This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Alleviating Semantics Distortion in Unsupervised Low-Level Image-to-Image
Translation via Structure Consistency Constraint

Jiaxian Guo'
Mingming Gong?
! The University of Sydney

Jiachen Li?
Kun Zhang*6
2 Shanghai Jiao Tong University
4 Carnegie Mellon University

Huan Fu!

Dacheng Tao!®

3 The University of Melbourne
> JD Explore Academy

6 Mohamed bin Zayed University of Artificial Intelligence

Jjguo5934@uni.sydney.edu.au

mingming.gong@unimelb.edu.au

Abstract

Unsupervised image-to-image (121) translation aims to
learn a domain mapping function that can preserve the se-
mantics of the input images without paired data. However,
because the underlying semantics distributions in the source
and target domains are often mismatched, current distri-
bution matching-based methods may distort the semantics
when matching distributions, resulting in the inconsistency
between the input and translated images, which is known as
the semantics distortion problem. In this paper, we focus on
the low-level 121 translation, where the structure of images
is highly related to their semantics. To alleviate semantic
distortions in such translation tasks without paired supervi-
sion, we propose a novel 121 translation constraint, called
Structure Consistency Constraint (SCC), to promote the con-
sistency of image structures by reducing the randomness of
color transformation in the translation process. To facilitate
estimation and maximization of SCC, we propose an approx-
imate representation of mutual information called relative
Squared-loss Mutual Information (rSMI) that enjoys efficient
analytic solutions. Our SCC can be easily incorporated into
most existing translation models. Quantitative and quali-
tative comparisons on a range of low-level 121 translation
tasks show that translation models with SCC outperform the
original models by a significant margin with little additional
computational and memory costs.

1. Introduction

Image-to-image translation, or domain mapping, aims to
translate an image in the source domain X properly to the
target domain ). It has been applied to various vision tasks
[13,46,49,59,65]. Early works [18, 34, 44] considered su-
pervised image-to-image (I2I) translation on paired datasets,
and methods based on conditional generative adversarial
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networks can generate high-quality translations [ 18,44, 60].
However, since paired data are often unavailable or expen-
sive to obtain, unsupervised I2I translation has attracted
intense attention in recent years [3, 17,25,26,32,43,69,73].
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Figure 1. Class distributions in GTA and Cityscapes. We can see
that the ratio of the sky in GTA is significantly higher than it in
Cityscapes, and thus the distribution matching based method has to
translate the sky to vegetation/building to align the distributions.

Benefiting from generative adversarial networks (GANs)
[14], many works aim to perform unsupervised 121 trans-
lation by finding Gxy such that the translated images
and target domain images have similar distributions, i.e.,
Pgyy(x) = Py. Due to an infinite number of functions
that can satisfy the adversarial loss, GAN alone could learn
a function far away from the true one. To remedy this is-
sue, various constraints have been placed on the learned
mapping function. For instance, the well-known cycle-
consistency [26, 69, 73] enforces the translation function
Gxvy to be bijective. DistanceGAN [3] preserves the pair-
wise distances in the source images. GcGAN [10] forces the
function to be smooth w.r.t. certain geometric transforma-
tions of input images. DRIT++ [32] and MUNIT [17] learn
disentangled representations by embedding images onto a
domain-invariant content space and a domain-specific at-
tribute space and the mapping function can be then derived
from representation learning components.

The above methods perform well when the two domains
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Figure 2. The illustration about the inconsistent geometry structure
translation causes the semantic-distortion problem in unsupervised
low-level image translation. Visually, we can see that the geometry
structures of the sky and human face are distorted during translation
in CycleGAN, which causes the semantical distortion e.g., sky to
vegetation, a face without fringe to face with fringe.

differ only in style information. However, in most unpaired
datasets, not only style but also the underlying semantic
distributions differ across source and target datasets [19].
Taking GTA to Cityscapes as an example, we perform the
class statistics of GTA and Cityscapes, and the results are
given as Figure 1. It can be seen that the class distributions
in GTA are different from that in Cityscapes, e.g., the pro-
portion of sky in the GTA is significantly higher than that
in Cityscapes, while the proportion of vegetation in GTA is
lower than that in Cityscapes. Figure 2 also shows an exam-
ple in selfie—anime translation, where the ratio of human
faces with bangs in the Anime dataset is significantly higher
than that in the Selfie dataset. In these cases, previous GAN-
based methods e.g., CycleGAN [73], which aims to align
the distribution between domain i.e., Pny( x) ~ Py, may
translate sky to building/vegetation in GTA2cityscape or au-
tomatically add the bangs on the human face in selfie2anime
for the sake of aligning distribution (Figure 2), resulting in a
semantic mismatch between input and translated images i.e.,
semantics distortion problem.

It is hard to solve the semantics distortion problem in a
universal way [19] when the given source and target dataset
have unmatched semantics distributions because the char-
acterization of semantics may vary from task to task. This
lack of universally best choice is usually formalized in what
is called the “No-Free Lunch” theorem [30, 63, 64], indicat-
ing that there is no single I2I algorithm that can perform
better than all the other algorithms on all 121 applications.
As such, we need to use suitable inductive bias [1,24] to
guide the translation model to preserve the related content
according to the specific requirements of different 121 ap-
plications. For example, in high-level 12 image translation
tasks, the pose/location of an object may be regarded as the
semantics, but the type of object (e.g. cat—human face) is

the style information that should be translated, and thus [65]
introduces the pose bias to preserve pose structure properly
during translation.

In this paper, we consider a widely applicable low-level
image translation problem [5], which is fundamental in a
wide range of computer vision applications, such as domain
adaptation [16], segmentation [73], and simulation-to-real
[45]. In low-level 121, the difference between domains arises
from the low-level information e.g., resolution, illumination,
color rather than geometry variation, while the structure (e.g.
the shapes of objects) in images is most invariant across the
source and target domains, i.e., the semantics of an image is
highly related to its structure (shape of objects). Therefore,
the semantic distortion can be regarded as the change of
structures in the translated images, as illustrated in Figure
2. Motivated by this, a natural solution to alleviate semantic
distortion in this translation task would be to preserve the
structure of source images.

To guarantee the consistency of image structure between
source and translated images, we propose an 121 translation
constraint, called Structure Consistency Constraint (SCC)
. We observe that the pixel values before and after transla-
tion are usually highly correlated if the image structure is
preserved (Figure 3). Based on this observation, we propose
a mutual information (MI)-based dependency measure that
models the nonlinear relationships between pixel values in
the source and translated images. To efficiently estimate
MI between pixel values, we propose the so-called relative
Squared-Loss Mutual Information (rSMI) which can be es-
timated in an analytic form. By maximizing rSMI together
with the GAN loss, our approach can significantly reduce the
semantic distortion by better preserving image structures. In
experiments, to show the effectiveness and compatibility of
our structure consistency constraint, we incorporate it into
the GAN framework and other existing image translation
methods (e.g., CycleGAN, CUT [43]). The quantitative and
qualitative comparisons with existing 121 methods on several
low-level tradatasets demonstrate that models with SCC out-
perform the corresponding baselines by a significant margin
at only little computational and memory costs .

2. Methodology

Unsupervised 121 translation aims to find a mapping func-
tion G xy between two domains X and ) given unpaired
samples {2}, ., and {y;}}Z, drawn from the marginal dis-
tributions Px and Py, respectively. To alleviate semantics
distortion problem in low-level 12 translation, we directly
promote the structure consistency of the source and trans-
lated images because the image structure is highly related to
its semantics in this task. In the following, we first present
our motivation of placing the MI-based structure consis-

ICodes are available at https: //github.com/CR-Gix/SCC
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Figure 3. Unsupervised image translation examples on GTA — Cityscapes. Portrait — Photo. The top row is the translated results by each
method. The bottom row is the scatter plot of the pixel values in the input image x and its corresponding pixel value in the translated image
4, which shows the non-linear dependency of pixel values in two images. Obviously, the stronger the dependency between pixel values in
the input image (X-axis) and the translated images (Y-axis), the better the geometry structure of the input image is maintained. MI stands for
the mutual information estimated by our rSMI method. Specifically, the VGG refers to the Contextual loss [39] of VGG features.

tency constraint (SCC), and then give the details about SCC,
which aims to reduce the randomness of color transform in
the translation process and thus promote the consistency of
geometry structure between source and translated images.

2.1. Motivation

As illustrated in Figure 3, 5 (a), and 7, advanced methods,
e.g., CycleGAN, CUT [43], Contexual loss [39], U-GAT-
IT [25], MUNIT [17], may change the geometry structure of
input images and potentially cause the semantics mismatch
between input and translated images. Therefore, it is es-
sential to enforce a constraint such that we can ensure the
learned function G xy change the image style with minimal
structure distortion. Our work is the first to explore such
constraints for unsupervised image-to-image translation.

As we know, geometric structures in an images are often
outlined by colors. So, if we hope to presereve the geometry
structure during translation, we would expect the color trans-
lation to be consistent between the input and output images.
For example, the green leaf in summer should be translated
to yellow in autumn, but we do not expect it to be translated
into a colorful one, otherwise, we cannot identify it as a leaf.
Based on this observation, we plot the corresponding pixel
values of images before and after translation at the bottom
row of Figure 3. We can see that if the pixel values in the
translated image (Y-axis) are more dependent on the pixel
values (X-axis) in the input images, more structures will be
preserved. Obviously, previous methods (e.g., CycleGAN,
CUT, Contextual loss of VGG feature) fail to translate color
within a geometry structure consistently, and such random-
ness of the color transformations result in the distortion of
geometry structure and semantics. Therefore, reducing the
randomness of color transformation is an effective way to
alleviate the semantic-distortion problem in 121 translation.

Motivated by the analysis, we develop the structure con-
sistency constraint (SCC) as a general and effective con-
straint to preserve the pixel-level structure during the transla-
tion process. SCC exploits mutual information to model the

non-linear dependencies of pixel values between the input
and translated images, thus reducing the randomness of color
transformation in the translation. As illustrated in Figure 4,
our SCC is enforced into the input and translated images and
thus allows one-sided unsupervised domain mapping, i.e.,
Gxy can be trained independently from Gy x. Applying
our SCC to a vanilla GAN, the pixel values before and after
translation have stronger dependency (higher MI), and the
model therefore better preserves the geometric structures
as shown in Figure 3, thus reducing semantic distortion in
low-level 121 translation. In the following, we present the
details of our approach.

2.2. Approximate Representation of Mutual Infor-
mation

For a source domain image z; € & and its translation
9 = Gxy(x;), we denote V¥ and V¥ as the random
variables for pixels in z; and g;, respectively. Thus, pixels
in z;, i.e., {v;“ jj\il, can be regarded as data sampled from
Py=;, and the pixels in g;, i.e., {vi“ jj‘il, can be considered
as data sampled from Py3, , where M is the number of pixels
of the image. Formally, the mutual information between V' *:
and V¥ is
og AP(VmivVgi) >

Pyz; @ P Vi

(€]
where Py« y4;y is the joint distribution of V*i and Vi,
Pyz; @ Pyy,; is the product of two marginal distributions
Py=; and Py5,. Because V*% and Vi are low-dimensional,
a straightforward way to estimate (1) is to estimate the dis-
tributions P based on the histogram of the images. Next,
we will introduce how we estimate the mutual information
between pixels from two domain images and backpropagate
it to optimize parameters in the translation network.

To enable efficient backpropagation, we propose the rela-
tive Squared-loss Mutual Information (rSMI), which is an
extension of the well-known Squared-loss Mutual Informa-
tion (SMI) [54] and can be estimated analytically. For con-

MI(V® V¥ =E, .. 4.
(V=L VE) T W)~ ey vy (

18251



ventional presentation, we denote Py=; @ Py, as S;, and
P(Vz,;vvg,;) as ;. Then, the SMI based on Pearson (PE)
Divergence [53] between Py«; and Py 5, is expressed as:

SMI(V:E’, V@7) — DpE(Pvzi ® Pvlh HP(V'I«L,VQi))

= Dpre(Si|Q:) )
Si
=Eq, [(5 —1)%].
Because 5 is unbounded, SMI(V®i, V¥ can be infinity,
causing numeric instability in the backpropagation. We thus
use the relative Pearson(rPE) Divergence [67] to alleviate

the problem:

Drpp(Si || Qi) = Dpe(S:i || S+ (1= B)Qi).  (3)
Here, we introduce the mixture distribution 5.5; + (1 — 3)Q;,
B € (0,1), to replace ;. Benefiting from the modification,
the density ratio will be bounded to [O,%]. Thus, the pro-

posed rSMI between V% and V¥ can be written as:
rSMI(V®, V%) = Drpp(Pyei @ Pya||Pye; vary)
Si 2
=Egs, 11— N -1
BS;+(1 6)@1[(55i+(1 — 50, )7
R “)
To estimate the rSMI(V*i V¥), we directly estimate the
density ratio using a linear combination of kernel functions
of {7}, and {v"}}L,:
S; S
— = w, (V¥ vY)
BSi+(1-8)Q;i ¢ (5)
= o7 g(u™, 07
where ¢ € R™ is the kernel function, « € R™ is the pa-
rameter vector we need to solve, and m is the number of
kernels. Referring to the least-squares density-difference
estimation [52], the solved optimal solution of & is (the
derivation is given in the appendix A.1):

&= (H+ A R)"'h,

- ;ﬁ(K o L)(K o L)T + %(KKT) o (LLT),
h= (K1) 0 (L1,)

. . . : I . (6
where R is a positive semi-definite regularization matrix, n

is the sample number, 1,, is the n-dimensional vector filled
by ones, and K and L are two m X n matrices composed
by kernel functions, and the Hadamard product of K and L
is used to define ¢, that is ¢(v®i,v%) = K (v*) o L(v¥).
Finally, an appropriate mutual information estimator of with
smaller bias is expressed as:

rSMI(V®, V¥ =23Th —aTHa—1. (1)

Note that, the computation of rSMI (V*i V¥i) is resource
friendly, as it can be solved analytically. Thus, the param-
eters in the translation neural network can be efficiently
updated by backprogation.

e
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Figure 4. An illustration of structure consistency constraint. The
left figure shows that the pixel value in the input image x and its
corresponding pixel value in the translated image ¢ have strong non-
linear dependencies, so we add the structure consistency constraint
to model the dependencies of pixel values in two domain images.

2.3. Full Objective

Following the analysis above, our structure consistency
constraint (SCC) for 121 translation using mutual information
can be expressed as:

N
Lscc = % Z m(vzl 7 VGXY(aci))7 (8)
i=1

where N is the number of samples, and G xy (x;) = §;. We
directly maximize Lgc ¢ to guarantee more local geometric
structures of images being invariant in the translation process.
By combining SCC with the standard adversarial loss, the
image geometry will be preserved while its style is changed.
As a result, one-sided unsupervised domain mapping can be
targeted. The full objective will take the form:

minmax Lgan+scc(Gxy, Dy)

Gxy Dy )

= Lcan(Gxy,Dy) — AsccLscc(Gxy),

where L4y, is the adversarial loss [14], which introduced
a discriminator Dy, to encourage the distribution of out-
put matches the distributions of target domain images, i.e,
Pgyy(x) & Py. In addition, to guarantee the distribution
consistency in the pixel level, we use a GAN based on the
1x1 convolution. The objective function is as follows:

Loan(Gxy,Dy) = Ey~py [log Dy (y)]

+ Eenpy[log(l — Dy (Gxy(x))). (o

In Equation 9, Agcc is a hyperparameter to weight Ly,
and Lgcc in the training procedure. The proposed SCC can
easily be integrated into various I2I translation frameworks,
e.g., CycleGAN [73] and CUT [43], by replacing the loss
L an with the losses in these methods.

3. Experiments

In this section, we perform quantitative experiments on
three typical unsupervised low-level image translation bench-
marks: Digits Translation, Unsupervised Segmentation and
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Figure 5. Qualitative comparisons on SVHN—MNIST. From Figure (a) and (b), we can see that the GAN method has no collapse solution
by combining with our SCC. Also, the semantics distortion problem in CycleGAN is alleviated after incorporating with SCC.

Table 1. Classification accuracy for digits experiments.

Translated Images as Test set

Translated Images as Training set

Method SoM MMM MM->M S—>M M-o>MM MM-oM
GAN alone 213195 5461405 80.3+3.5 28.6+£10.8 45.74312 955404
+SCC 373412 963402  90.9+0.5 479423  862+19  96.0+0.1
CycleGAN 26.1+8.1 953104  847+25 316456 83.8+3.0 95.9+04
+SCC 38.04£0.5 96.740.1 915403 474420 877421  96.1+0.2
GcGAN-rot 325420 950406 85.9+0.8 40.9+6.5 846428  96.0+0.1
+SCC 36.5+1.3 964403 91.8+1.0 475412  89.5£0.6  96.1+0.1
GcGAN -f 333+42 952404  845+15 31.6+56 83.843.0  95.9+04
+SCC 37.0£08 966103  91.840.8 49.5+t49 87.8423  96.0+0.1
Cyc+rot+SCC 39.0405 96.5+03 91.8+£1.0 505+1.8 89.8+0.5  96.1-0.1
Cyc+vf+SCC 44.6+68 96.7+03  92.0+0.8 513454  89.0+08  96.1+0.1

Image Generation (e.g., Cityscapes [7] ), and Simulation-to-
Real (e.g., Maps [ 18] and GTA2cityscapes [45]). Because
these benchmarks have the true label of the translation im-
ages, we can quantitatively evaluate whether the translation
model causes the semantics distortion problem or not. Fur-
ther, to qualitatively evaluate the translation quality of our
method, we also perform experiments on Selfie — Anime,
Portrait — Photo, Horse — Zebra datasets.

Effectiveness and Compatibility We couple our structure
consistency constraint (SCC) with the vanilla GAN to show
its effectiveness, and incorporate SCC with some popular
methods such as CycleGAN [73], GecGAN [10], and U-GAT-
IT [25] to show its compatibility. Then we make qualitative
and quantitative comparisons with the recent published un-
supervised I21I translation methods e.g., CycleGAN [73],
GcGAN [10], CoGAN [35], SimGAN [48], BiGAN [&]
, DistanceGAN [3], CUT [43]), the VGG-based Contex-
tual loss [39], the VGG-based Content loss [12], L1 loss of
VGG feature [39], DRIT++ [32], UNIT [33], MUNIT [17],
AGGAN [58], and U-GAT-IT [25]. Specifically, the cur-
rent baselines have their own advantages and disadvantages:
some baselines perform well on one task but perform poorly
on other tasks. For example, some style transfer methods
do not perform well on unsupervised image segmentation.
As such, following the current literature, we compare our
methods with SOTA methods for each application.
Sensitivity We perform the sensitivity analysis by varying
the hyper-parameter Agcc on GTA2cityscapes.

In the appendix, we investigate the influence of our SCC
on the generation diversity A.2.2 and training stability A.2.3.

We examine all the experiments three times and report the
average scores to reduce random errors.

For the implementation of the mutual information estima-
tor presented in section 2.2, we set the hyperparameter 3 to
0.5 (more analysis about other values of 3 are given at the
appendix A.2.1), and utilize nine Gaussian kernels for both
input images z and translated images ¢. Then we apply our
SCC to all the baselines and keep other experimental details
including hyper-parameters, networks in baselines the same.
Due to page limit, we provide more experimental details and
qualitative results in the Appendix A.6 and A.7, respectively.

3.1. Quantitative Evaluation
3.1.1 Digits Translation

We examine three digit I2I translation tasks:
SVHN—MNIST, MNIST-M—MNIST and
MNIST—MNIST-M 2. The models are trained on
the training split with images size 32 x 32, and Agscc
is set to 20. We adopt the classification accuracy as the
evaluation metric, and design two evaluation methods: (1)
we train a classifier on the target dataset’s training split.
The fake images translated from the source dataset’s test
images are used to compute the classification accuracy.
This evaluation method can only measure the quality of
translated images. (2) a classifier is trained on the translated
images from the source dataset’s training images, and test
the performance of this classifier on the target dataset’s test
split. This evaluation method can measure both the quality

2refer to S—M, M-M—M and M—M-M
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Table 2. Quantitative scores on GTA — Citycapes,Citycapes parsing — image and Photo — Map. The scores with * are reproduced on a
single GPU using the codes provided by the authors. More qualitative results are given at the Appendix A.7.2.

GTA — Citycapes Citycapes parsing — image Photo — Map

Methods pixel acc 1 class acc T mean IoU 1 pixel acctT class acctT mean IoUT RMSE | acc%(d1) T acc%(d2) T
CoGAN \ \ \ 0.40 0.10 0.06 \ \ \
BiGAN/ALI \ \ \ 0.19 0.06 0.02 \ \ \
SimGAN \ \ \ 0.20 0.10 0.04 \ \ \
DistanceGAN \ \ \ 0.53 0.19 0.11 \ \ \
GAN + VGG  0.216 0.098 0.041 0.551 0.199 0.133 34.38 28.1 48.8
DRIT++ 0.423 0.138 0.071 \ \ \ 32.12 29.8 52.1
GAN * 0.382 0.137 0.068 0.437 0.161 0.098 33.22 19.3 42.0
+SCC 0.487 0.148 0.089 0.642 0.215 0.155 28.91 38.6 61.8
GcGAN-rot * 0.405 0.139 0.068 0.551 0.197 0.129 27.98 42.8 64.6
+SCC 0.445 0.162 0.080 0.651 0.228 0.162 26.55 44.7 66.5
CycleGAN * 0.232 0.127 0.043 0.52 0.17 0.11 26.81 43.1 65.6
+SCC 0.386 0.161 0.076 0.571 0.192 0.134 26.61 447 66.2
CUT * 0.546 0.165 0.095 0.695 0.259 0.178 28.48 40.1 61.2
+SCC 0.572 0.185 0.11 0.699 0.263 0.182 27.34 39.2 60.5

et

Input Label GAN+SCC GAN+VGG CUT GcGAN DRIT++ CycleGAN+SCC

CycleGAN

Figure 6. Unsupervised image translation examples on GTA — Cityscapes. The generated examples clearly show that our SCC can alleviate
the semantic distortion problem e.g., sky to tree/building in mainstream translation models. More examples are given at Appendix A.7

and diversity of translation images, but it is unstable 3

We conduct each experiment five times to reduce the ran-
domness of GAN-based approaches. The scores are reported
in Table 1. Generally, by incorporating our SCC, all the base-
lines show promising improvements in both accuracy and
stability, especially for the challenging task S—M. Some
qualitative results are shown in Figure 5. More details and
results are given in Appendix A.6.1 and A.7.1, respectively.

3.1.2 Segmentation in Cityscapes

Following [10, 73], we train the models using the unaligned
3975 images of Cityscapes [7] with 128 x 128 resolution. We
evaluate the domain mappers using FCN scores and scene
parsing metrics as previously done in [73]. Specifically, for
parsing—image, we use the pre-trained FCN-8s [36] pro-
vided by pix2pix [18] to predict segmentation label maps
from translated images, then compare them with true labels
using parsing metrics including pixel accuracy, class accu-

3 Domain adaptation. has access to the labels of source domain images
while I2I translation does not.

racy, and mean IoU. We do not report the score of DRIT++,
because its network size is too big to perform experiments
with 128 x 128 resolution, resulting in the unfair comparison
with other methods, but the results of other datasets can still
show the superiority of our method over DRIT++.

As reported in Table 2, the results of all the image transla-
tion methods are improved if further constrained by our SCC,
which shows the effectiveness of our method on reducing the
semantics distortion problem. In particular, GcGAN coupled
with SCC yields a promising improvement compared with
GcGAN in the parsing — image task.

3.1.3 Maps

The Maps dataset [1 8] contains 2194 aerial photo-map im-
age pairs, with 1096 pairs for training and 1098 pairs for
evaluation. For evaluation, we employ the metrics including
RMSE and pixel accuracy with threshold ¢ (9; = 5 and
02 = 10) suggested by GcGAN [10]. All images are resized
to 256 x 256 resolution. Following [10, 73], the network de-
tails are similar to the details of Cityscape, but the generator
contains 9 res-blocks for images with 256 x 256 resolution.
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The scores are reported in Table 2. Compared with the
vanilla GAN, our SCC can significantly improve translation
accuracy to 38.6% and 61.8% from 19.3% and 42.0% with
the threshold of d; and Jo, respectively. Moreover, inte-
grating our SC constraint into CycleGAN and GcGAN can
generate better translations than both individual ones. This
further demonstrates the compatibility of our SCC. Qualita-
tive results are shown in A.7.1.

3.1.4 Simulation to Real: GTA to Cityscapes

To evaluate the effectiveness of our SCC on simulation to real
tasks, we use the GTA [45] to cityscapes datasets. Specif-
ically, we use the official training split of GTA dataset the
training dataset. All images are resized to 256 x 256 resolu-
tion during training. In the test process, we translate the first
500 images in the GTA test set to the cityscapes style, and
use the pre-trained FCN-8s [36] provided by pix2pix [18] to
predict the segmentation label maps from translated images,
and calculate the scores with the true label in the GTA.

The results are give as Table 2, and the sample translated
images are given as Figure 6. Our SCC can consistently
alleviate the semantic distortion problem in GTA2cityscape
task, as Figure 6 shows, all other translation models tend to
translate sky to vegetation to align the distribution, but the
translation model with SCC can maintain sky during transla-
tion, and thus we can consistently improve the segmentation
score when coupling SCC with other models.

3.2. Qualitative Evaluation

We implement the qualitative evaluation on anime2selfie
[25], horse2zebra [73], photo2portrait [31]. We choose Cy-
cleGAN, GcGAN, AGGAN, DRIT, UNIT, MUNIT, and
CUT as baselines. All images are resized to 256 x 256
resolution. More experimental details are given in A.4.4.

Following [25], we use KID score [4] as the evaluation
metric. The results are reported in Appendix A.3.1 because
the pages are limited, and we can see that the method cou-
pled with our SCC can even achieve better results than those

U(light)+SCC  Input

R A

GAN+VGG CycleGAN Cycle+SCC U(light)

Ulight)+SCC
Figure 7. Qualitative results on Selfie — Anime, Portrait — Photo, Horse — Zebra datasets. More qualitative results are given in A.7.3. We
can see that the no matter personal identification or horse shape is better preserved by the translation model empowered by our SCC.

Table 3. The results of User Study: the percentage of users prefer a
particular model. To avoid the concern of cherry-picking, qualita-
tive results of U-GAT-IT and our results are used in the user study.
Sample images are given in Appendix A.7.3.

hor2zeb  sel2ani  pho2por  Paramaters
Cyc+Ge+SCC 33.20 47.85 56.89 45.2MB
U-GAT-IT 3222 37.22 19.00 134.0MB
MUNIT 1.25 1.67 8.44 46.6MB
DRIT 5.28 2.94 3.00 65.0MB
CycleGAN 28.05 10.32 12.67 28.3MB

methods with larger model sizes. As the qualitative results
are shown in Figure 7, after adding our SCC, the translated
images retain more geometric structure than the original
images, and are consistent with the style of the target im-
ages. Specifically, the light version of U-GAT-IT with our
SCC can achieve better performance than the full version
of U-GAT-IT, even with a half size of parameters. Then we
conducted a user study, in which 180 participants were asked
to choose the best-translated image given the domain names
e.g., selfie — anime, exemplar images in the source and tar-
get domains, and the corresponding translated images from
different methods. The results shown in Table 3 demonstrate
that most users choose the outputs of our method, which
shows that preserving the structure of the image can signif-
icantly improve the appearance attraction of the translated
images. More qualitative results are given in appendix A.7.4

3.3. Sensitivity Analysis

We study the influence of SCC by performing experi-
ments with different A\gcc. As shown in Table 4 and Figure
8, the performance of translation models are all improved
to some extent after incorporating our SCC. However, when
Ascc becomes too large, the improvement with our SCC is
limited as the model focuses on reducing geometry distor-
tion and ignores the style information learned from GAN.
More examples are given in Appendix A.7.5. A practical
strategy of choosing Agc ¢ is to find the largest Ascc with
normal style information using binary search. Specifically,
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MI=0.466
CycleGAN

MI=0.359
Input VGG (L2)

MI=0.503
Ascc =1

MI=0.539
Ascc =3

MI=0.406 MI=0.408 MI=0.408

MI=0.579 MI=0.581 MI=0.602
Ascc =5 Ascc=7 Ascc=9

Figure 8. Sensitivity analysis examples on Selfie — Anime and GTA — Cityscapes. Obviously, the semantics distortion problem in

CycleGAN is alleviated after incorporating with our SCC.

the first value of Agc ¢ can be set to 5, which can promote
the structure consistency of most translation models.

Table 4. The segmentation scores for different Ascc of the model
CycleGAN + SCC in the datasets GTA2cityscapes.

Ascc 0 1 3 5 7 9

pixelacct 0232 0.292 0.322 0.360 0.382 0.386
classacct  0.127 0.136 0.143 0.160 0.160 0.161
mean IoU 1 0.0432 0.055 0.059 0.070 0.075 0.076

4. Related Work

Unsupervised Image-to-Image Translation. Although
unsupervised image-to-image (I2I) translation has obtained
some promising progress in recent years, several works study
it from an optimization perspective. Specifically, Cyclic con-
sistency based GAN, e.g., CycleGAN [73], DualGAN [69]
and DiscoGAN [20], is a general approach for this problem.
DistanceGAN [3] and GcGAN [10] further introduced dis-
tance and geometry transformation consistency to constraint
the search space of mapping functions. Instead of exploiting
general constraints for the subject, more works developed
novel frameworks to investigate special settings of unsuper-
vised I2I translation. Several other works [0, 17,31,32,47]
mapped the content and style information of images into
disentangled spaces for multi-modal translations. However,
we find that the complex neural networks and many hyper-
parameters make the optimization process unstable [25].
[9,12,20,23,39] tried to reduce the perceptual loss or con-
tent loss based on a pre-trained VGG model to reduce the
content of two domain image, which is computationally cost
and cannot be easily adapted to the data on hand. More-
over, [5,40,48,56,57,60,68,71] use the attention-based/
pretrained model or pre-define functions to preserve the
semantics during translation. SRUNIT [19] promote the
robustness of feature translation, but SRUNIT is mainly in-
corporated into CUT [43]. However, how to preserve the
semantics via low-level information is under explored.

Mutual Information (MI). Mutual information is the
measure of dependency between two random variables, and

it is widely used in machine learning and particularly suitable
for canonical tasks, e.g., multi-modalities images registration
[37,38,74]. Since computing MI is difficult [42], researchers
have taken much effort to improve the estimation of MI.
For example, early works studied Non-parametric models
based on Kernel Density Estimator (KDE) [21,22,29,50,51],
K-nearest Neighbor Method (KNN) [27, 28], and likelihood-
ratio estimator [55] for MI estimation. Subsequent works
improved the performance in more complicated cases such
as discrete-continuous mixtures [11,41], segmentation [66,
70,72] and continue learning [61, 62]. Recently, MINE
[2, 15] showed that the mutual information between high
dimensional continuous random variables can be estimated
by gradient descent over neural networks.

5. Conclusion

In this paper, we propose the structure consistency con-
straint (SCC) to improve the structure consistency in pixel-
wise level for unsupervised image-to-image translation. To
enable efficient estimation of our constraint, we propose an
expression of mutual information called relative Squared-
loss Mutual Information(rSMI) with an analytical estimation
method. We evaluate our model quantitatively in a wide
range of applications. The experimental results demonstrate
that SCC can achieve high-quality translation to maintain
images’ geometry in the original domain.
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