU) as the core component of our fusion module.

The input of our fusion module is the aligned feature
frames {F ′

t}Nt=1. For the reference frame r, the features are
propagated with forward (hf

r ) and backward (hb
r) informa-

tion, which can be calculated as:

hf
r = fgru(Fr, h

f
r−1), hb

r = fgru(Fr, h
b
r+1), (4)

where fgru refers to the gate recurrent unit (GRU). The out-
puts of forward pass and backward pass are then concate-
nated as the input for clean full-color image reconstruction.
A typical 3-scale UNet with two skip connections is used as
the image reconstruction network. More details of network
structure are provided in the supplementary file.

3.5. Design of Training Loss

DPBM Loss. Firstly, to avoid learning an all zeros vector
or a uniform vector of w in Equ. 2, we use penalty when w

is not a one-hot vector by calculating the statistical charac-
teristics of w, which is denoted as Lone−hot. To be specific,
the sum and variance of w should equal to 1 and 1/M , re-
spectively. M is the patch number of query d(Pt,i, Pr)i∈I .
The Lone−hot can be written as:

Lone−hot = |sum(w)− 1|+ |var(w)− 1/M |, (5)

where sum(w) and var(w) are the sum and variance of w.
Due to the corruption of noise in raw images, the BM

distances between noisy patches are not accurate. To sta-
bilize the DPBM training process and relieve the impact of
noise, we use the BM results obtained by clean images to
guide the training process. We let

LBM = ∥d(Pt,i, Pr)− d(P c
t,i, P

c
r )∥22, (6)

where P c
t,i and P c

r are the query patches in frame t and tar-
get patch in frame r using clean images. LBM is utilized in
the first 20W iterations.
Interpolation Loss. We design an interpolation loss, de-
noted by Lip, to encourage the network to make better use
of the information from other frames. The core idea of Lip

is to use neighboring frames to “interpolate” the reference
frame. In the fusion module, we aggregate the features from
all other frames, excluding the reference frames, to interpo-
late the reference frame using the reconstruction UNet. The
“interpolation” output is denoted as x̂i. To encourage the
aligned features to capture more textures, we calculate Lip

only on high frequency regions (denoted by mh), which can
be obtained using [28]. The Lip can be written as:

Lip = mh ⊙
√

∥x̂i − x∥2 + ϵ2, (7)

where
√
∥x̂− x∥2 + ϵ2 is the Charbonnier penalty func-

tion, and ϵ is set to 0.001.
Overall Loss. Denote by x̂ the reconstructed clean full-
color image from the noisy raw burst data and by x the
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Table 2. Quantitative comparison on the Videezy4K dataset. The noise level is set as σs = 6.4× 10−3, σr = 2× 10−2.

Methods 00 01 02 03 04 05 06 07 08 09 10 11 Average

EDVR* 36.07 38.45 40.07 40.84 37.82 33.93 36.96 35.71 37.02 34.86 37.60 36.99 37.19
0.9406 0.9583 0.9652 0.9721 0.9511 0.9207 0.9454 0.9310 0.9419 0.9299 0.9387 0.9367 0.9443

RviDeNet* 36.22 38.56 40.78 40.42 38.34 34.30 37.76 36.40 37.23 34.83 38.04 37.16 37.50
0.9490 0.9657 0.9738 0.9789 0.9582 0.9271 0.9543 0.9399 0.9448 0.9385 0.9432 0.9396 0.9510

GCP-Net 35.51 39.17 41.32 40.85 38.74 34.83 38.50 37.12 37.69 35.67 38.21 37.78 37.94
0.9306 0.9683 0.9755 0.9646 0.9653 0.9365 0.9650 0.9530 0.9482 0.9458 0.9473 0.9424 0.9535

Ours 37.75 39.61 41.71 42.42 39.30 36.09 39.24 37.21 38.76 35.94 38.64 38.27 38.74
0.9578 0.9737 0.9809 0.9855 0.9698 0.9532 0.9741 0.9594 0.9604 0.9491 0.9515 0.9514 0.9639

(a) Noisy image (b) EDVR* (c) RviDeNet* (d) GCP-Net (e) Ours (f) GT

Figure 4. JDD results of different methods on the Videezy4K dataset.

ground-truth clean image of the reference frame. A recon-
struction loss can be defined as:

Lr =
√
∥x̂− x∥2 + ϵ2 +

√
∥Γ(x̂)− Γ(x)∥2 + ϵ2, (8)

in which Γ(·) is the ISP operator consisting of white bal-
ance, color correction and gamma compression. The imple-
mentation details of Γ(·) can be found in [3].

Overall, the total loss of our model is:

L = Lr + βLip + ρLone−hot + ηLBM , (9)

where β and η are the balancing parameters and are set to 1
and 1× 103. The penalty factor ρ is set to 1× 105.

4. Experiments
4.1. Model Training Details

Training Data. We follow the method in [3] to synthesize
training data for real-world burst images. The 240 training
clips of 720p in the REDS dataset [34] are used to generate
training data. Firstly, the sRGB videos are unprocessed to
linear RGB space using [3]. The obtained sequences are
taken as the clean ground-truth images xt. The inputs of
the network {yt}Nt=1 are the noisy raw burst images which
are obtained by [10]:

yt = M(xt) + n(M(xt), σs, σr), (10)

where n(x, σs, σr) ∼ N (0, σsx+σ2
r), and M(·) is the mo-

saic downsampling operator. σs and σr represent the scale
of shot noise and read noise, respectively.

Training Details. We use the center frame as the reference
frame. Following [13,33], the σs and σr are uniformly sam-
pled in the ranges of [10−4, 10−2] and [10−3, 10−1.5]. Our
model is implemented in PyTorch and is trained using two
RTX 2080Ti GPUs. During training, we use the Adam [22]
optimizer with momentum 0.9. The learning rates are ini-
tialized as 1 × 10−5 for the lightweight network in coarse
alignment and 1 × 10−4 for other network parts. Then the
learning rate is decreased using the cosine function [30].

4.2. Comparison with State-of-the-Art Methods

Competing Methods. We compare our method with the
recently developed JDD-B method GCP-Net [13]. Follow-
ing [13], we also combine several SOTA burst denoising
algorithms, i.e., KPN [33], EDVR [40] and RviDeNet [47],
with a SOTA demosiacking method DMN [11] for compar-
ison. EDVR [40] and RviDeNet [47] are also slightly mod-
ified to adapt to the JDD-B task by adding an upsampling
operator to the output layer, and we denote them as EDVR*
and RviDeNet*. All competing models are retrained using
our experiment setting.
Results on Synthetic Data. To quantitatively evaluate the
competing methods, we first perform experiments on two
synthetic datasets, i.e., REDS4 [40] and a dataset collected
by us, called Videezy4K. REDS4 is widely used as the
test set in the study of video super-resolution, whose res-
olution is 720p. Since images/videos captured by modern
smartphone cameras and DSLRs commonly have 4K res-
olution, the shift between frames can be larger than the
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(a) Noisy image (b) KPN+DMN (c) EDVR+DMN (d) RviDeNet+DMN

(e) EDVR* (f) RviDeNet* (g) GCP-Net (h) Ours
Figure 5. JDD-B results on real-world burst images by different methods.

REDS4 dataset. To better evaluate the performance on 4K
videos, we collected 12 clips of 4K videos from the Videezy
website [39] and choose 20 frames of each video for test-
ing. All testing videos are firstly converted to linear RGB
space using the same pipeline as generating training data
and the noisy burst raw images are generated by adding het-
eroscedastic Gaussian noise with Equ. 10.

The quantitative results on REDS4 and Videezy4K
datasets are shown in Tables 1 and 2, respectively. Follow-
ing [13, 33], we calculate the PSNR and SSIM indices after
gamma correction to better reflect perceptual quality. The
qualitative comparisons on REDS4 and Videezy4K are pre-
sented in Figs. 3 and 4, respectively. We can see that due to
the correlation between denoising and demosaicking, JDD-
B algorithms (i.e., EDVR* and RviDeNet*) obtain bet-
ter performance than EDVR+DMN and RviDeNet+DMN.
However, limited by the small receptive field of one-stage
alignment module, EDVR*, RviDeNet* and GCP-Net suf-
fer from the over-smoothing problem in areas with large
motion. Benefiting from the two-stage alignment, our
model recovers more textures, especially on the moving ob-
jects. In Fig. 3, the horizontal stripes on the walking peo-
ple are well reconstructed with little zippers and color arti-
facts by our model. In Fig. 4, the characters can be more
clearly restored and identified by our method. For images
with small motion, i.e., Clip000 in the REDS4 dataset, our
method still obtains better performance. More visual results
can be found in the supplementary file.
Results on Real-world Burst Images. We then qualita-
tively evaluate our method on real-world burst images. The
SCBurst dataset [13] is used, where burst images are cap-
tured using smartphones with a wide range of ISO values.
SCBurst contains noisy raw images and the corresponding
metadata, which are used in the testing and visualization.
We provide visual comparisons in Fig. 5. One can see
that the restoration results of KPN+DMN, EDVR+DMN,

EDVR*, RviDeNet+DMN and RviDeNet* contain notice-
able motion induced artifacts. GCP-Net exhibits less arti-
fact but it fails to reconstruct the textures in the area with
high noise level. Benefiting from the two-stage alignment
module, our model can more effectively utilize the temporal
information and reconstruct more details. We provide more
visual results and user study in the supplementary file.
Model Size and Running Speed. Table 3 lists the num-
ber of model parameters and running time on 5 frames with
UHD resolution by our method and compared methods on a
GTX 2080Ti GPU. EDVR* has the least number of param-
eters and fastest speed but worst performance. RviDeNet*
has the highest computational cost since it consists of a pre-
denoising module and non-local modules. Compared with
GCP-Net, our model obtains better performance with less
training parameters and similar running time. The CA mod-
ule costs 3.6s and RA+fusion module costs 16.1s.

Table 3. Comparison of different CNN models in terms of the
number of parameters and running times on 5 frames with input
size 2160× 3840 and output size 2160× 3840× 3.

EDVR* RviDeNet* GCP-Net Ours
#. Params 6.28M 57.98M 13.79M 12.05M
Times(s) 10.4 124.3 19.5 19.7 (3.6+16.1)

4.3. Ablation Study

Coarse Alignment vs. Refined Alignment. To evaluate
the role of CA and RA modules in our model, we compare it
with three variants, i.e., without using alignment (ours(w/o
Align)), only using CA module (ours(w/ CA)), and only
using RA module (ours(w/ RA)). The quantitative compar-
ison on the REDS4 dataset is shown in Table 4.

One can see that ours(w/ RA) can achieve great im-
provement (1.83dB) over ours(w/o Align) when compensat-
ing for small motions (Clip 000), but achieve limited gain
(0.26dB) for sequences with large motion (Clip 020). This
shows that limited by the small receptive field, DConv fails
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(a) Noisy image (b) Noisy Patch (c) w/o Align (d) w/ RA (e) w/ CA (f) two-stage

Figure 6. JDD-B results by using different variants of our two-stage alignment model.

to effectively use temporal information for scenes with large
motion. By using DPBM to search in a large region, ours(w/
CA) can more effectively utilize temporal information, and
obtain 0.52dB gain than ours(w/ RA) for images with large
motion (Clip 020). However, it achieves smaller improve-
ment (0.31dB) on Clip 000 which has small motion. We
also visualize in Fig. 6 the JDD-B results using models with
different alignment modules. One can see that two-stage
alignment can reconstruct more textures.

On average, without CA module, ours(w/ RA) achieves
1.02dB gain over ours(w/o Align). When CA module
is included, ours full model achieves more improvement
(1.28dB) than ours(w/ CA). Meanwhile, without RA mod-
ule, ours(w/ CA) brings 0.27dB gain than ours(w/o Align),
while by considering RA module, our full model brings
0.53dB gain than ours(w/ RA). One can see clearly that
both alignment steps can improve the JDD-B performance.
CA and RA modules are complementary to each other and
they can enhance each other when used together.

Table 4. Comparison of different variants on a clip with small
motion (Clip 000) and a clip with large motion (Clip 020) in the
REDS4 dataset, and the average results on the whole REDS4.

Clip 000 Clip 020 Avg
ours(w/o Align) 30.74/0.8662 32.43/0.8969 32.88/0.8889
ours(w/ CA) 31.05/0.8738 33.21/0.9080 33.15/0.8932
ours(w/ RA) 32.57/0.9190 32.69/0.9002 33.90/0.9077
ours(w/o E2E) 32.67/0.9158 34.07/0.9217 34.31/0.9159
ours(full) 32.75/0.9174 34.17/0.9233 34.43/0.9178

End-to-end Learning of Two-stage Alignment. In order
to train our method in an end-to-end manner, we proposed
the DPBM module. To evaluate the effectiveness of end-
to-end learning, we train a variant, namely ours(w/o E2E),
which uses normal BM in the CA module. Since normal
BM is non-differentiable, the learnable lightweight down-
sampling network is replaced by bicubic downsampling.
The results are also shown in Table 4. One can see that our
full model can obtain 0.12dB improvement over ours(w/o
E2E), validating that the end-to-end CA module can learn
better alignment for restoration. More importantly, since
the main difference among flat patches is caused by noise,
directly performing BM on noisy patches may align noise
and generate artifacts. An example is shown in Fig. 7. Owe

to the use of a learnable lightweight network for downsam-
pling, our full model can relieve the noise interference es-
pecially when aligning flat areas.

(a) Noisy image (b) ours(w/o E2E) (c) ours
Figure 7. The reconstruction on flat areas with/without end-to-
end two-stage alignment learning. Better viewed with zoom-in
on screen. Our model relieves the noise interference and obtains
cleaner results.

Limitation. When there are objects with large movement
in opposite directions in the patch (Pt,i)i∈I , the CA mod-
ule may fail and our method degrades to use only the RA
module in such cases.

5. Conclusion
We presented a differentiable two-stage alignment

method for high performance burst image restoration. Due
to the limited receptive field, current feature alignment
methods cannot sufficiently utilize the temporal informa-
tion when the burst images have large shift, which is very
common for sequences with moving objects and/or 4K res-
olution. We divided this problem into two relatively eas-
ier sub-problems, i.e., coarse and refined alignment, and
proposed a two-stage framework for the JDD-B task. In
the coarse alignment module, a differentiable progressive
block matching module was developed to enlarge the search
region while reducing computational cost. Then, a de-
formable alignment module was developed to deliver pixel-
wise alignment. Experiments on both synthetic and real-
world burst datasets were conducted. Our method demon-
strated clear advantages over existing methods in terms of
PSNR/SSIM measures as well as visual quality without in-
creasing much the computational cost.
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