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Abstract

Hyperbolic space can naturally embed hierarchies, un-
like Euclidean space. Hyperbolic Neural Networks (HNNs)
exploit such representational power by lifting Euclidean
features into hyperbolic space for classification, outper-
forming Euclidean neural networks (ENNs) on datasets
with known semantic hierarchies. However, HNNs under-
perform ENNs on standard benchmarks without clear hier-
archies, greatly restricting HNNs’ applicability in practice.

Our key insight is that HNNs’ poorer general classifica-
tion performance results from vanishing gradients during
backpropagation, caused by their hybrid architecture con-
necting Euclidean features to a hyperbolic classifier. We
propose an effective solution by simply clipping the Eu-
clidean feature magnitude while training HNNs.

Our experiments demonstrate that clipped HNNs become
super-hyperbolic classifiers: They are not only consistently
better than HNNs which already outperform ENNs on hi-
erarchical data, but also on-par with ENNs on MNIST, CI-
FAR10, CIFAR100 and ImageNet benchmarks, with better
adversarial robustness and out-of-distribution detection.

1. Introduction
Many datasets are inherently hierarchical. WordNet [30]

has a hierarchical conceptual structure, users in social net-
works such as Facebook or twitter form hierarchies based
on different occupations and organizations [11].

Representing such hierarchical data in Euclidean space
cannot capture and reflect their semantic or functional re-
semblance [1, 34]. Hyperbolic space, i.e., non-Euclidean
space with constant negative curvature, has been leveraged
to embed data with hierarchical structures with low distor-
tion owing to the nature of exponential growth in volume
with respect to its radius [34, 40, 41]. For instance, hy-
perbolic space has been used for analyzing the hierarchical
structure in single cell data [20], learning hierarchical word
embedding [34], embedding complex networks [1], etc.

Recent algorithms operate directly in hyperbolic space
to exploit more representational power. Examples are Hy-
perbolic Perceptron [46], Hyperbolic Support Vector Ma-

a) HNNs employ a hybrid architecture.

b) Standard benchmarks. c) Few-shot learning tasks.

Figure 1. We propose an effective solution for training HNNs by
clipping the Euclidean features. Clipped HNNs become super-
hyperbolic classifiers: They are not only consistently better than
HNNs which already outperform ENNs on hierarchical data, but
also on-par with ENNs on standard benchmarks. a) HNNs employ
a hybrid architecture. The Euclidean part converts an input into
Euclidean embedding. Then the Euclidean embedding is projected
onto the Poincaré model of hyperbolic space via exponential map
Exp0(·). Finally, the hyperbolic embeddings are classified with
Poincaré hyperplanes. Clipped HNNs utilize a reduced region of
hyperbolic space. b) Clipped HNNs outperform baseline HNNs on
standard benchmarks. c) Clipped HNNs outperform both HNNs
and ENNs on 1-s (shot) 1-w (way) and 5-s (shot) 5-w (way) few-
shot learning tasks.

chine [5], and Hyperbolic Neural Networks (HNNs) [8], an
alternative to standard Euclidean neural networks (ENNs).

HNNs adopt a hybrid architecture [18] (Figure 1): An
ENN is first used for extracting image features in Euclidean
space; they are then projected onto hyperbolic space to be
classified by a hyperbolic multiclass logistic regression [8].

While HNNs outperform ENNs on several datasets with
explicit hierarchies [8], there are several serious limitations.
1) HNNs underperform ENNs on standard classification
benchmarks with flat or non-hierarchical semantic struc-
tures. 2) Even for image datasets that possess latent hier-
archical structures there are no experimental evidence that
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HNNs can capture such structures or provide on-par per-
formance with ENNs [18]. 3) Existing improvements on
HNNs mainly focus on reducing the number of parame-
ters [42] or incorporating different types of neural network
layers such as attention [10] or convolution [42]. Unfortu-
nately, why HNNs are worse than ENNs on standard bench-
marks has not been investigated or understood.

Our key insight is that HNNs’ poorer general classifi-
cation performance is caused by their hybrid architecture
connecting Euclidean features to a hyperbolic classifier. It
leads to vanishing gradients during training. In particular,
the training dynamics of HNNs push the hyperbolic embed-
dings to the boundary of the Poincaré ball [2] which causes
the gradients of Euclidean parameters to vanish.

We propose a simple yet effective solution to this prob-
lem by simply clipping the Euclidean feature magnitude
during training, thereby preventing the hyperbolic embed-
ding from approaching the boundary during training. Our
experiments demonstrate that clipped HNNs become super-
hyperbolic classifiers: They are not only consistently better
than HNNs which already outperform ENNs on hierarchical
data, but also on-par with ENNs on MNIST, CIFAR10, CI-
FAR100 and ImageNet benchmarks, with better adversarial
robustness and out-of-distribution detection.

Our paper makes the following contributions. 1) Our de-
tailed analysis reveals the underlying issue of vanishing gra-
dients that makes HNNs worse than ENNs on standard clas-
sification benchmarks. 2) We propose a simple yet effective
feature clipping solution. 3) Our extensive experimenta-
tion demonstrates that clipped HNNs outperform standard
HNNs and become on-par with ENNs on standard bench-
marks. They are also more robust to adversarial attacks and
exhibit stronger out-of-distribution detection capability than
their Euclidean counterparts.

2. Related Work
Supervised Learning in Hyperbolic Space. Several hy-
perbolic neural networks were proposed in the seminal
work of HNNs [8], including multinomial logitstic regres-
sion (MLR), fully connected and recurrent neural networks
which can operate directly on hyperbolic embeddings, out-
performing Euclidean variants on text entailment and noisy-
prefix prediction tasks. Hyperbolic Neural Networks++
[42] reduces the number of parameters of HNNs and also
introduces hyperbolic convolutional layers. Hyperbolic at-
tention networks [10] rewrite the operations in the attention
layers using gyrovector operations [44], delivering gains on
neural machine translation, learning on graphs and visual
question answering. Hyperbolic graph neural network [25]
extends the representational geometry of Graph Neural Net-
works (GNNs) [54] to hyperbolic space. Hyperbolic graph
attention networks [52] further studies GNNs with attention
mechanisms in hyperbolic space. HNNs have been used for

few-shot classification and person re-identification [18].
Unsupervised Learning in Hyperbolic Space. [32] uses
a wrapped normal distribution in hyperbolic space to con-
struct hyperbolic variational autoencoders (VAEs) [19],
whereas [29] uses Gaussian generalizations in hyperbolic
space to construct Poincaré VAEs. [17] applies hyperbolic
neural networks to unsupervised 3D segmentation of com-
plex volumetric data.

Our work differs from all the above-mentioned methods
which focus on the application of HNNs to data with natural
tree structures. We extend HNNs to standard classification
benchmarks which may not have hierarchies. By improving
HNNs to the level of ENNs in these scenarios, we greatly
enhance the general applicability of HNNs.

3. Super-Hyperbolic Classifiers from Clipping
Our goal is to understand why HNNs underperform

ENNs on standard image classification benchmarks and
propose corresponding solutions. First, we review the ba-
sics of Riemannian geometry and HNNs. Then, we analyze
the vanishing gradient problem in training HNNs. Finally,
we present the proposed method and discuss its connections
to existing methods.

3.1. Preliminaries

Smooth Manifold. An n-dimensional topological manifold
M is a topological space that is locally Euclidean of di-
mension n: Every point x ∈ M has a neighborhood that is
homeomorphic to an open subset of Rn. A smooth manifold
is a topological manifold with additional smooth structure
which is a maximal smooth atlas.
Riemannian Manifold. A Riemannian manifold (M, g) is
a real smooth manifold with a Riemannian metric g. The
Riemannian metric g is defined on the tangent space TxM
of M which is a smoothly varying inner product.
Inner Product and Norm on Riemannian Manifold. For
x ∈ M and any two vectors v,w ∈ TxM, the inner
product ⟨v,w⟩x is defined as g(v,w). With the definition
of inner product, for v ∈ TxM, the norm is defined as
∥v∥x =

√
⟨v,v⟩

x
.

Geodesics on Riemannian Manifold. A geodesic is a
curve γ : [0, 1] → M of constant speed that is locally min-
imizing the distance between two points on the manifold.
Exponential Map on Riemannian Manifold. Given
x,y ∈ M,v ∈ TxM, and a geodesic γ of length ∥v∥
such that γ(0) = x, γ(1) = y, γ′(0) = v/∥v∥, the expo-
nential map Expx : TxM → M satisfies Expx(v) = y and
the inverse exponential map Exp−1

x : M → TxM satisfies
Exp−1

x (y) = v. For more details, please refer to [4, 24]
Poincaré Ball Model for Hyperbolic Space. A hyperbolic
space is a Riemannian manifold with constant negative cur-
vature. There are several isometric models for hyperbolic
space, one of the commonly used models is Poincaré ball
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Figure 2. Hyperbolic distance grows exponentially as we move
towards the boundary of the Poincaré ball.

Figure 3. Poincaré hyperplane defined by a and p. Blue line is the
orthogonal projection of x to the Poincaré hyperplane.

model [8, 34] which can be derived using stereoscopic pro-
jection of the hyperboloid model [2]. The n-dimensional
Poincaré ball model of constant negative curvature −c is
defined as (Bn

c , g
c
x), where Bn

c = {x ∈ Rn : c∥x∥ < 1} and
gcx = (γc

x)
2In is the Riemannian metric tensor. In is the

Euclidean metric tensor. The conformal factor is defined as,

γc
x =

2

1− c∥x∥2
(1)

The conformal factor induces the inner product ⟨u,v⟩cx =
(γc

x)
2⟨u,v⟩ and norm ∥v∥cx = γc

x∥v∥ for all u,v ∈ TxBn
c .

The exponential map of Poincaré ball model can be written
analytically with the operations of gyrovector space.
Distance in Poincaré Ball Model. Figure 2 shows that
hyperbolic distance grows much faster than Euclidean dis-
tance as we move towards the boundary of the Poincaré ball.
As we will show later, this fundamental fact would lead to
an optimization issue when we construct a neural network
consisting of both Euclidean and hyperbolic layers.
Gyrovector Space. A gyrovector space [44, 45] is an al-
gebraic structure that provides an analytic way to operate in
hyperbolic space. Gyrovector space can be used to define
various operations such as scalar multiplication, subtrac-

tion, exponential map, inverse exponential map in Poincaré
ball model.

The basic operation in gyrovector space is called Möbius
addition ⊕c. With Möbius addition ⊕c, we can define vec-
tor addition of two points in Poincaré ball model as,

u⊕c v =
(1 + 2c⟨u,v⟩+ c∥v∥2)u+ (1− c∥u∥2)v

1 + 2c⟨u,v⟩+ c2∥u∥2∥v∥2
(2)

for all u,v ∈ Bn
c . Particularly, limc→0 ⊕c converges to the

standard + in the Euclidean space. For more details, please
refer to the Supplementary.
Hyperbolic Neural Networks. Hyperbolic neural net-
works consist of an Euclidean sub-network and a hyperbolic
classifier (Figure 1). The Euclidean sub-network E(x) con-
verts an input x such as an image into a representation xE

in Euclidean space. xE is then projected onto hyperbolic
space Bn

c via an exponential map Expc0(·) as xH ∈ Bn
c . The

hyperbolic classifier H(xH) performs classification based
on xH with the standard cross-entropy loss ℓ.

Let the parameters of the Euclidean sub-network be wE

and the parameters of the hyperbolic classifier be wH .
Given the loss function ℓ, the optimization problem can be
formalized as,

min
wE ,wH

ℓ(H(Expc
0((E(x;wE));wH), y) (3)

where the outer and inner functions are H : Bn
c → R and

E : Rm → Rn. As shown in [8], the exponential map is
defined as,

Expc
0(v) = tanh(

√
c∥v∥) v√

c∥v∥
(4)

The construction of hyperbolic classifier relies on the fol-
lowing definition of Poincaré hyperplanes,

Definition 3.1 (Poincaré hyperplanes [8]) For p ∈ Bn
c ,

a ∈ TpBn
c \ {0}, the Poincaré hyperplane is defined as,

H̃c
a,p := {x ∈ Bn

c : ⟨−p⊕c x,a⟩ = 0} (5)

where a is the normal vector. Figure 3 shows the Poincaré
hyperplane defined by a and p.

[8] shows that in hyperbolic space the probability that a
given x ∈ Bn

c is classified as class k is,

p(y = k|x) ∝ exp(⟨−pk⊕c x,ak⟩)
√

gcpk(ak,ak)dc(x, H̃
c
ak,p)

(6)
where dc(x, H̃

c
ak,p

) is the distance of the embedding x to
the Poincaré hyperplane of class k as shown in Figure 3.
In hyperbolic classifier, the parameters are the vectors {pk}
for each class k.
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3.2. Vanishing Gradient Problem in Training Hy-
perbolic Neural Networks

Training Hyperbolic Neural Networks with Backprop-
agation. The standard backpropagation algorithm [38] is
used for training HNNs [8, 18]. During backpropagation,
the gradient of the Euclidean parameters wE can be com-
puted as,

∂ℓ

∂wE
= (

∂xH

∂wE
)T

∂ℓ

∂xH
(7)

where xH is the hyperbolic embedding of the input x, ∂xH

∂wE

is the Jacobian matrix and ∂ℓ
∂xH is the gradient of the loss

function with respect to the hyperbolic embedding xH . It
is noteworthy that since xH is an embedding in hyperbolic
space, ∂ℓ

∂xH ∈ TxHBn
c is the Riemannian gradient [3] and

∂ℓ

∂xH
=

(1− ∥xH∥2)2

4
∇ℓ(xH) (8)

where ∇ℓ(xH) is the Euclidean gradient.
Vanishing Gradient Problem. We conduct an experiment
to show the vanishing gradient problem during training hy-
perbolic neural networks. We train a LeNet-like convolu-
tional neural network [23] with hyperbolic classifier on the
MNIST data. We use a two-dimensional Poincaré ball for
visualization. Figure 4 shows the trajectories of the hyper-
bolic embeddings of six randomly sampled inputs during
training. The arrows indicate the movement of each em-
bedding after one gradient update step. It can be observed
that at initialization all the hyperbolic embeddings are close
to the center of the Poincaré ball. During training, the hy-
perbolic embeddings gradually move to the boundary of the
ball. The magnitude of the gradient diminishes during train-
ing as the training loss decays. However, at the end of train-
ing, while the training loss slightly increases, the gradient
vanishes due to the issue that the hyperbolic embeddings
approach the boundary of the ball.

From Equation 6, we can see that in order to maximize
the probability of the correct prediction, we need to increase
the distance of the hyperbolic embedding to the correspond-
ing Poincaré hyperplane, i.e., dc(xH , H̃c

ak,p
). The training

dynamics of HNNs thus push the hyperbolic embeddings
to the boundary of the Poincaré ball in which case ∥xH∥2
approaches one. The inverse of the Riemannian metric ten-
sor becomes zero which causes ∥ ∂ℓ

∂xH ∥2 to be small. From
Equation 7, it is easy to see that if ∥ ∂ℓ

∂xH ∥2 is small, then
∥ ∂ℓ
∂wE ∥2 is small and the optimization makes no progress

on wE .
Vanishing gradient problem [12, 15, 36, 37] is one of the

difficulties in training deep neural networks using back-
propagation. Vanishing gradient problem occurs when the
magnitude of the gradient is too small for the optimization
to make progress. For Euclidean neural networks, vanish-
ing gradient problem can be alleviated by architecture de-

a)

b)

Figure 4. Hyperbolic neural networks suffer from vanishing gra-
dient problem during training with backpropagation. a) The tra-
jectories of the hyperbolic embeddings of six randomly sampled
inputs during training in a 2-dimensional Poincaré ball. The ar-
rows indicate the change of location of each embedding with each
gradient update. The embeddings move to the boundary of the ball
during optimization which causes vanishing gradient problem. b)
The gradient vanishes while the training loss goes up at the end of
training.

signs [14, 16], proper weight initialization [31] and care-
fully chosen activation functions [48]. However, the van-
ishing gradient problem in training HNNs is not exploited
in existing literature.

The Effect of Gradient Update of Euclidean Parameters
on the Hyperbolic Embedding. We derive the effect of a
single gradient update of the Euclidean parameters on the
hyperbolic embedding, for more details please refer to the
Supplementary. For the Euclidean sub-network E : Rm →
Rn, consider the first-order Taylor-expansion with a single
gradient update,

E(wE
t+1) = E(wE

t + η
∂ℓ

∂wE
)

≈ E(wE
t ) + η(

∂E(wE
t )

∂wE
t

)T
∂ℓ

∂wE

(9)

where η is the learning rate. The gradient of the exponential
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map can be computed as,

∇Expc
0(v) =

v√
c∥v∥

∇ tanh(
√
c∥v∥) + tanh(

√
c∥v∥)∇ v√

c∥v∥

= 1− tanh2(
√
c∥v∥) + tanh(

√
c∥v∥) 1√

c

2

∥v∥
(10)

Let xH
t+1 be the projected point in hyperbolic space, i.e.,

xH
t+1 = Expc

0(E(wE
t+1)) (11)

By applying the first-order Taylor-expansion on the ex-
ponential map and following standard derivations, we can
find that,

xH
t+1 = xH

t + C(E(wE
t )

T )
∂ℓ

∂wE
(12)

where C(E(wE
t )) = ∇Expc

0(E(wE
t ))

T η(
∂E(wE

t )

∂wE
t

)T .

Thus once ∥xH
t ∥ approaches one, from Equation 7 and

Equation 8 we can find that the hyperbolic embedding stag-
nates no matter how large the training loss is.

3.3. Clipped Hyperbolic Neural Networks

Euclidean Feature Clipping. There are several possi-
ble solutions to address the vanishing gradient problem for
training HNNs. One tentative solution is to replace all the
Euclidean layers with hyperbolic layers, however it is not
clear how to directly map the original input images onto
hyperbolic space. Another solution is to use normalized
gradient descent [13] for optimizing the Euclidean param-
eters to reduce the effect of gradient magnitude. However
we observed that this introduces instability during training
and makes it harder to tune the learning rate for optimizing
Euclidean parameters.

We address the vanishing gradient problem by first re-
formulating the optimization problem in Equation 3 with a
regularization term which controls the magnitude of hyper-
bolic embeddings,

min
wE ,wH

ℓ(H(xH ;wH), y) + β∥xH∥2 (13)

where xH = Expc
0((E(x;wE)) and β > 0 is a hyperpa-

rameter. By minimizing the training loss, the hyperbolic
embeddings tend to move to the boundary of the Poincaré
ball which causes the vanishing gradient problem. The ad-
ditional regularization term is used to prevent the hyperbolic
embeddings from approaching the boundary.

While the soft constraint introduced in Equation 13 is
effective, it introduces additional complexity to the opti-
mization process and has worse performance. We instead
employ the following hard constraint which regularizes the
Euclidean embedding before the exponential map whenever
its norm exceeds a given threshold,

CLIP(xE ; r) = min{1, r

∥xE∥
} · xE (14)

where xE = E(x;wE) and r > 0 is a hyperparameter.
The clipped Euclidean embedding is projected via expo-

Figure 5. The relation between the clipping value r and the effec-
tive radius of the Poincaré ball, i.e., Expc

0(CLIP(xE ; r)). Clipped
HNNs utilize a reduced region of Poincaré ball.

nential map as CLIP(xH ; r) = Expc
0(CLIP(xE ; r)). The

relation between the clipping value and the effective radius
of Poincaré ball is depicted in Figure 5.

Using the relation between the hyperbolic distance and
the Euclidean distance to the origin,

dc(0, x) = s ln(
s+ x

s− x
) (15)

where s = 1/
√
|c|, c is the curvature and x is Euclidean

distance to the origin. c is usually set to -1. The clipping
value r can be further converted into hyperbolic radius rBn

c

as below,

rBn
c
= dc(0,CLIP(xH ; r)) = 2r (16)

The hyperbolic radius rBn
c

is measured in hyperbolic dis-
tance. The hyperbolic embeddings are within a hyperbolic
ball of radius of rBn

c
.

Discussion on Feature Clipping. The proposed Feature
Clipping imposes a hard constraint on the maximum norm
of the hyperbolic embedding to prevent the inverse of the
Riemannian metric tensor from approaching zero. There-
fore there is always a gradient signal for optimizing the
hyperbolic embedding. Although decreasing the norm of
the hyperbolic embedding shrinks the effective radius of the
embedding space, we found that it does no harm to accuracy
while alleviating the vanishing gradient problem.

A radius limited hyperbolic classifier is a super-
hyperbolic classifier, not a nearly Euclidean classifier. In
the Supplementary, we show that clipped hyperbolic space
well maintains the hyperbolic property and delivers better
results for learning hierarchical word embeddings.
Discussion on Hyperbolic Embedding Literature. Simi-
lar regularization approaches have been used in the hyper-
bolic embedding literature to prevent numerical issues when
optimizing hyperbolic embeddings [25,35]. In contrast, our
work is focused on the hyperbolic neural networks for im-
age classification and its unique vanishing gradient issue,
which is drastically different from [25,35] in terms of model
architecture and the focused problem. In hyperbolic neu-
ral networks, the gradients are backpropagated through the
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hyperbolic layers to the Euclidean layers which causes the
gradients to vanish. The vanishing gradient issue will not
occur in [25, 35] since Euclidean layers are not adopted.

Lorentz model is used recently to overcome the numeri-
cal issues of Poincaré ball model for learning word embed-
dings [35]. However, it is most effective only in low dimen-
sions [25]. For image datasets of ImageNet-scale, hyper-
bolic neural networks with high-dimensional embeddings
are necessary for enough model capacity.

4. Experimental Results
We conduct four types of experiments: standard bal-

anced classification tasks, few-shot learning tasks, adversar-
ial robustness and out-of-distribution detection. The results
show that clipped HNNs are on par with ENNs on stan-
dard recognition datasets while demonstrating better per-
formance in terms of few-shot classification, adversarial ro-
bustness and out-of-distribution detection.
Datasets. We consider four commonly used image classi-
fication datasets: MNIST [22], CIFAR10 [21], CIFAR100
[21] and ImageNet [7]. See details in the Supplementary. To
our best knowledge, this paper is the first attempt to exten-
sively evaluate hyperbolic neural networks on the standard
image classification datasets for supervised classification.
Baselines and Networks. We compare the performance
of HNNs training with/without the proposed feature clip-
ping method [8, 18] and their Euclidean counterparts. For
MNIST, we use a LeNet-like convolutional neural network
[23] which has two convolutional layers with max pooling
layers in between and three fully connected layers. For CI-
FAR10 and CIFAR100, we use WideResNet [51]. For Ima-
geNet, we use a standard ResNet18 [14].
Training Setups. For training ENNs, we use SGD with
momentum. For training HNNs, the Euclidean parameters
of HNNs are trained using SGD, and the hyperbolic param-
eters of HNNs are optimized using stochastic Riemann gra-
dient descent [3], just like the previous method. For train-
ing networks on MNIST, we train the network for 10 epochs
with a learning rate of 0.1. The batch size is 64. For training
networks on CIFAR10 and CIFAR100, we train the network
for 100 epochs with an initial learning rate of 0.1 and use
cosine learning rate scheduler [27]. The batch size is 128.
For training networks on ImageNet, we train the network
for 100 epochs with an initial learning rate of 0.1 and the
learning rate decays by 10 every 30 epochs. The batch size
is 256. We find the HNNs are robust to the choice of the
hyperparameter r, thus we fix r to be 1.0 in all the experi-
ments. For more discussions and results on the effect of r,
please see the Supplementary. For baseline HNNs, we use
a clipping value of 15 similar to [25, 35] to address the nu-
merical issue. The experiments on MNIST, CIFAR10 and
CIFAR100 are repeated for 5 times and we report both av-
erage accuracy and standard deviation. All the experiments

a) Accuracy of each class on MNIST.

b) Baseline HNNs

c) Clipped HNNs

Figure 6. Clipped HNNs greatly outperform baseline HNNs. a)
The per class test accuracy of baseline HNNs and Clipped HNNs.
b) The Poincaré decision hyperplanes and the hyperbolic embed-
dings of sampled test images of baseline HNNs. c) The Poincaré
decision hyperplanes and the hyperbolic embeddings of sampled
test images of clipped HNNs. Clipped HNNs learn more discrim-
inative feature in hyperbolic space. The per class accuracy indi-
cates that baseline HNNs learn biased feature space which hurts
the performance on certain classes.

are done on 8 NVIDIA TITAN RTX GPUs.
Results on Standard Benchmarks. Table 1 shows the re-
sults of different networks on the considered benchmarks.
On MNIST, we can observe that the accuracy of the im-
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Standard Classification

Task Euclidean [14] Hyperbolic [8] C-Hyperbolic

MNIST 99.12±0.34 94.42±0.29 99.08±0.31

CIFAR10 94.81±0.42 88.82±0.51 94.76±0.44

CIFAR100 76.24±0.35 72.26±0.41 75.88±0.38

ImageNet 69.82 65.74 68.45

Few-Shot Classification on CUB Dataset

1-Shot 5-Way 51.31±0.91 61.18±0.24 64.66±0.24

5-Shot 5-Way 70.77±0.69 79.51±0.16 81.76±0.15

Few-Shot Classification on MiniImageNet Dataset

1-Shot 5-Way 49.42±0.78 51.88±0.20 53.01±0.22

5-Shot 5-Way 51.88±0.20 72.63±0.16 72.66±0.15

Table 1. Clipped HNN approaches ENN on standard classification
benchmarks. Clipped hyperbolic ProtoNet (C-Hyperbolic) greatly
outperforms standard hyperbolic ProtoNet (Hyperbolic) and Eu-
clidean ProtoNet (Euclidean) on few-shot learning tasks.

proved clipped HNNs is about 5% higher than the baseline
HNNs and match the performance of ENNs. On CIFAR10,
CIFAR100 and ImageNet, the improved HNNs achieve 6%,
3% and 3% improvement over baseline HNNs. The results
show that HNNs can perform well even on datasets which
lack explicit hierarchical structure.

Figure 6 shows the Poincaré hyperplanes of all the
classes and the hyperbolic embeddings of 1000 sampled test
images extracted by the baseline HNNs and clipped HNNs.
Note that the Poincaré hyperplanes consist of arcs of Eu-
clidean circles that are orthogonal to the boundary of the
ball. We also color the points in the ball based on the clas-
sification results. It can be observed that by regularizing the
magnitude of the hyperbolic embedding, all the embeddings
locate in a restricted region of the whole Poincaré ball and
the network learns more regular and discriminative features
in hyperbolic space.
Few-Shot Learning. We show that the proposed feature
clipping can also improve the performance of Hyperbolic
ProtoNet [18] for few-shot learning. Different from the
standard ProtoNet [43] which computes the prototype of
each class in Euclidean space, Hyperbolic ProtoNet com-
putes the class prototype in hyperbolic space using hyper-
bolic averaging. Hyperbolic features are shown to be more
effective than Euclidean features for few-shot learning [18].

We follow the experimental settings in [18] and conduct
experiments on CUB [47] and miniImageNet dataset [39].
We consider 1-shot 5-way and 5-shot 5-way tasks as in [18].
The evaluation is repeated for 10000 times and we report
the average performance and the 95% confidence interval.
Table 1 shows that the proposed feature clipping further im-
proves the accuracy of Hyperbolic ProtoNet for few-shot

classification by as much as 3%.

Table 2. Clipped HNNs consistently outperform ENNs (shaded
in gray) on out-of-distribution (OOD) detection with softmax
scores when trained on CIFAR10 and tested on OOD datasets.

OOD Dataset FPR95 ↓ AUROC ↑ AUPR ↑

ISUN 46.30±0.78 91.50±0.16 98.16±0.05
45.28±0.65 91.61±0.21 98.09±0.06

Place365 51.09±0.92 87.56±0.37 96.76±0.15
54.77±0.76 86.82±0.41 96.17±0.20

Texture 65.04±0.91 82.80±0.35 94.59±0.20
47.12±0.62 89.91±0.20 97.39±0.09

SVHN 71.66±0.84 86.58±0.21 97.06±0.06
49.89±1.03 91.34±0.22 98.13± 0.06

LSUN-Crop 22.22±0.78 96.05±0.10 99.16±0.03
23.87±0.73 95.65±0.22 98.98±0.07

LSUN-Resize 41.06±1.07 92.67±0.16 98.42±0.04
41.49±1.24 92.97±0.24 98.46 ±0.07

Mean 49.56 89.53 97.36
43.74 91.38 97.87

Table 3. Clipped HNNs consistently outperform ENNs (shaded
in gray) on out-of-distribution (OOD) detection with soft-
max scores when trained on CIFAR100 and tested on OOD
datasets. On average, they are on par with ENNs by AUPR
and far better by PRR95 and AUROC.

OOD Dataset FPR95 ↓ AUROC ↑ AUPR ↑

ISUN 74.07±0.87 82.51±0.39 95.83±0.11
68.37±0.90 81.31±0.43 94.96±0.20

Place365 81.01±1.07 76.90±0.45 94.02±0.15
79.66±0.69 76.94±0.28 93.91±0.18

Texture 83.67±0.68 77.52±0.32 94.47±0.10
64.91±0.80 83.26±0.25 95.77±0.08

SVHN 84.56±0.78 84.32±0.22 96.69±0.07
53.11±1.04 89.53±0.26 97.71±0.07

LSUN-Crop 43.46±0.79 93.09±0.23 98.58±0.05
51.08±1.17 87.21±0.39 96.83±0.13

LSUN-Resize 71.50±0.73 82.12±0.40 95.69±0.13
63.86±1.10 82.36±0.42 95.16±0.13

Mean 73.05 82.74 95.88
63.50 83.43 95.72

Adversarial Robustness. We show that clipped HNNs
are more robust to adversarial attacks including FGSM
[9] and PGD [28] than ENNs. For attacking networks
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Figure 7. Clipped HNNs are more robust to ENNs against adversarial attacks. We show the results of adversarial robustness of clipped
HNNs and ENNs to different attack methods and perturbations. Clipped HNNs are consistently better than ENNs.

trained on MNIST using FGSM, we consider the perturba-
tion ϵ = 0.05, 0.1, 0.2, 0.3. For attacking networks trained
on MNIST using PGD, we consider the perturbation ϵ =
0.05, 0.1, 0.15, 0.2. The number of steps is 40. For attack-
ing networks trained on CIFAR10 using PGD, we consider
the perturbation ϵ = 0.8/255, 1.6/255, 3.2/255. The num-
ber of steps is 7.

From Figure 7 we can see that across all the cases clipped
HNNs show more robustness than ENNs to adversarial at-
tacks. For more discussions and results using vanilla HNNs,
please see the Supplementary.
Out-of-Distribution Detection. We conduct experiments
to show that clipped HNNs have stronger out-of-distribution
detection capability than ENNs. Out-of-distribution de-
tection aims at determining whether or not a given in-
put is from the same distribution as the training data.
We follow the experimental settings in [26]. The in-
distribution datasets are CIFAR10 and CIFAR100. The out-
of-distribution datasets are ISUN [49], Place365 [53], Tex-
ture [6], SVHN [33], LSUN-Crop [50] and LSUN-Resize
[50]. For detecting out-of-distribution data, we use both
softmax score and energy score as described in [26]. For
metrics, we consider FPR95, AUROC and AUPR [26]. Ta-
ble 2 and 3 show the results of using softmax score on CI-
FAR10 and CIFAR100 respectively. We can see that HNNs
and ENNs achieve similar AUPR, however HNNs achieve
much better performance in terms of FPR95 and AUROC.
In particular, HNNs reduce FPR95 by 5.82% and 9.55% on
CIFAR10 and CIFAR100 respectively. For results using en-
ergy score and vanilla HNNs, please see the Supplementary.
The Effect of Feature Dimension. Figure 8 shows the
change of test accuracy as we vary the feature dimension
on CIFAR10 and CIFAR100. Clipped HNNs are much bet-
ter than ENNs when the feature dimension is low. One
possible reason is that when the dimension is low in the
Euclidean case, the data are hard to be linearly separated.
However in hyperbolic space, since the Poincaré hyper-
planes are “curved”, the data are more likely to be linearly

separated even in two dimensions.

·

Figure 8. Clipped HNNs are better than ENNs when the feature
dimension is low. Left: Test accuracy on CIFAR10. Right: Test
accuracy on CIFAR100. We change the feature dimension from 2
to 128.

5. Summary

We propose a simple yet effective solution called Fea-
ture Clipping to address the vanishing gradient problem in
training HNNs. We conduct extensive experiments on com-
monly used image dataset benchmarks. To the best of our
knowledge, this is the first time that HNNs can be applied
to image datasets of ImageNet-scale. Clipped HNNs show
significant improvement over baseline HNNs and match the
performance of ENNs. The proposed feature clipping also
improves the performance of HNNs for few-shot learning.
Further experimental studies reveal that clipped HNNs are
more robust to adversarial attacks such as PGD and FGSM.
Clipped HNNs also show stronger out-of-distribution detec-
tion capability than ENNs. When the feature dimension is
low, clipped HNNs even outperform ENNs.
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