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Abstract

In this paper, we aim to forecast a future trajectory distri-
bution of a moving agent in the real world, given the social
scene images and historical trajectories. Yet, it is a chal-
lenging task because the ground-truth distribution is un-
known and unobservable, while only one of its samples can
be applied for supervising model learning, which is prone to
bias. Most recent works focus on predicting diverse trajec-
tories in order to cover all modes of the real distribution, but
they may despise the precision and thus give too much credit
to unrealistic predictions. To address the issue, we learn the
distribution with symmetric cross-entropy using occupancy
grid maps as an explicit and scene-compliant approxima-
tion to the ground-truth distribution, which can effectively
penalize unlikely predictions. In specific, we present an in-
verse reinforcement learning based multi-modal trajectory
distribution forecasting framework that learns to plan by
an approximate value iteration network in an end-to-end
manner. Besides, based on the predicted distribution, we
generate a small set of representative trajectories through
a differentiable Transformer-based network, whose atten-
tion mechanism helps to model the relations of trajectories.
In experiments, our method achieves state-of-the-art per-
formance on the Stanford Drone Dataset and Intersection
Drone Dataset.

1. Introduction
Trajectory prediction has gained increasing attention due

to its emerging applications such as robot navigation and
self-driving cars. Due to the inherent multimodal uncer-
tainty from an agent’s intention or environment, a large
number of works have been proposed to learn a multi-
modal distribution of the future trajectories. For example,
in [20, 26], the multimodal distribution is explicitly mod-
eled using the Gaussian mixture model, though it is hard to
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Figure 1. Illustration of trajectory prediction distributions of P2T
and our method on Stanford Drone Dataset. Although the predic-
tion of P2T is more diverse, it predicts many infeasible outcomes
(e.g., those trajectories intersecting with the parterre) and assigns
too high probability to the turning action.

optimize and prone to overfitting. Others have attempted
to model the trajectory distribution implicitly using gen-
erative models such as conditional variational autoencoder
(CVAE) [6, 19, 28, 44], normalizing flow (NF) [34, 38], or
generative adversarial network (GAN) [2, 8, 9, 11, 43].

However, most previous works focus on the diversity
of the predicted trajectories rather than the more important
precision, except a few works (e.g. [34, 38]). The issue is
that if the model is only encouraged to cover all modes of
real distribution, it may assign too many probabilities to un-
realistic predictions and cannot accurately reflect the real
probability density. One such example is shown in Fig. 1
where a large portion of the diverse trajectories predicted
by P2T [6] turn and intersect with obstacles, which are cer-
tainly implausible and inconsistent with common knowl-
edge that moving straight ahead is more likely than turn-
ing. In such circumstances, a navigation decision based on
the predictions will overreact to less likely futures, while
underestimating the more likely ones.

Specifically, to learn a diverse trajectory distribution,
previous works usually minimize the variety loss [6, 9, 13]
or the forward cross-entropy [23, 26, 44]. Yet, the variety
loss does not penalize bad predictions as long as there ex-
ists one prediction close to the ground-truth, and it does
not lead to ground-truth distribution but approximately its
square root [46]. On the other hand, the forward cross-
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entropy also fails to adequately penalize the unlikely pre-
dictions [34,38] and exhibits noise sensitivity [48]. To over-
come the limitations of these losses, our solution is to learn
a distribution minimizing the symmetric cross-entropy, i.e.
the combination of forward and reverse cross-entropy be-
tween the predictive distribution and ground-truth distribu-
tion. Compared with the forward cross-entropy, the reverse
cross-entropy can penalize the prediction with low likeli-
hood, but it requires ground-truth distribution as a refer-
ence, which unfortunately is not available in many cases.
An effective solution is to employ an occupancy grid map
(OGM), which divides the social space into grid cells with
an occupancy probability in each cell. Thus, the trajectory
probability can be approximated as the product of all future
position probabilities conditioned on the OGM. In [38], an
OGM, parameterized as a cost map, is embedded from spa-
tial scene features by a convolutional neural network (CNN)
to assign proper probabilities to different social areas. How-
ever, representing all future position distributions with a
single OGM is inaccurate, since it neglects the spatial-
temporal correspondence of trajectories. Instead, we pre-
dict an OGM for each future position with a convolutional
long short-term memory (ConvLSTM) [51] network based
on our novel deconvolution parameterization of the position
probability flow. The resulting dynamic OGMs can help
not only the trajectory prediction [23] but also downstream
planning tasks [4, 53].

When minimizing the symmetric cross-entropy, previ-
ous approaches [34, 38] usually make use of the normal-
izing flow, which transforms a simple Gaussian distribution
into the target trajectory distribution through a sequence of
auto-regressive mappings. These mappings are required to
be invertible, differentiable, and easy for computing Jaco-
bian determinants, which are difficult to be satisfied in prac-
tice. In addition, the latent variable sampled from the Gaus-
sian distribution is hard to interpret. To address these is-
sues, we develop an end-to-end interpretable model to back-
propagate the symmetric cross-entropy loss. In particular,
we construct a CVAE model using a coarse future trajec-
tory plan within neighboring grids as the interpretable la-
tent variable, similar to P2T [6]. However, P2T cannot be
trained in an end-to-end manner, because it learns the plan-
ning policy using the maximum-entropy inverse reinforce-
ment learning (MaxEnt IRL) [50, 58] by matching feature
expectation. Instead, we implement value iteration in IRL
by differentiable value iteration network (VIN) [45] and in-
corporate Gumbel-Softmax [15] into the discrete planning
policy sampling. In our VIN-based IRL, planning and tra-
jectory generation policy can be learned simultaneously by
maximizing the data likelihood.

Even though a large number of possible future trajec-
tories can be sampled from the learned distribution, many
downstream applications often demand a small set of repre-

sentative predictions. This requirement is traditionally ac-
complished by learning the distribution model with the vari-
ety loss [5, 9, 13] or post-processing with heuristic methods
like greedy approximation [36] or K-means [6, 7]. Moti-
vated by the insight that clustering like K-means can be re-
garded as paying different attention to different samples, we
propose a Transformer-based refinement network, whose
attention mechanism can also ensure sampling diversity, to
attentively obtain a small set of representative samples from
the over-sampled outcomes of our prediction model. The
representative properties can be conveniently adjusted by
its loss, e.g. the variety loss for diversity. In experiments,
we compare our method with a set of state-of-the-art ap-
proaches on the Stanford Drone Dataset [40] and Intersec-
tion Drone Dataset [3] and demonstrate the superiority of
our method in both trajectory diversity and quality.

In summary, the main contributions are as follows.

• We propose a VIN-based IRL method, simplifying the
learning process while allowing the gradients from tra-
jectory generation to flow back to the planning module.

• We improve the approximation of ground-truth with
OGMs in learning trajectory distribution using sym-
metric cross-entropy.;

• We introduce a Transformer-based refinement network
for sampling from trajectory distribution to obtain rep-
resentative and realistic trajectories;

• We demonstrate the state-of-the-art performance of
our framework on two real-world datasets: Stanford
Drone dataset [40] and Intersection Drone dataset [3].

2. Related Work
2.1. Trajectory Distribution Prediction

We focus on trajectory distribution prediction ap-
proaches based on deep learning. Refer to [41] for a survey
of more classical approaches. In the early literature, the tra-
jectory distribution is usually modeled as a simple unimodal
distribution, e.g. a bivariate Gaussian distribution [1,25,54].
However, the unimodal models tend to predict the average
of all possible modes, which may be not valid.

Recently, various generative models such as GAN, NF
and CVAE, have been proposed to address the multi-
modality, which capture the stochasticity with a latent vari-
able. GAN-based methods [2, 8, 9, 11, 43] use a discrimi-
nator to generate diverse realistic trajectories but are diffi-
cult to train and suffer from the mode collapse. NF meth-
ods [34,38] sample the latent variable from a standard Gaus-
sian distribution and map it to the target trajectory through a
sequence of transformations. Some CVAE approaches such
as DESIRE [19], Trajectron++ [44], learn a Gaussian or
categorical latent distribution using the constraint between
prior and posterior distribution. Others leverage an inter-
pretable latent variable to incorporate prior knowledge. For
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example, PECNet [28], TNT [55] consider the destination
position as the latent variable. Further, LB-EBM [33] takes
positions at several future steps as the latent variable which
is sampled from an energy-based model. P2T [6] samples
a coarse grid plan from a policy learned by deep MaxEnt
IRL [50] as the latent variable. Even though our model also
leverages the plan as the latent variable, we learn the plan
and trajectory distributions in a unified framework.

2.2. Occupancy Grid Maps Prediction

OGMs prediction works aim at predicting the categori-
cal occupancy distribution over a grid at each future time
step. Even though there are extensive studies forecasting
OGMs of a crowd [21, 31] or all objects [24, 32] in a scene,
we focus on reviewing the literature predicting one agent’s
OGMs like our work.

Kim et al. [16] directly outputs the future probability of
each grid cell using the LSTM network. Y-net [27] yields
the OGM at each future step directly from different chan-
nels of the feature map output by a CNN. Similarly, in
MP3 [4], the feature map at each channel is embedded into
the temporal motion fields at each future step, which obtains
the probability transition flow between consecutive OGMs
by bilinear interpolation of motion vectors on the field. To
take advantage of the temporal and spatial patterns in the se-
quential OGMs, ConvLSTM [51] is widely applied. In [39],
they directly derive an OGM from the hidden map of Con-
vLSTM at each time step. To increase time consistency,
DRT-NET [14] learns the residual provability flow between
the consecutive OGMs. To incorporate the prior knowledge
of local movement, Multiverse [23] uses a graph attention
network to aggregate neighborhood information on the hid-
den map of ConvLSTM. Similarly, SA-GNN [24] considers
the interactions with neighbors by graph neural networks.
Based on the ConvLSTM and deconvolution parameteriza-
tion, our method is not only computationally efficient but
also explicitly models the local transition probability.

Furthermore, some of these works attempt to obtain tra-
jectories by sampling the OGMs. But the positions indepen-
dently sampled from each OGM suffer from discretization
errors and lack spatio-temporal correspondence in trajecto-
ries. To address this problem, [39] leverages the OGMs as
input to another ConvLSTM which outputs the coordinates
of a fixed number of future trajectories. Multiverse [23]
predicts a continuous offset at each cell to mitigate the dis-
cretization error and applies a diverse beam search to gen-
erate multiple distinct trajectories. Y-net [27] samples in-
termediate positions conditioned on the sampled goal and
waypoints. Instead of sampling OGMs like all previous
works, we use the OGMs as auxiliary information in train-
ing loss to generate more feasible trajectories.

2.3. Trajectory Sample Refinement

Trajectories sampled from the predicted trajectory distri-
bution usually do not satisfy the downstream requirement.
The most common two requirements are precision and di-
versity to cover all future scenarios accurately [34, 38]. To
improve accuracy, previous works [19,29,55] usually score
the samples using a neural network and refine the top sam-
ples. For diversity, the relation between samples needs to
be considered. Most literature [5, 9, 13] directly use a vari-
ety loss to improve diversity. In addition, P2T [6], PGP [7]
and Y-net [27] use K-means to cluster samples while Cov-
erNet [36] employs a greedy approximation algorithm to
create a diverse set. To capture both diversity and qual-
ity, DSF [52] learns a diverse sampling function to sam-
ple the latent variable of CVAE using a diversity loss based
on a determinantal point process at test time while Diver-
sityGAN [12] samples distinct latent semantic variables to
predict diverse trajectories. Different from previous work,
our sample refinement network based on Transformer is an
independent and differentiable module and is flexible with
the downstream requirement and trajectory sample number.

3. Background

3.1. Problem Formulation

Given an observation Ω including a context and history
trajectory X = {Xt ∈ R2 | t = −tp + 1, . . . , 0} of a target
agent, our objective is to predict the distribution p(Y |Ω) of
its future trajectory Y =

{
Yt ∈ R2 | t = 1, . . . , tf

}
. The

context consists of neighbors’ history trajectories and an
image I, which is a bird’s eye view (BEV) perception of
the local scene centered at the agent’s current position.

We assume that an agent has a grid-based plan on which
its future trajectory is conditioned. An agent’s planning pro-
cess is modeled using a Markov decision process (MDP)
M = {S,A, T , r}, with a time horizon N . A state set S
consists of all cells over a 2D grid and an absorbing end
state of zero value. An action set A includes 4 adjacent
movements up, down, left, right and an end action lead-
ing to the absorbing state. A deterministic transition func-
tion T : S × A → S describes system dynamics. A non-
stationary reward function rn : S × A → R determines a
reward for each state and action per step n. We assume that
the agent uses a non-stationary stochastic policy πn(a|s) to
determine the probability of selecting an action a at a state
s at MDP step n, and finally make a plan in terms of the
state sequence S = {sn ∈ S | n = 1, . . . , N}. Note that
here we are using the superscript n as the MDP step n, to
distinguish with the time step t as subscript.

To relieve the difficulty of modeling the multi-modal fu-
ture trajectory distribution p (Y |Ω), we introduce the plau-
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sible plan as the latent variable and decompose it as:

p (Y |Ω) =
∫
S∈S(Ω)

p (S|Ω) p (Y |S,Ω) dS,

where S(Ω) is the space of plausible plans conditioned on
the observation. In this way, since the plan uncertainty can
well capture the multimodality, trajectory conditioned on a
plan can be well approximated as a unimodal distribution.

3.2. Trajectory Distribution Learning

We predict the future trajectory distribution by minimiz-
ing the discrepancy between the distribution qθ(Ŷ |Ω) of
the predicted trajectory Ŷ and the ground-truth distribu-
tion p(Y |Ω). As a straightforward distance metric between
these two distributions, forward cross-entropy (a.k.a, nega-
tive log-likelihood (NLL)) is computed as:

H (p, qθ) =− E
Ω∼Ψ,Y∼p(·|Ω),S∈S(Y )

[log qθ(S|Ω)qθ(Y |Ω, S)] ,

where Ψ denotes the ground-truth observations’ distribution
and S(Y ) is the space containing the ground-truth plan S,
i.e. the grid state sequence the trajectory Y goes through.

Although the NLL loss encourages the predicted dis-
tribution to cover all plausible modes of the ground-truth
distribution, it assigns a low penalty to the implausi-
ble predictions which are less likely to take place under
the ground-truth distribution [34, 38]. The reverse cross-
entropy H(qθ, p) can evaluate the likelihood of the predic-
tion under the ground-truth distribution and penalize un-
likely predictions, but the ground-truth distribution p is un-
known in the real world with only one sample observed. To
address this issue, we approximate the continuous joint dis-
tribution p(Y |Ω) of future trajectory as a product of future
positions’ categorical marginal distributions O = {Ot |
t = 1, . . . , tf}, represented as OGMs:

p(Y |Ω) ≈ p(O|Ω)
tf∏
t=1

Ot(Yt),

where Ot(Yt) denotes the agent’s location probability at Yt

at time t, which is bilinearly interpolated from nearby prob-
abilities on Ot and p(O|Ω) is assumed to be deterministic
and parameterized by neural networks O = oα(Ω). Thus,
the reverse cross-entropy H(qθ, p) can be approximated as:

H(qθ,O) = − E
Ω∼Ψ,Ŷ∼qθ(·|Ω)

log p(O|Ω)
tf∏
t=1

Ot(Ŷt).

4. Approach
As shown in Fig. 2, our model is composed of five mod-

ules that can be learned in an end-to-end manner: an Obser-
vation Encoder, a Policy Network, an Occupancy Grid
Maps Decoder (OGMs Decoder), a Trajectory Decoder
and a Refinement Network.

4.1. Observation Encoder

The first component of our approach is an observation
encoder composed of a motion encoder to extract motion
features from the past trajectories of the target and its neigh-
bors and a scene encoder to extract scene features from the
BEV image of the surrounding environment.
Motion encoder: The motion encoder is designed to embed
the past trajectories of the target agent and its neighbors into
a feature vector and a feature map. To represent the neigh-
bors’ state succinctly, we leverage a directional pooling grid
from [18], where each cell contains the relative velocity of a
neighbor located in that cell with respect to the target agent.
At each past time step t, we first flatten the grid into a vector
dt and then concatenate the vector with the agent velocity
Xt−Xt−1 as input to an RNN. The hidden state of the RNN
at time t is given by:

mt = RNNm (mt−1, ϕ [dt, Xt −Xt−1]) ,

where ϕ is a linear embedding layer and the brackets indi-
cate concatenation. The first hidden state m−tp+1 is set to
zero and the last hidden state m0 is regarded as the motion
feature. The m0 is duplicated over all cells in the scene and
then is concatenated with each cell’s agent-centered, world-
aligned coordinate to construct a motion feature map M:

M(x, y) = [m0, x, y].

Scene encoder: We apply a CNN to extract a scene feature
map from the BEV image I of the neighborhood:

F = CNNf(I),

where the spatial dimensions of the scene feature map F are
the same as that of the MDP grid for simplicity.

4.2. Policy Network

We generate a policy in two steps end-to-end: mapping
the observation features into rewards and then computing a
policy with a value iteration network.

We adopt non-stationary rewards to capture the dynamic
agent-to-scene and agent-to-agent interaction. Based on the
scene and motion feature maps, a ConvLSTM architecture
is applied to yield the reward map at each step. The ConvL-
STM hidden map and the reward map at MDP step n are:

Hn = ConvLSTMr(H
n−1,F), rn = Φ(Hn),

where Φ is a fully connected convolutional layer. The initial
hidden map H0 is the embedded motion feature map Φ(M).

Based on the reward maps, we use the approximate value
iteration to generate a policy map πn at each step n. To
back-propagate the loss through the value iteration, we take
advantage of the value iteration network as [35, 37, 45],
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Figure 2. Overview of our approach.

Algorithm 1 Approximate Value Iteration Network
Input: rn(s, a)
Output: πn(a|s)

1: VN (s) = 0,∀s ∈ S;
2: for n = N, . . . , 2, 1 do
3: Qn(s, a) = rn(s, a) + Vn

s′=T (s,a)(s
′), ∀s ∈ S,

∀a ∈ A;
4: Vn−1(s) = logsumexpa Q

n(s, a), ∀s ∈ S;
5: πn(a|s) = softmaxa Q

n(s, a), ∀s ∈ S;
6: end for

which recursively computes the next value map by a convo-
lution of the current value map with transition filters. To im-
prove the value iteration network’s performance, we utilize
an approximate value iteration in the MaxEnt IRL formula-
tion [50,58] with non-stationary rewards. Algo. 1 describes
the overall computation process of this network.

4.3. OGMs Decoder

To provide an explicit approximation of the ground-truth
trajectory distribution, we predict a sequence of dynamic
OGMs based on the observation features using a ConvL-
STM network. With the scene feature map as input, the
hidden map of the ConvLSTM network at time t is:

Ht = ConvLSTMo (Ht−1,F) ,

The hidden map is initialized with the embedding of the
motion feature map H0 = Φ(M).

Then, instead of directly outputting an OGM from each
hidden map, we derive a pixel-adaptive normalized decon-
volution filter whose weights are spatially varying, non-
negative and sum to one. The deconvolution is subsequently
applied to the last OGM to obtain the next one:

Ot = Deconv (Ot−1, softmax(Φ(Ht))) ,

where the initial OGM O0 is a probability matrix to be
learned. Our deconvolution method can directly model the

probability density transition process. Besides, the limited
size of the normalized deconvolution kernel ensures that the
probability mass diffuses into nearby grid cells in a conser-
vative manner, reflecting the prior knowledge that agents do
not suddenly disappear or jump between distant locations.

4.4. Trajectory Decoder

Conditioned on a plan from the policy roll-out or the
data, an RNN decoder is applied to generate the future po-
sition distribution recursively based on local features.
Plan sampling: We generate a plan Ŝ = {ŝn ∈ R2 | n =
1, . . . , N} by sampling the non-stationary policy outputted
by the policy network. However, directly sampling the pol-
icy with discrete state and action spaces will introduce diffi-
culty in loss back-propagation. To overcome this difficulty,
we sample the policy with the Gumbel-Softmax trick [15],
resulting in continuous action and state. Besides, we obtain
the policy at continuous state ŝn by bilinear interpolation.
Plan encoder: Given a ground-truth plan S (or a sampled
plan Ŝ), we first collect the local scene feature from scene
feature map F and non-stationary feature from the corre-
sponding hidden map of ConvLSTMr at each plan state.
Then we concatenate these features with the state’s coordi-
nates as input to an RNN, whose hidden state at step n is:

hn = RNNs

(
hn−1, ϕ [sn,F(sn),Hn(sn)]

)
.

Since the sampled plan’s state ŝn is on the continuous plane,
the local features like F(sn) are gathered by bilinear in-
terpolation at the spatial dimensions of the feature map
F corresponding to the physical position sn. Fig. 3 il-
lustrates how the plan encoder extracts the plan features
h1:N = {hn | n = 1, . . . , N}.
Multi-head attention based decoder: Since different di-
mensions of the plan features at different steps may have
different impacts on current hidden state [30], we utilize a
multi-head scaled dot product attention module [47] to ag-
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Figure 3. The local scene and non-stationary features at each plan
state are concatenated with its location coordinates and then fed
into an RNN to obtain all plan features.

gregate the plan information:

MultiHead(Q,K, V ) = [Att(QWQ
i ,KWK

i , V WV
i )

H

i=1]W
O,

whereAtt(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi,

where dk is the dimension of each head. At each future time
t, we linearly project the trajectory decoder’s previous hid-
den state ht−1 into the query Qi and the plan features into
the key Ki and value Vi through linear layers WQ

i , WK
i and

WV
i . The attention module output at is then concatenated

with coordinates and local bilinearly interpolated features
on scene feature map and corresponding OGM hidden map
at the previous position Yt−1 as input to an RNN decoder:

at = MultiHead(ht−1, h
1:N , h1:N ),

ht = RNNt (ht−1, ϕ [at, Yt−1,F(Yt−1),Ht(Yt−1)]) ,

where the initial hidden state h0 is the embedded motion
feature ϕ(m0). Then, the hidden state ht is utilized to pre-
dict the position Ŷt distribution which is assumed to be a bi-
variate Gaussian distribution parameterized with the mean
µt + Yt−1, standard deviation σt, and correlation ρt:

[µt, σt, ρt] = htW
P , Ŷt ∼ N (µt + Yt−1, σt, ρt).

During generating predictions Ŷ , the above ground-truth
position Yt−1 is substituted by the position Ŷt−1 sampled
from the predicted distribution with the reparameterization
trick [17] to ensure differentiability.

4.5. Refinement Network

We design a refinement network to present a succinct
representation of a trajectory distribution with several rep-
resentative trajectories. The network is an encoder-decoder
framework based on Transformer [47] but without posi-
tional embedding and auto-regressive decoding because the
multi-head attention module in Transformer can well cap-
ture the relation between unordered samples to ensure di-
versity. We first over-sample a large number of trajec-
tory samples {Ŷ (1), Ŷ (2), . . . , Ŷ (C)} to cover the trajec-
tory distribution, e.g. C = 200. Then, all trajectory sam-
ples are flattened into vectors and embedded as input to the

Transformer encoder without the positional embedding. To
save inference time, we utilize a generative style decoder
like [57] but the inputs to our decoder are the summations
of the embedded motion features and K different parame-
ter vectors instead of fixed tokens. Finally, we embed the
decoder output to obtain a few representative trajectories
{Ỹ (1), Ỹ (2), . . . , Ỹ (K)}, e.g. K = 20.

4.6. Training Process

To achieve different goals including a good OGM, distri-
bution and representative sets at different steps, our training
process has the following four steps:

1. OGMs learning: The observation encoder and OGMs
decoder are trained to predict OGMs by minimizing
the NLL loss:

H(p,O) = − E
Ω∼Ψ,Y∼p(·|Ω),O=oα(Ω)

log

tf∏
t=1

Ot(Yt).

2. Trajectory distribution learning: Based on the
learned observation encoder and OGMs decoder, we
train the policy network and trajectory decoder to in-
duce a trajectory distribution that minimizes the ap-
proximated symmetric cross-entropy loss:

Lsce = H(p, qθ) + βH(qθ,O).

3. Representative trajectories learning: Using the tra-
jectories sampled from the learned distribution, we
train the refinement network to generate representative
trajectories with the variety (MoN) loss [9]:

Lvariety = min
k∈{1,...,K}

∥Y − Ỹ (k)∥2.

4. End-to-end fine-tuning: We fine-tune the whole net-
work in an end-to-end manner with the variety loss.

Only the first two steps are required for learning a tra-
jectory distribution while all four steps are for obtaining a
compact set of representative trajectories.

5. Experimental Results
5.1. Implementation Details

We augment all trajectories and scene images in the
training data by 90◦ rotations and flipping. All data fed
into and generated from our model are in the world co-
ordinates rather than the pixel coordinates as in previous
works [6, 28, 42]. The BEV image fed to the scene encoder
is a 200 × 200 crop of the RGB image around the agent’s
location. The scene encoder CNNf consists of the first two
layers of ResNet34 [10] and a convolutional layer with ker-
nel size 2 and stride 2, which outputs scene feature map of
32 channels and size 25 × 25 as the MDP grid. The RNNs
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are implemented by gated recurrent units (GRU) with hid-
den size 64. ConvLSTMr and ConvLSTMd have 1 and 2
layers each, with kernel size 3 and 32 hidden states respec-
tively, and the deconvolution kernel size is 5. The multi-
head attention module in the trajectory decoder has 4 heads
of 16 dimensions. The Transformer encoder and decoder
consist of 3 layers with hidden size 64 and 8 self-attention
heads and a dropout rate of 0.1. We train using Adam op-
timizer with a learning rate of 0.001 in the first three steps
and 0.0001 in the last step. We have released our code at
https://github.com/Kguo-cs/TDOR.

5.2. Datasets and Metrics

Datasets. We evaluate our method on two datasets.
Most of our tests are conducted on the Stanford Drone
Dataset (SDD) [40] provides top-down RGB videos cap-
tured on the Stanford University campus by drones at 60 dif-
ferent scenes, containing annotated trajectories of more than
20,000 targets such as pedestrians, bicyclists and cars. Early
works [5, 23, 43] consider all trajectories in SDD and sub-
sequent works [27–29, 56] focus on pedestrian trajectories
using the TrajNet benchmark [42]. On these two splits, we
report the results of predicting the 12-step future with the
8-step history with 0.4 seconds step interval. Besides, we
report our long-term prediction results on the Intersection
Drone Dataset (inD) [3], which consists of longer drone
recorded trajectories of road users than SDD collected at
four German intersections. To evaluate our method’s long-
term forecasting performance, we use data in [27], includ-
ing 1222 training and 174 test trajectories with 5-second
history and 30-second future with the 1Hz sampling rate.

Metrics. We evaluate our performance of representative
samples with three metrics. The first two are commonly
used sample-based diversity metrics [9]: minADEK , i.e.,
the minimum average, and minFDEK , i.e., the final dis-
placement errors between K predictions and ground-truth
trajectory in pixels. Following P2T [6], we also report re-
sults on the quality metric, Offroad Rate, which measures
the fraction of the predicted positions falling outside road
while ground-truth positions inside road.

5.3. Performance Evaluation

We benchmark against the following state-of-the-arts.
Social GAN [9] proposes a GAN-based method to predict
diverse and socially acceptable trajectories. Desire [19]
uses CVAE to generate trajectory samples, which are then
recursively ranked and refined. Multiverse [23] selects
multiple coarse trajectories from predicted OGMs by beam
search and then refines them with continuous displacement
vectors. SimAug [22] improves Multiverse [23]’s robust-
ness by utilizing simulated multi-view data. P2T [6] pre-
dicts the future trajectory conditioned on a plan gener-
ated by the deep MaxEnt IRL. PECNet [28] is a goal-

Model minADE20 minFDE20 Offroad Rate

S-GAN [9] 27.25 41.44 -
Desire [19] 19.25 34.05 -
Multiverse [23] 14.78 27.09 -
SimAug [22] 10.27 19.71 -
P2T [6] 10.97 18.40 0.065
Ours 8.60 13.90 0.050

PECNet [28] 9.96 15.88 0.071
LB-EBM [33] 8.87 15.61 0.070
P2T [6] 8.76 14.08 -
Y-Net [27] 7.85 11.85 0.048
V [49] 7.34 11.53 -
Ours 6.77 10.46 0.066

Table 1. Comparison with state-of-the-art methods on the entire
SDD dataset (above) and its TrajNet split (below) in predicting
short-term 4.8-second future.

Model minADE20 minFDE20

S-GAN [9] 38.57 84.61
PECNet [28] 20.25 32.95
Y-net [27] 14.99 21.13

Ours 13.09 19.39

Table 2. Results on the inD in the long-term 30-second prediction.

conditioned model dividing the task into goal estimation
and trajectory prediction. LB-EBM [33] infers interme-
diate waypoints using latent vector sampled from a cost-
based history. Y-Net [27] models the future position’s mul-
timodality with heatmaps and samples a trajectory from
the heatmap conditioned on sampled goal and waypoints.
V [49] is a concurrent method proposing a two-stage Trans-
former network to model the trajectory and its Fourier spec-
trum in the keypoints and interactions levels, respectively.

The performance of our model in the short-term trajec-
tory prediction compared with state-of-the-art methods on
the SDD is reported in Tab. 1. minADE20 and minFDE20

values follow the original papers, while the offroad rates are
computed using the released codes and models of different
approaches. On both data splits, our model achieves the
best performance according to the metrics of minADE20

and minADE20 and offroad rate. Notably, our results are
achieved without manually labeled semantic maps in Y-
Net [27] or simulation data in SimAug [22].

We also report our long-term prediction results on the
inD in Tab. 2. Our results are again achieved without the
manually annotated semantic maps in Y-net [27].

A set of qualitative examples are presented in the supple-
mentary material, which demonstrates that our models are
able to learn a diverse and feasible distribution and predict
diverse representative trajectories.

5.4. Ablation Study

Ablation experiments on TrajNet split are used to expose
the significance of different components of our model:
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OGMs Prediction Model H(p,O)

CNN [38] 17.52
ConvLSTM [39] 10.52
ConvLSTM+DiscreteResidualFlow [14] 10.64
ConvLSTM+GraphAttentionNetwork [34] 10.40
ConvLSTM+Deconvolution (Ours) 10.31

Table 3. Comparison of four baselines and our method with close
parameter numbers in predicting OGMs.

OGMs decoder: First, we consider the ground-truth distri-
bution approximation using one OGM obtained by a CNN
acting on scene and motion features as R2P2 [38]. Then,
we study how effective our deconvolution parameteriza-
tion in the ConvLSTM is for OGMs prediction. We im-
plement three baseline OGMs prediction networks inspired
by [14, 34, 39]: ConvLSTM directly outputs OGMs from
hidden maps; ConvLSTM+DiscreteResidualFlow outputs
the log-probability residual between OGMs from hid-
den maps; ConvLSTM+GraphAttentionNetwork processes
hidden maps with a graph attention network at each step.
We train these models as our first training step. Results
in Tab. 3 about the OGM decoding loss measured by the
NLL loss show that our approximation with different OGMs
using deconvolution parameterization is the most effective.

Hyperparameter β: To investigate how the hyperparam-
eter β in the symmetric cross-entropy loss affects learning
trajectory distribution, we train the policy network and the
trajectory decoder with various β values. To measure the
learned distribution diversity, we leverage the RFK metric
from [34], i.e. the ratio of the average FDE to the mini-
mum FDE among K predictions (avgFDEK/minFDEK).
A large avgFDEK implies that predictions spread out while
a small minFDEK ensures predictions not being arbitrar-
ily stochastic. The off-road rate metric is also applied to
evaluate the distribution’s precision. As shown in Tab. 4,
with increasing β values, the off-road rate and reverse
cross-entropy decrease, implying a more precise distribu-
tion model, while the forward cross-entropy increases and
RF20 decreases, meaning the distribution is getting less
diverse. It shows that the hyperparameter β can balance
the predicted distribution’s diversity and accuracy while a
distribution only minimizing the forward cross-entropy can
cover the data well but will produce implausible samples.

Reward layers: First, we study how the IRL learning
method is beneficial compared to behavior cloning (BC). In
the BC method, we ablate the value iteration network and
directly output the non-stationary policy in replace of the
non-stationary reward. Then, our non-stationary reward is
compared with the stationary reward (SR) used in previous
works [6, 35]. The SR method is implemented by mapping
the concatenation of the motion and scene feature maps into
one reward map through two fully connected convolutional
layers. Results in Tab. 4 show that a non-stationary reward

Model β H(p, qθ) H(qθ,O) RF20 Offroad Rate

Ours 0 -32.19 24.13 7.52 0.035
Ours 0.1 -31.95 8.56 4.99 0.034
Ours 0.2 -31.75 7.536 4.23 0.030
Ours 1 -31.52 4.21 2.70 0.022
Ours 10 -29.76 3.52 2.13 0.020

BC 0.2 -31.62 8.10 4.80 0.034
SR 0.2 -31.72 9.52 6.95 0.033

Table 4. Effect of β and reward in trajectory distribution forecast-
ing based on the predicted OGMs.

Method minADE20 minFDE20 Offroad Rate

w/o refinement 8.78 14.34 0.045
K-means 7.64 12.12 0.058

w/o end-to-end 7.36 11.51 0.077
multi-task 6.94 10.68 0.066
variety loss 8.16 13.04 0.084
Ours 6.77 10.46 0.066

Table 5. Effect of the refinement and training methods in pre-
dicting representative trajectories based on the learned trajectory
distribution with β = 0.2.

outperforms no reward or a stationary one in terms of for-
ward and reverse cross-entropy and off-road rate.
Refinement network: We consider two models without the
refinement network. One removes the refinement network
from our method. The other replaces our refinement net-
work with K-means in [6] and outputs K cluster centers
of trajectory samples as representatives. Both models are
trained end-to-end using the variety loss based on the pre-
trained distribution model. The comparison between Tab. 5
and Tab. 1 bottom part shows that the refinement network
is indispensable and more effective than K-means while in-
creasing the offroad rate due to the diversity loss.
Training process: Firstly, we show the result of only com-
pleting the first three training processes without the end-
to-end fine-tuning process. Besides, we also consider two
other training processes. One is to train the network with the
sum of all losses like multi-task. The other one is with the
variety loss only. Tab. 5 demonstrates that our training pro-
cess with end-to-end fine-tuning can improve performance
in predicting representative trajectories. We find that train-
ing only with variety loss is unstable and may not converge.

6. Conclusion
We have proposed an end-to-end interpretable trajec-

tory distribution prediction model based on a grid plan.
Our model can learn to produce a diverse and admissible
trajectory distribution by minimizing the symmetric cross-
entropy loss. We also design a flexible refinement network
to generate a small set of representative trajectories. Finally,
we demonstrate the effectiveness of our approach in two
real-world datasets with state-of-the-art performance.
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GAN: Multimodal trajectory prediction based on goal posi-
tion estimation. In ACCV, 2020. 2, 3, 7

[6] Nachiket Deo and Mohan M Trivedi. Trajectory forecasts
in unknown environments conditioned on grid-based plans.
arXiv preprint arXiv:2001.00735, 2020. 1, 2, 3, 6, 7, 8

[7] Nachiket Deo, Eric M Wolff, and Oscar Beijbom. Mul-
timodal trajectory prediction conditioned on lane-graph
traversals. arXiv preprint arXiv:2106.15004, 2021. 2, 3

[8] Stuart Eiffert, Kunming Li, Mao Shan, Stewart Worrall,
Salah Sukkarieh, and Eduardo Nebot. Probabilistic crowd
gan: Multimodal pedestrian trajectory prediction using a
graph vehicle-pedestrian attention network. IEEE Robotics
and Automation Letters, 5(4):5026–5033, 2020. 1, 2

[9] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social GAN: Socially acceptable tra-
jectories with generative adversarial networks. In CVPR,
pages 2255–2264, 2018. 1, 2, 3, 6, 7

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6

[11] Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Collaborative
motion prediction via neural motion message passing. In
CVPR, pages 6319–6328, 2020. 1, 2

[12] Xin Huang, Stephen G McGill, Jonathan A DeCastro, Luke
Fletcher, John J Leonard, Brian C Williams, and Guy Ros-
man. DiversityGAN: Diversity-aware vehicle motion pre-
diction via latent semantic sampling. IEEE Robotics and Au-
tomation Letters, 5(4):5089–5096, 2020. 3

[13] Yingfan Huang, HuiKun Bi, Zhaoxin Li, Tianlu Mao, and
Zhaoqi Wang. STGAT: Modeling spatial-temporal interac-
tions for human trajectory prediction. In ICCV, pages 6272–
6281, 2019. 1, 2, 3

[14] Ajay Jain, Sergio Casas, Renjie Liao, Yuwen Xiong, Song
Feng, Sean Segal, and Raquel Urtasun. Discrete residual
flow for probabilistic pedestrian behavior prediction. In Con-
ference on Robot Learning, pages 407–419, 2020. 3, 8

[15] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. In ICLR, 2017. 2, 5

[16] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Se-
ung Hi Lee, Chung Choo Chung, and Jun Won Choi. Prob-
abilistic vehicle trajectory prediction over occupancy grid

map via recurrent neural network. In International Confer-
ence on Intelligent Transportation Systems, pages 399–404,
2017. 3

[17] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. In ICLR, 2014. 6

[18] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human
trajectory forecasting in crowds: A deep learning perspec-
tive. IEEE Transactions on Intelligent Transportation Sys-
tems, 2021. 4

[19] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In CVPR, pages 336–345, 2017. 1, 2, 3, 7

[20] Karen Leung, Edward Schmerling, and Marco Pavone. Dis-
tributional prediction of human driving behaviours using
mixture density networks. Technical report, Stanford Uni-
versity, 2016. 1

[21] Yuke Li. Pedestrian path forecasting in crowd: A deep
spatio-temporal perspective. In ACMMM, pages 235–243,
2017. 3

[22] Junwei Liang, Lu Jiang, and Alexander Hauptmann.
SimAug: Learning robust representations from simulation
for trajectory prediction. In ECCV, pages 275–292, 2020. 7

[23] Junwei Liang, Lu Jiang, Kevin Murphy, Ting Yu, and
Alexander Hauptmann. The garden of forking paths: To-
wards multi-future trajectory prediction. In CVPR, pages
10508–10518, 2020. 1, 2, 3, 7

[24] Katie Luo, Sergio Casas, Renjie Liao, Xinchen Yan, Yuwen
Xiong, Wenyuan Zeng, and Raquel Urtasun. Safety-oriented
pedestrian occupancy forecasting. In International Confer-
ence on Intelligent Robots and Systems, pages 1015–1022,
2021. 3

[25] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-
ous: Real time end-to-end 3d detection, tracking and motion
forecasting with a single convolutional net. In CVPR, pages
3569–3577, 2018. 2

[26] Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox.
Overcoming limitations of mixture density networks: A sam-
pling and fitting framework for multimodal future prediction.
In CVPR, pages 7144–7153, 2019. 1

[27] Karttikeya Mangalam, Yang An, Harshayu Girase, and Ji-
tendra Malik. From goals, waypoints & paths to long term
human trajectory forecasting. In ICCV, 2021. 3, 7

[28] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal,
Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien
Gaidon. It is not the journey but the destination: Endpoint
conditioned trajectory prediction. In ECCV, pages 759–776,
2020. 1, 3, 6, 7

[29] Francesco Marchetti, Federico Becattini, Lorenzo Seidenari,
and Alberto Del Bimbo. Mantra: Memory augmented net-
works for multiple trajectory prediction. In CVPR, pages
7143–7152, 2020. 3, 7

[30] Jean Mercat, Thomas Gilles, Nicole El Zoghby, Guil-
laume Sandou, Dominique Beauvois, and Guillermo Pita
Gil. Multi-head attention for multi-modal joint vehicle mo-
tion forecasting. In International Conference on Robotics
and Automation, pages 9638–9644, 2020. 5

2250



[31] Hiroaki Minoura, Ryo Yonetani, Mai Nishimura, and Yoshi-
taka Ushiku. Crowd density forecasting by modeling patch-
based dynamics. IEEE Robotics and Automation Letters,
6(2):287–294, 2020. 3

[32] Nima Mohajerin and Mohsen Rohani. Multi-step predic-
tion of occupancy grid maps with recurrent neural networks.
CVPR, pages 10592–10600, 2019. 3

[33] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Tra-
jectory prediction with latent belief energy-based model. In
CVPR, pages 11814–11824, 2021. 3, 7

[34] Seong Hyeon Park, Gyubok Lee, Jimin Seo, Manoj Bhat,
Minseok Kang, Jonathan Francis, Ashwin Jadhav, Paul Pu
Liang, and Louis-Philippe Morency. Diverse and admissi-
ble trajectory forecasting through multimodal context under-
standing. In ECCV, pages 282–298, 2020. 1, 2, 3, 4, 8

[35] Max Pflueger, Ali Agha, and Gaurav S Sukhatme. Rover-
IRL: Inverse reinforcement learning with soft value iteration
networks for planetary rover path planning. IEEE Robotics
and Automation Letters, 4(2):1387–1394, 2019. 4, 8

[36] Tung Phan-Minh, Elena Corina Grigore, Freddy A Boulton,
Oscar Beijbom, and Eric M Wolff. CoverNet: Multimodal
behavior prediction using trajectory sets. In CVPR, pages
14074–14083, 2020. 2, 3

[37] Eike Rehder, Florian Wirth, Martin Lauer, and Christoph
Stiller. Pedestrian prediction by planning using deep neu-
ral networks. In International Conference on Robotics and
Automation, pages 5903–5908, 2018. 4

[38] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2:
A reparameterized pushforward policy for diverse, precise
generative path forecasting. In ECCV, pages 772–788, 2018.
1, 2, 3, 4, 8

[39] Daniela Ridel, Nachiket Deo, Denis Wolf, and Mohan
Trivedi. Scene compliant trajectory forecast with agent-
centric spatio-temporal grids. IEEE Robotics and Automa-
tion Letters, 5(2):2816–2823, 2020. 3, 8

[40] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi,
and Silvio Savarese. Learning social etiquette: Human tra-
jectory understanding in crowded scenes. In ECCV, pages
549–565, 2016. 2, 7

[41] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M
Kitani, Dariu M Gavrila, and Kai O Arras. Human motion
trajectory prediction: A survey. The International Journal of
Robotics Research, 39(8):895–935, 2020. 2

[42] Amir Sadeghian, Vineet Kosaraju, Agrim Gupta, Silvio
Savarese, and A Alahi. Trajnet: Towards a benchmark for
human trajectory prediction. arXiv preprint, 2018. 6, 7

[43] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In CVPR, pages 1349–1358, 2019. 1,
2, 7

[44] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajec-
tory forecasting with heterogeneous data. In ECCV, pages
683–700, 2020. 1, 2

[45] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value iteration networks. In NeurIPS, pages
2154–2162, 2016. 2, 4

[46] Luca Anthony Thiede and Pratik Prabhanjan Brahma. Ana-
lyzing the variety loss in the context of probabilistic trajec-
tory prediction. In ICCV, pages 9954–9963, 2019. 1

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 5, 6

[48] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng
Yi, and James Bailey. Symmetric cross entropy for robust
learning with noisy labels. In ICCV, pages 322–330, 2019. 2

[49] Conghao Wong, Beihao Xia, Ziming Hong, Qinmu Peng,
and Xinge You. View Vertically: A hierarchical network for
trajectory prediction via fourier spectrums. arXiv preprint
arXiv:2110.07288, 2021. 7

[50] Markus Wulfmeier, Dushyant Rao, Dominic Zeng Wang, Pe-
ter Ondruska, and Ingmar Posner. Large-scale cost function
learning for path planning using deep inverse reinforcement
learning. The International Journal of Robotics Research,
36(10):1073–1087, 2017. 2, 3, 5

[51] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM
network: A machine learning approach for precipitation
nowcasting. In NeurIPS, pages 802–810, 2015. 2, 3

[52] Ye Yuan and Kris Kitani. Diverse trajectory forecasting with
determinantal point processes. In ICLR, 2020. 3

[53] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-
pretable neural motion planner. In CVPR, pages 8660–8669,
2019. 2

[54] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and
Nanning Zheng. SR-LSTM: State refinement for lstm to-
wards pedestrian trajectory prediction. In CVPR, pages
12085–12094, 2019. 2

[55] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin
Sapp, Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yun-
ing Chai, Cordelia Schmid, Congcong Li, and Dragomir
Anguelov. TNT: Target-driven trajectory prediction. In Con-
ference on Robot Learning, 2020. 3

[56] He Zhao and Richard P Wildes. Where are you heading?
dynamic trajectory prediction with expert goal examples. In
ICCV, pages 7629–7638, 2021. 7

[57] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang,
Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond
efficient transformer for long sequence time-series forecast-
ing. In AAAI, pages 11106–11115, 2021. 6

[58] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and
Anind K Dey. Maximum entropy inverse reinforcement
learning. In AAAI, volume 8, pages 1433–1438, 2008. 2,
5

2251


