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Figure 1. Taken as input the text description, “the figure rises from a lying position and walks in a counterclockwise circle, and then lays
back down the ground”, our approach generates multiple distinct 3D human motions (e.g. the left and middle panels) that are faithful to
the prescribed textual content. The real motion is also presented at the right panel for reference.

Abstract

Automated generation of 3D human motions from text
is a challenging problem. The generated motions are ex-
pected to be sufficiently diverse to explore the text-grounded
motion space, and more importantly, accurately depict-
ing the content in prescribed text descriptions. Here we
tackle this problem with a two-stage approach: text2length
sampling and text2motion generation. Text2length involves
sampling from the learned distribution function of motion
lengths conditioned on the input text. This is followed by
our text2motion module using temporal variational autoen-
coder to synthesize a diverse set of human motions of the
sampled lengths. Instead of directly engaging with pose se-
quences, we propose motion snippet code as our internal
motion representation, which captures local semantic mo-
tion contexts and is empirically shown to facilitate the gen-
eration of plausible motions faithful to the input text. More-
over, a large-scale dataset of scripted 3D Human motions,
HumanML3D, is constructed, consisting of 14,616 motion
clips and 44,970 text descriptions.

1. Introduction
Given a short textual description of a character’s move-

ment as for example, an excerpt from a novel or a script,

we are capable of visualizing the motions in our minds or
even in drawings. The question is, how to automate this pro-
cess by a machine, or in paraphrase, to generate realistic 3D
human motions from text? This is the problem we tackle
with in this paper. As illustrated in Fig. 1, given the in-
put feed of “the figure rises from a lying position and walks
in a counterclockwise circle, and then lays back down the
ground”, our goal is to generate a diverse set of plausible
3D human motion dynamics following precisely the action
types, directions, speeds, timing and styles as prescribed by
the text.This automation process could bring a broad range
of application impacts in AR/VR content creation, gaming,
robotics, and human-machine interaction, to name a few. 1

Meanwhile, existing efforts in generating 3D human mo-
tions from descriptions [1, 4, 21, 32, 44] are sporadic and
the results are far from being satisfactory. Several common
shortfalls are observed: the input text is usually one short
sentence; the task is invariably formulated as determinis-
tic sequence-to-sequence generation, with the synthesized
motions tending to be stationary and lifeless; moreover, the
generated motions are restricted to have the same length; fi-
nally, the sole dataset relied on by existing methods, KIT
Motion-Language (KIT-ML) [31], consists of only 3,010
motion sequences focusing on locomotion actions. In par-
ticular, there are three inherit challenges yet to be addressed.

1Project webpage: https://ericguo5513.github.io/text-to-motion
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First, motions generated from text by the same model are
expected to possess variable lengths. Second, there are usu-
ally multiple ways for a character to behave following the
same textual description. Third, from natural language per-
spective, the input descriptions may have a wide range of
forms, from being short & simple to very long & complex.

To address the aforementioned shortfalls and challenges,
we propose a two-stage pipeline consisting of text2length
sampling and text2motion generation. Text2length esti-
mates the distribution function of visual motion length
grounded on the input text. The role of text2motion is to
generate distinct 3D motions from the input text and the
sampled motion length; this is realized by engaging the tem-
poral variational autoencoder (VAE) framework in its triplet
form of prior, posterior, and generator networks; moreover,
motion snippet code is introduced as the internal represen-
tation in VAE code and throughout our pipeline to charac-
terize the temporal motion semantics, with its role empiri-
cally examined in later ablation studies. Finally, a dedicated
dataset (HumanML3D) is constructed, consisting of 44,970
textual descriptions for 14,616 3D human motions. It cov-
ers a wide range of action types including but not limited
to locomotive actions. Empirical evaluations on both Hu-
manML3D and KIT-ML datasets demonstrate the superior
performance of our approach over existing methods.

Our key contributions are summarized as follows. First,
our work is to our knowledge the first in stochastically gen-
erating 3D motions from text, capable of generating diverse
3D human motions of variable lengths that are realistic-
looking and faithful to the text input. Second, our approach
is flexible to work with input text ranging from simple to
complex forms. This is made possible by the text2length
& text2motion modules, and the proposed motion snippet
codes that are to be detailed in later sections. Finally, a
large-scale human motion dataset is constructed. It contains
a wide range of actions, with each motion sequence paired
with three textual descriptions.

2. Related Work
3D Human Motion Generation. There are several prior
efforts in synthesizing 2D or 3D human motions based on
action category, or from modalities including audio and text.
To be based on action category, an one-hot condition vec-
tor is often engaged in synthesizing pose sequences. In
this space, [5, 43] both apply a two-stage generative adver-
sarial network (GAN) framework to progressively extend
the partial motion sequence with newly generated poses;
the work of [45] instead models the spatiotemporal struc-
tures of human dynamics with a GCN-based GAN; mean-
while, VAE modelling and transformer architecture are pro-
moted by [11, 12, 29] to incorporate temporal dependen-
cies. In terms of audio signal input, as audio is temporally
aligned with its motion output, a common strategy is to em-

ploy a temporal sliding-window in translating the acoustic
feature representation (e.g. MFCC) to individual human
poses using recurrent neural networks (RNNs). In [35], a
Bi-Directional LSTM network is adopted to generate up-
per body gestures from speech input. Similar LSTM-type
models are also examined by [34] to predict upper body dy-
namics from piano and violin recital audios, and in [36] to
capture the music-to-dance mapping. Recent works start to
address the stochastic nature of human dynamics grounded
on audio signals. [17] employs a hybrid model of VAE and
GAN to produce non-deterministic human dancing move-
ments from music. The work of [14] further supports long-
term music-to-dance generation with curriculum training.

Translating text description to human motion is an
emerging topic. Prior efforts such as [10, 21, 32, 44] re-
sort to classical encoder-decoder RNN models, while it is
proposed in [1] to learn a joint embedding space between
natural language and 3D human dynamics. [10] considers
the hierarchical pose structure as well as utilizing a pose
discriminator. These methods however bear undesirable is-
sues, as being deterministic one-to-one processes with fixed
motion length. In contrary, aiming at these issues, our
learned model is shown capable of generating stochastic,
one-to-many sequence mappings of variable lengths.
Video Generation, and Text-based Video Generation.
On generating videos, deep generative models such as
GANs and VAEs have been the most popular choice. For
example, a recurrent structured GAN is presented in MoCo-
GAN [38] to separately model stationary pixels and dy-
namic motions. This is followed by [37] to incorporate
contrastive learning. [8] leverages a VAE with RNN archi-
tecture to stochastically predict future frames based on the
historical video sequence, which is further extended in [42]
to synthesize videos with prescribed start and end frames.

Text-to-video generation is relatively new. To address
such task, GAN frameworks have been recruited in several
efforts including [20] and [25]. This is followed by [6],
where an attention mechanism is additionally engaged to
align local video regions with words in text. Moreover, both
short-time and long-term cross-domain attentive vectors are
utilized in [24] as the inputs to a VAE framework.
Video Captioning. The topic of our work might be con-
sidered as an inverse problem of motion captioning or more
broadly, video captioning. Thus it makes sense to also men-
tion this line of research. Early efforts such as [16] often
resort to predefined sentence templates containing hand-
crafted linguistic rules involving restricted categories of ac-
tion and object. This has been fundamentally changed in
the deep learning era, where we witness significant perfor-
mance boosts by adopting a variety of powerful techniques
including RNNs [30,40], transformer [18], attentive context
modeling [41], memory network [28, 46], GANs [26], and
reinforcement learning [19, 27].
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Figure 2. Approach overview. (a) As a preprocessing step, a dedicated motion autoencoder is trained on our training motion data to
encode a motion sequence into a stream of motion snippet codes, which then could be decoded back into motions. (b) Our training pipeline.
Through text encoder, the attentive word features (watt) are used by VAE networks as illustrated in Fig. 3. The triplet structure of temporal
VAE involving the prior, posterior, and generator networks is employed to process the motion snippet codes (cs) and the reconstructed
ones (ĉs). This leads to the loss terms evaluating the reconstructed pose sequence (Lmot

rec ) and the reconstructed code sequence (Lcode
rec ),

respectively. Due to lack of space, some key ingredients are deferred to be presented in Fig. 3. (c) Our inference pipeline. From the input
text, text2length module is activated to sample an intended motion length. Text features extracted through the text encoder are then fed to
the prior network, yielding a prior distribution. Generator samples latent vectors from the prior distribution and produces a series of motion
snippet codes (ĉs). The pose sequence is finally obtained by decoding the snippet codes from the motion decoder pre-trained in (a).

Language and 3D Human Motion Data. KIT Motion-
Language Dataset [31] is to date the only available dataset
comprising both 3D human motions and their textual de-
scriptions, which consists of 3,911 motion sequences &
6,278 sentences, and is focused on locomotion movements.
Moreover, there are a number of existing datasets of 3D mo-
tion captured human motions, such as CMU Mocap [7], Hu-
man3.6M [15], MoVi [9] and BABEL [33], in the form of
everyday actions and sports movements. However, none of
them possesses language descriptions of the motions.

3. Our Approach

From a text description of M words, X = (x1, ..., xM ),
our goal is to generate a 3D pose sequence, P =
(p1, ...,pT ′), with its length T ′ determined at test time. As
shown in Fig. 2, we start by a preprocessing step to train a
motion autoencoder. This is followed by settling a reason-
able motion length from text (Sec. 3.2), and subsequently
synthesizing motions conditioned on the input text and the
sampled motion length (Sec. 3.3), by introducing an internal
motion representation – motion snippet codes (Sec. 3.1).

3.1. Motion Autoencoder

As the preprocessing step described in Fig. 2(a), an en-
coder E transforms the pose sequence P = (p1, ...,pT ′)
to a motion snippet code sequence, Cs =

(
c1s, ..., c

T
s

)
,

achieved by applying 1-D convolutions over temporal line;
P̂ is then reconstructed with a deconvolutional decoder, D.
Mathematically, this process is formulated as

Cs = E(P ), P̂ = D(Cs). (1)

To avoid foot sliding, our decoder D additionally predict
foot contacts at each frame which are not given to the en-
coder E. It is also necessary to constrain the snippet code
values and the differences of consecutive codes to encour-
age sparsity and temporal smoothness. The final objective
function becomes

LE,D =
∑
t′

∥p̂t′ − pt′∥1 + λspr
∑
t

∥cts∥1 + λsmt
∑
t

∥cts − c
t−1
s ∥1.

(2)

The autoencoder consists of two-layer convolutions with
filter size of 4 and stride 2, whose structure is detailed
in supplementary file. As a result, a motion snippet code
cts has a 8-frame receptive field, amounting to around 0.5
second for 20 frame-per-second (fps) pose streaming; it
also leads to a more compact internal code sequence with
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Figure 3. Structure of our temporal VAE for text2motion gener-
ation: (a) generator Ft

θ , and (b) posterior network Ft
ϕ. Prior net-

work Ft
ϕ has the same architecture as Ft

ϕ except different inputs.

T = T ′

4 . Compared to individual poses, snippet code
captures temporal semantic information that is crucial in
smooth and faithful motion generation.

3.2. Text2length Sampling

As shown in Fig. 2(c), the purpose of our text2length
sampling module is to approximate the probability distribu-
tion of discrete motion length T conditioned on text, such
that at inference stage, a discrete time length T can be ob-
tained by sampling from this learned distribution function,
p(T |x1, ..., xM ) given an input text. This module thus en-
ables our approach in generating motions of distinct lengths.

This is a typical density estimation problem with many
practical options, among them we adopt the neural network
scheme of pixelCNN [39]. Since a motion sequence is in-
ternally represented in our work as a series of snippet codes,
our aim specifically boils to deciding the length of snippet
codes. In inference, a text encoder extracts sentence-level
features from the input text, which are then fed into an MLP
layer with softmax activation, producing a multinomial dis-
tribution over discrete length indices {1, 2, ..., Tmax}. Here
an increment of 1 corresponds to 4 pose frames, and setting
Tmax = 50 corresponds to 200 frames, amounting to 10
seconds for a 20 fps video. Its training objective is defined
by the cross entropy loss.

3.3. Text2motion Generation
Our text2motion generator contains a text encoder, and a

temporal VAE model consisting a triplet networks of gener-
ator Fθ, posterior Fϕ and prior Fψ , as in Fig. 2(b). The text
encoder extracts both the word-level w1:M and sentence-
level s features from input text; our VAE generates motion
snippet codes c1:Ts one by one with a recurrent architec-
ture: at time t, our posterior network Fϕ approximates the
posterior distribution qϕ

(
zt|c1:ts , c

)
conditioned on partial

code sequence c1:ts as well as word and sentence features
c = (w1:M , s, ...). Instead of relating the posterior dis-
tribution to a prior normal distribution N (0, I) as used by
the literature, here it is related to a learned prior distribu-
tion pψ(zt|c1:t−1

s , c), which is obtained by our prior net-
work Fψ , based on the previous state c1:t−1

s and conditions

c. Overall, our VAE is trained by maximizing the following
variational lower bound,

log p(Cs) ≥
T∑
t=1

[
Eqϕ(zt|c1:ts ,c) log pθ(c

t
s|c

1:t−1
s , z1:t, c) (3)

− λKLDKL

(
qϕ(zt|c1:t

s , c) ∥ pψ(zt|c1:t−1
s , c)

)]
.

The first term is to reduce reconstruction error Lrec, while
the second term penalizes the KL-divergence LKL between
the posterior and the prior distributions.
Text Encoder. In addition to the word embeddings, we pro-
pose to incorporate the part-of-speech (POS) tags of words
into text encoder. POS tag explicitly indicates the word cat-
egories, thus facilitates the localization of important words
in a sentence. Furthermore, as in Fig. 2(b), an external
dictionary is manually constructed to collect motion-related
words and categorize them into four types: direction, body
part, object and action. These one-hot word tags are fed
into an embedding layer and added to word embedding
vectors. Our text encoder is realized in the form of bi-
directional GRUs, which take these embedding vectors as
inputs and produces both sentence feature s and word fea-
tures w1:M .The former provides global contextual informa-
tion and is used to initialize the hidden units of VAE; the
latter serves as partial inputs at each time step in the form
of local word attention, to be discussed next. The practical
structure of text encoder is detailed in supplementary file.
Local Word Attention (Fatt). Attentions assigned to each
word may vary in the process of predicting motions from
text. This is addressed by our local word attention unit Fatt
that engages and interacts word features w1:M with motion
context memory hθ (i.e. generator hidden unit) as depicted
in Fig. 3. The process of local word attention can be de-
scribed as

Q = ht−1
θ WQ,K = w1:MWK ,V = w1:MWV ,

wt
att = softmax

(
QKT

√
datt

)
V, (4)

where WK ,WV ∈ Rdw×datt and WQ ∈ Rdh×datt are
trainable weights, with dh, dw and datt the number of chan-
nels in generator hidden unit ht−1

θ , word features w1:M and
attentive layer respectively. wt

att is the multi-modal atten-
tive vector obtained as time t.
Time-to-Arrival Positional Encoding. In generating mo-
tions of variable lengths, it is important to aware where we
are and how far to go. This motivates us to encode the time-
to-arrival information T−t with positional encoding at each
time step, as in Fig. 3. It is formulated as

PET−t,2i = sin

(
T − t

10000
2i
d

)
,

PET−t,2i+1 = cos

(
T − t

10000
2i
d

)
,

(5)
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where the second subscript of the vector PE denotes the di-
mension index; d is the dimensionality of input embedding.
Architecture of Temporal VAE. Fig. 2(b) illustrates the
overall architecture of our temporal VAE for text2motion
generation; this is followed by Fig. 3, which brings a zoom-
in view of the generator and posterior network structures.

At time t, word features first interacts with generator
memory unit ht−1

θ to yield the attentive vector wt
att. Now

concatenating the present and previous snippet codes (cts &
ct−1
s ), and the attentive vector wt

att to form an input vector,
which is fed into a multi-layer perceptron (MLP); its output
is summed with time-to-arrival positional encoding PET−t,
which then passes through a GRU layer to produce the pos-
terior distribution N (µϕ(t), σϕ(t)). Yielding prior distribu-
tion N (µψ(t), σψ(t)) follows the same process, except not
taking cts as input. In training, the generator learns to re-
construct current snippet code ĉts from the input of ct−1

s ,
wt
att, and a noise vector zt sampled from the posterior dis-

tribution. In testing, as the cts from real data is unavail-
able, zt is instead sampled from the estimated prior distri-
bution pψ(zt|c1:t−1

s , c) (Fig. 2(c)). Finally, the output pose
sequence p̂1:T ′ is produced by decoding the internal snippet
code sequence c1:Ts with the pre-trained motion decoder D
(Sec. 3.1). In text2motion, motion decoder D is fine-tuned
with the rest networks. Detailed structure of networks are
provided in the supplementary file.
Final Objective. Our final objective function for
text2motion generation becomes

L = Lcoderec + λmotLmotrec + λKLLKL, with

Lcoderec =
∑
t

∥ĉts − cts∥1,

Lmotrec =
∑
t′

∥p̂t′ − pt′∥1, (6)

LKL =
∑
t

KL(N (µϕ(t), σϕ(t))∥N (µψ(t), σψ(t))).

Training Scheme. To address the variable length sequence-
to-sequence generation task, our training process utilizes
both curriculum learning [3] and scheduled sampling [2]
strategies, as follows. Starting from aiming to generate first
Tcur snippet codes in sequence, we optimize our model on
training data that owns snippet code lengths equal or longer
than Tcur. As long as the reconstruction loss on the vali-
dation starts raising, then we move on to the next stage by
appending one more snippet code in the target sequence ;
the complexity of the task is progressively increased at ev-
ery stage till the maximum time step Tmax of prediction is
reached (i.e, Tcur = Tmax). In addition, to bridge the gap
of training and inference for sequence prediction, teacher
forcing is applied for the entire target snippet code sequence
c1:Ts with probability of ptf , which means the ground-truth
snippet code is taken as input for the generation at next step.

Dataset #Motions #texts Duration Vocab.

HumanML3D 14,616 44,970 28.59h 5,371
KIT-ML [31] 3,911 6,278 10.33h 1,623

Table 1. Comparisons of 3D human motion-language datasets.

Accordingly, the generated snippet code will instead serve
as the input with probability 1− ptf . As a boundary condi-
tion, c0s is a constant vector that encodes mean poses using
motion encoder E.

4. Our HumanML3D Dataset

Our HumanML3D dataset originates from a amalgama-
tion of motion sequences from the HumanAct12 [12] and
AMASS [23] datasets, two large-scale datasets of 3D hu-
man motion captures that are publicly accessible. They con-
tains motions from a variety of human actions, such as daily
activities (e.g., ’walking’, ’jumping’), sports (e.g, ’swim-
ming’, ’karate’), acrobatics (e.g, ’cartwheel’) and artistry
(e.g, ’dancing’). Unfortunately, these datasets come with-
out textual descriptions of the motions.

Several processing steps take place for data normaliza-
tion, as follows. Motions are scaled to 20 FPS, and those
longer than 10 seconds are randomly cropped to 10-second
ones; they are then retargeted to a default human skeletal
template and properly rotated to face Z+ direction initially.
This is followed by a textual annotation process via the
Amazon Mechanical Turk (AMT), where native English-
speaking turkers with average work approval rating above
92% are hired and asked to describe a motion with at least
5 words. We collect 3 text descriptions for each motion clip
from distinct workers. A manual postprocessing step ensues
to filter away abnormal textual descriptions.

As a result, our HumanML3D dataset becomes to
our knowledge the largest and most diverse collection of
scripted human motions, consisting of 14,616 motions and
44,970 descriptions composed by 5,371 distinct words. The
total length of motions amounts to 28.59 hours, in which the
average motion length is 7.1 seconds. The minimum and
maximum duration are 2s and 10s respectively. In terms of
the textual descriptions, their average and median lengths
are 12 and 10, respectively. A tabular comparison of our
HumanML3D versus the only existing motion-text dataset,
KIT Motion-Language [31] is presented in Table 1.

5. Experiments

Empirical evaluations are carried on both the in-house
HumanML3D and KIT-ML [31] datasets. We augment both
datasets by mirroring motions and properly replacing cer-
tain keywords in the descriptions (e.g. ’left’→ ’right’). Both
datasets are split to training, test and validation sets with
0.8 : 0.15 : 0.05 ratio. In training, all motions are trimmed
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Methods R Precision↑ FID↓ MultiModal Dist↓ Diversity→ MultiModality↑Top 1 Top 2 Top 3

Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Seq2Seq [21] 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
Language2Pose [1] 0.246±.002 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
Text2Gesture [4] 0.165±.001 0.267±.002 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
MoCoGAN [38] 0.037±.000 0.072±.001 0.106±.001 94.41±.021 9.643±.006 0.462±.008 0.019±.000

Dance2Music [17] 0.033±.000 0.065±.001 0.097±.001 66.98±.016 8.116±.006 0.725±.011 0.043±.001

Ours w/ real length 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

Ours 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 9.175±.083 2.219±.074

Table 2. Quantitative evaluation on the HumanML3D test set. All baselines directly use real motion lengths, while our approach (Ours) instead resorts to
the sequence length sampled from the text2length module. ± indicates 95% confidence interval, and → means the closer to Real motions the better. Bold
face indicates the best result, while underscore refers to the second best.

Methods R Precision↑ FID↓ MultiModal Dist↓ Diversity→ MultiModality↑Top 1 Top 2 Top 3

Real motions 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Seq2Seq [21] 0.103±.003 0.178±.005 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
Language2Pose [1] 0.221±.005 0.373±.004 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Text2Gesture [4] 0.156±.004 0.255±.004 0.338±.005 12.12±.183 6.964±.029 9.334±.079 -
MoCoGAN [38] 0.022±.002 0.042±.003 0.063±.003 82.69±.242 10.47±.012 3.091±.043 0.250±.009

Dance2Music [17] 0.031±.002 0.058±.002 0.086±.003 115.4±.240 10.40±.016 0.241±.004 0.062±.002

Ours w/ real length 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

Ours 0.361±.006 0.559±.007 0.681±.007 3.022±.107 3.488±.028 10.72±.145 2.052±.107

Table 3. Quantitative evaluation on the KIT-ML test set. All baselines directly use real motion lengths, while our approach (Ours) instead resorts to the
sequence length sampled from the text2length module. ± indicates 95% confidence interval, and → means the closer to the real motion the better.

such that numbers of frames are multiples of 4. We apply
the same pose processing steps as in [13].
Pose Representation. A pose p in our work is defined
by a tuple of (ṙa, ṙx, ṙz, ry, jp, jv, jr, cf ), where ṙa ∈ R
is root angular velocity along Y-axis; (ṙx, ṙz ∈ R) are
root linear velocities on XZ-plane; ry ∈ R is root height;
jp ∈ R3j , jv ∈ R3j and jr ∈ R6j are the local joints posi-
tions, velocities and rotations in root space, with j denoting
the number of joints; cf ∈ R4 is binary features obtained
by thresholding the heel and toe joint velocities to empha-
size the foot ground contacts. In particular, the 6D con-
tinuous rotation representation of [47] is adopted. Motions
in HumanML3D dataset follows the skeleton structure of
SMPL [22] with 22 joints. Poses have 21 joints in KIT-ML.

Implementation details are provided in appendix file.

5.1. Experiment Results

5.1.1 Evaluation Metrics and Baselines

Evaluation Metrics from [12] are adopted here, which in-
clude Frechet Inception Distance (FID), diversity and mul-
timodality. For quantitative evaluation, a motion feature
extractor and text feature extractor is trained under con-
trastive loss to produce geometrically close feature vectors
for matched text-motion pairs, and vice versa. Further ex-
planations of aforementioned metrics as well as the spe-

cific textual and motion feature extractor are relegated to
the supplementary file due to space limit. In addition, the
R-precision and MultiModal distance are proposed in this
work as complementary metrics, as follows. Consider R-
precision: for each generated motion, its ground-truth text
description and 31 randomly selected mismatched descrip-
tions from the test set form a description pool. This is fol-
lowed by calculating and ranking the Euclidean distances
between the motion feature and the text feature of each de-
scription in the pool. We then count the average accuracy at
top-1, top-2 and top-3 places. The ground truth entry falling
into the top-k candidates is treated as successful retrieval,
otherwise it fails. Meanwhile, MultiModal distance is com-
puted as the average Euclidean distance between the motion
feature of each generated motion and the text feature of its
corresponding description in test set.
Baseline Methods. We compare our work to three state-
of-the-art methods: Seq2Seq [21], Language2Pose [1] and
Text2Gesture [4]. As with all existing methods, they are
deterministic methods. Considering the stochastic nature of
our task, we adapt two non-deterministic methods from re-
lated fields for more fair and thorough evaluations: MoCo-
GAN [38] and Dance2Music [17]. The former is widely
used for conditioned video synthesis, and the latter pro-
duces 2D dancing motion sequences from audio signals.
Proper changes are made to allow these methods generat-
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Figure 4. Visual results of our approach vs. those of Language2Pose [1]. Given each input description, we show two generated motions from our
approach, and one motion from Language2Pose (since it is a deterministic method). As our generated motions are of variable length, only key frames from
each sequence are displayed. The complete clips are in the demo video. More results are in the supplementary file.
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Figure 5. Quantitative evaluation of user preference among the generated
motions. For each comparison method, a color bar (from blue to red) indi-
cates the percentage of its preference levels (from least to most preferred).

ing 3D motions from text.

5.1.2 Quantitative Evaluation

Table 2 and Table 3 present the quantitative results on Hu-
manML3D and KIT-ML datasets, respectively. For fair
comparison, each experiment is repeated 20 times, and a
statistical interval with 95% confidence is reported. Since
all baseline methods directly use the ground-truth motion
length in generating a new motion, for fair comparison, we
also consider a variant of our approach by removing the
text2length sampling module (i.e. ours w/ real length).

The high R precision of real motions evidences the re-
liability of the proposed R-precision metric, which sets a
upper performance limit for all methods. Overall, we have

the following observations from Table 2 and Table 3. First,
our approach clearly outperform all comparison methods by
a significant margin, over all metrics and on both datasets.
Seq2Seq [21] and Text2Gesture [4] directly map textual
data to human dynamics by their neural machine transla-
tion architecture of encoder-decoder and transformer; they
however find difficulty in retaining the sense of realis-
tic motions during their processes. This results in low
motion-based text retrieval precision, and high FID val-
ues. Language2Pose [1] performs better on generation
quality by incorporating a co-embedding space, yet the re-
sults are very far from real motions. The motions gener-
ated by non-deterministic methods of MoCoGAN [38] and
Dance2Music [36] are unfortunately of severely low qual-
ity, as manifested by their low diversity and multimodality
scores – a result of being unfaithful to the input text. On
the contrary, the variant of our approach directly using real
motion length (Ours w/ real length) achieves the optimal
performance on almost all metrics. Our default approach
that uses text2length sampling (Ours) possesses a compa-
rable performance in R-precision and FID scores, yet it is
more capable of synthesizing diverse motions, as reflected
especially in the diversity & multimodality scores.

User Study In addition to the aforementioned objective
evaluations, a Crowd-sourced subjective evaluation via
Amazon Mechanical Turk is conducted concerning the vi-
sual perceptual quality of the generated motions. For each
comparison method, motions are generated using 50 de-
scriptions randomly selected from the test set. For each
description, the results of different methods are shown to
5 AMT users, who are asked to rank their preference over
these motions based on the motion realism and the magni-
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Methods R Precision↑ FID↓Top 1 Top 2 Top 3

Ours 0.455±.003 0.636±.003 0.736±.002 1.087±.021

w/o SnC 0.370±.002 0.538±.003 0.642±.003 1.200±.027

w/o Att 0.396±.002 0.570±.002 0.674±.003 1.833±.032

w/o PoS 0.443±.003 0.622±.003 0.723±.003 1.157±.016

w/o PoE 0.444±.005 0.627±.003 0.729±.002 1.229±.020

Table 4. Ablation study on the HumanML3D dataset, with SnC denoting
motion snippet code, Att the local word attention, PoS the Part-of-Speech
tag, and PoE the Positional Encoding.

tude they are aligned to the intended text descriptions. Only
AMT users with master recognition are considered.

The preference results are shown in Fig. 5. Over-
all our approach is most preferred by the users; mean-
while, two non-deterministic methods are least preferred,
as their motions exhibit severely distortions; Seq2Seq and
Text2Gesture gain comparably more positive scores from
users; Language2Pose becomes the second most preferred.
Moreover, a significant portion (around 72%) of motions
generated by our approach are considered at top-2 by users,
i.e. being on par with or only next to the real human mo-
tions. This user study brings strong evidence of our ap-
proach capable of synthesizing visually realistic motions.

5.1.3 Qualitative Evaluation

Fig. 4 displays qualitative comparisons of our approach vs.
Language2Pose [1], the best-performing baseline. Motions
from other comparison methods are too distorted to be ren-
dered with the SMPL human shapes [22]. Language2Pose
sometimes captures partial concepts (e.g., sit down) in the
input text. It however fails to understand the global tex-
tual information. Moreover, the generated motions tend to
be frozen after a short while. In contrast, our approach is
capable of generating visually appealing motions which ac-
curately reflect the fine details in text descriptions, in terms
of the gesture, actions, body parts and timing. Furthermore,
from the same input text, our generated motions are suffi-
ciently diverse. More results are presented in the appendix.

5.1.4 Ablation Analysis, Text2length Results, Failure
Cases and Limitations

Table 4 quantifies the effects of different components in
our approach on HumanML3D dataset. A sharp drop of
performance is observed when snippet code (i.e. SnC) or
word attentions (i.e. Att) is removed, with a decreasing R-
Precision of over 6%. On the contrary, the influence of po-
sitional encoding (i.e. PoE) and part-of-speech (i.e. POS)
are relatively less significant, given a drop of R-precision
around 2%. In Fig. 6, a visual comparison of synthesized
motions from ours, ours w/o SnC, and ours w/o Att from
the same input text is shown. While snippet codes are not

Figure 6. Visual comparison of motion results generated by ours, ours
w/o SnC, and our w/o Att, all provided with the same description. Refer to
supplementary file for more examples.

applied, the resulting motion appears to be visually plausi-
ble and context-aware at the beginning; it however fails to
faithfully follow the text description as time goes on. This
may be attributed to the lack of characterization in temporal
dependencies. Similar phenomenon is observed in motions
from ours w/o word attentions. On the other hand, the result
of our approach aligns sufficiently with the textual concepts
throughout. Due to space limit, we relegate further ablation
results to the supplementary video, the empirical results of
the learned length distribution by text2length, failure cases
and discussion of limitations to the supplementary file.

6. Conclusion and Outlook
Our paper looks into an emerging research problem of

generating 3D human motions grounded on natural lan-
guage descriptions, where we especially emphasize on di-
verse and natural motion generation. It leads to our two-
stage pipeline, where the text2length module sampled from
the estimated motion length distribution given text descrip-
tion; the text2motion module generates motions of sampled
motion length from input text, accomplished by our tempo-
ral VAE. A large-scale human motion-language dataset is
constructed, with the expectation of facilitating the devel-
opment and evaluation of new methods in the community.
Extensive quantitative and qualitative experiments demon-
strate the effectiveness of our approach. Future plan in-
cludes investigation of ways to simplify the set of evaluation
metrics, and the inverse way of our task, motion captioning.
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