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Abstract

The huge burden of computation and memory are two
obstacles in ultra-high resolution image segmentation. To
tackle these issues, most of the previous works follow the
global-local refinement pipeline, which pays more atten-
tion to the memory consumption but neglects the inference
speed. In comparison to the pipeline that partitions the
large image into small local regions, we focus on infer-
ring the whole image directly. In this paper, we propose
ISDNet, a novel ultra-high resolution segmentation frame-
work that integrates the shallow and deep networks in a
new manner, which significantly accelerates the inference
speed while achieving accurate segmentation. To further
exploit the relationship between the shallow and deep fea-
tures, we propose a novel Relational-Aware feature Fu-
sion module, which ensures high performance and robust-
ness of our framework. Extensive experiments on Deep-
globe, Inria Aerial, and Cityscapes datasets demonstrate
our performance is consistently superior to state-of-the-
arts. Specifically, it achieves 73.30 mIoU with a speed
of 27.70 FPS on Deepglobe, which is more accurate and
172 × faster than the recent competitor. Code available at
https://github.com/cedricgsh/ISDNet.

1. Introduction
Semantic segmentation is a basic task that has been stud-

ied for decades. Unlike other vision tasks, such as image
classification, segmentation needs to deal with small ob-
jects and fine boundaries that heavily rely on large-scale in-
put images [1, 9, 16, 17, 24, 30, 40]. Especially, ultra-high
resolution image with millions or even billions of pixels
plays a vital role in the fields of remote sensing [34,41,42],
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Figure 1. Comparison of different model predictions on the ultra-
high resolution image. (a) Input image. (b) The corresponding
ground truth. (c) Prediction of our efficient segmentation method.
(d) Prediction of a deep network input with the downsampled im-
age. (e) Prediction of a shallow network input with the full-scale
input. (f)Prediction of the latest ultra-high resolution segmenta-
tion method. Our method outperforms them in both speed and
accuracy.

autonomous driving [13, 25, 27], medical imagery applica-
tions [15, 19, 28].

However, due to memory and computational limitations,
general segmentation methods cannot well handle ultra-
high resolution images input. Existing segmentation meth-
ods mainly focus on designing a neural network architec-
ture for regular resolution images, but overlook the feasi-
bility of larger scale input. As shown in Figure 1 (d), a
deep and complicated model [1] needs to downsample the
input image to meet the memory and speed requirements,
but some detailed information is discarded during down-
sampling, resulting in poor performance. Although a shal-
low and lightweight model [11] can be adapted to process
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Figure 2. Comparison for the schemes for ultra-high resolution image segmentation. (a) Design a lightweight model architecture to fit large
scale images. (b) Global inference with multiple local patches refinement. (c) Our method by integrating the shallow and deep networks
for the input of entire and downsampled image.

larger scale input as shown in Figure 1 (e), the performance
is poor since it is hard to capture long-range and high-level
semantic cues using a simple architecture.

Recently, some methods specially designed for ultra-
high resolution segmentation tasks have been proposed [3,
4, 18, 22, 33]. These methods mainly follow the principle
of global and local refinement. First, the entire image is in-
put into the global network, and then the uncertain regions
are refined through the local network multiple times. Al-
though these methods require a lower memory consumption
and reach higher accuracy in general, their inference speed
is very slow. For example, Figure 1 (f) shows a recent
method FCtL [22] that requires ∼8s to infer a image with
2448 × 2448 resolution and ∼26s for 5000 × 5000 resolu-
tion, which is intolerable in most applications.

To address the above limitations, we aim at achieving
a better balance among accuracy, memory, and inference
speed for ultra-high resolution segmentation. Instead of the
scheme of global and local refinement, we propose ISDNet,
a novel framework that infers the segmentation for ultra-
high resolution inputs end-to-end. Inspired by the bilateral
architecture [36, 37] widely used in lightweight segmenta-
tion model design, we proposed a framework to integrate
shallow and deep networks for efficient segmentation. Dif-
ferent from the typical bilateral models which combine a
shallow and a deep branch for the same input to model the
spatial and context features respectively, we propose to in-
put a different scale of input for shallow and deep branches.
Besides, we empirically find that inputting heterogeneous
information for shallow and deep branches and constructing
an auxiliary learning task for another domain (e.g., super-
resolution) can further help the training of our method.

For intuitive comparison, the prototype of three schemes
for ultra-high resolution segmentation are shown in Fig-
ure 2. In summary, the contributions of this paper include:

• We propose a novel framework to integrate shallow

and deep networks for efficient ultra-high resolution
image segmentation. Besides, we empirically observe
that heterogeneous inputs can improve accuracy.

• We present a Relation-Aware feature Fusion (RAF)
module , which fuses features from shallow and deep
branches based on their relationship along with auxil-
iary super-resolution and structure distillation losses to
enhance the features learned from the deep branch.

• Extensive experiments show that our method achieves
remarkable results on Deepglobe [7], Inria Aerial [26]
and Cityscapes [6] datasets, while attaining both fast
speed and low memory consumption in inference.

It is worth noting that our shallow and deep integration is
a general framework, focusing particularly on efficient large
scale segmentation, which can be leveraged to combine lots
of general semantic segmentation networks including recent
transformer based methods e.g. SegFormer [35].

2. Related works
2.1. Ultra High-resolution Segmentation

GLNet [3] proposes a collaborative global-local frame-
work that combines the context of the global branch and de-
tails of the local branch to improve the segmentation results.
Based on the GLNet, PPN [33] presents a classification
branch to select important local patches to fuse with global
images. Besides, CascadePSP [4] employs a general cas-
cade structure to refine the coarse segmentation map both
globally and locally. Similarly, MagNet [18] introduces
a novel multi-scale architecture. The output rough result
will be progressively refined from the coarsest to the finest
scale. Recently, FCtL [22] leverages the locality-aware con-
textual correlation and the adaptive feature fusion scheme,
which associates and combines local-context information to
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Figure 3. Pipeline of the proposed ISDNet for high-resolution image segmentation. Given a image I0 ∈ RH×W×3, we first decompose
it into a Laplacian pyramid (e.g., n = 2). Let Ii, Hi ∈ R

H
2i

×W
2i

×3
(i = 0, 1, ..., n) denote RGB images and high-frequency residuals,

respectively. For the high-frequency residual Hi , we process it by the shallow branch, marked by red arrows. Blue arrows represent the
deep branch takes the downscale RGB image I2. Then the RAF module fuses the feature from different branches. Green arrows stand for
the optimization loss functions for each module. Dotted lines and bounding boxes represent modules only utilized in training.

strengthen local segmentation. However, the above ultra-
high resolution segmentation methods crop input images
into patches towards low GPU memory, which leads to re-
dundant calculation and very slow inference speed. In con-
trast, without cropped patches, our method directly pro-
cesses the full-scale and downsampled inputs by integrat-
ing shallow and deep networks, significantly accelerating
the inference speed.

2.2. Generic Semantic Segmentation

With the development of convolution neural networks,
FCN-based [25] methods [8, 10, 12, 16, 24] achieve impres-
sive performance on various benchmarks. Deeplabv3 [1]
employs an atrous spatial pyramid pooling module to cap-
ture multi-scale context. PSPNet [40] devises a pyramid
pooling to capture both local and global context information
in the dilation backbone. However, most approaches require
a large computation costs due to the high-resolution fea-
ture and the complicated network connections. To address
these limitations, ICNet [39] employes a multi-scale image
cascade structure to achieve a good speed-accuracy trade-
off. Besides, BiSeNetV1 [37] proposes a two-stream paths
for low-level details and high-level context information, re-
spectively. On the basis of BiSeNetV1 [37], STDC [11]
presents a low-latency backbone to achieve fast speed and
high accuracy. Moreover, it also introduces a boundary map
as supervision so that the shallow stage of backbone can ob-
tain edge-aware feature representation. However, the above
methods fail to handle ultra-high resolution segmentation

well. Differently, we design a novel ultra-high resolution
segmentation framework with the shallow and deep net-
works and a novel RAF module, achieving state-of-the-art
segmentation accuracy.

3. Methodology
3.1. Overview

In this method, we propose a novel framework to address
the efficiency problem of ultra-high resolution segmentation
methods. As shown in Figure 3, a deep network takes down-
sampled image to extract high-level semantic information,
while a shallow network directly processes full-scale inputs
with enhanced spatial details (Section 3.2). Besides, a novel
feature fusion module (Section 3.3) is introduced to fuse
these branches based on their relationship. Moreover, we
employ auxiliary segmentation and super-resolution tasks
to learn better features for the deep branch (Section 3.4).

3.2. Architecture

Typically, higher resolution or deeper networks [1] lead
to better performance. However, they are also slow and
memory-intensive in inference. Previous methods re-
duce inference memory by combining cropped and down-
sampled inputs, but this solution is still slow due to the fu-
sion of cropped patches [3, 22]. To further speed-up infer-
ence, we design a bilateral architecture, integrating a pair of
deep and shallow networks, denoted by D and S, respec-
tively. Since the shallow branch S has fewer layers and
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faster inference speed, its input does not need any down-
sampling or cropping. We input full resolution images to S
to extract detailed spatial information. To further force the
shallow branch to learn the complementary spatial details,
we replace RGB images with high-frequency residuals as
inputs. High-frequency residuals {H}ni=0 (e.g. n = 1) are
computed by Laplacian pyramid:

Hi = gi (I)− Upsample (gi+1 (I))) , (1)

where I represents the full scale image, g(.) denotes guas-
sian blur and i is the number of levels in the pyramid.

The outputs of shallow branch (S) are two feature maps
with 1

8 and 1
16 resolution of the original image. For the deep

branch D, since the inference is slow for high-resolution im-
ages, we input downsampled RGB images, similar to previ-
ous approaches [3, 4], and outputs 1

32 feature map which
extracts high-level semantic information. Different from
[3, 4], to better fuse this branch’s features with the detailed
shallow branch, during training, we introduce an auxiliary
segmentation head, a super-resolution head, and a structure
distillation loss, for deep supervision of this branch (Sec-
tion 3.4), while these modules are not used in inference.

The three feature maps extracted from these two
branches are then fused by a cascade of feature fusion mod-
ules (Section 3.3). Lastly, a standard segmentation head
produces the final prediction from the fused feature map.

3.3. Relation-Aware feature Fusion

Common approaches employ addition or concatenation
[3] to fuse features from different branches. Some methods
[11, 37] apply attention mechanism to re-weight different
channels, for each feature map separately. However, it is
unreasonable to assume that features from deep and shallow
branches contribute equally to feature fusion.

Therefore, we introduce Relational-Aware feature Fu-
sion (RAF), to exploit the relationship between the shal-
low feature (detailed spatial information) and the deep fea-
ture (high-level semantic information) (Figure 4). Let Fs ∈
RC×Hs×Ws , Fd ∈ RC×Hd×Wd denote feature maps from
shallow and deep networks, respectively. First, channel-
wised attention att is computed as follows:

att = fc (GAP (F )) . (2)

Thus, attention vectors atts, attd ∈ RC are generated for
Fs, Fd, respectively. atts, attd are then orderly divided into
k groups with length r [23], denoted by Gs, Gd ∈ Rk×r.

Then, we define the relationship matrix R ∈ Rk×k be-
tween Gs and Gd by inner product for each group pairs:

R = GsG
T
d . (3)

Define modulation factor M ∈ RC as:

M = σ(att+ αfc(flatten(R))), (4)
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Figure 4. Illustration of Relation-Aware Feature Fusion module.
Blue and red represent feature maps produced by deep and shallow
branches, respectively.

where σ is sigmoid function and α is a learnable parameter.
After that, the fused feature Ffusion is computed as fol-

lows:

Ffusion = Ms · Fs + Upsample(Md · Fd). (5)

where · denotes element-wise multiplication.

3.4. Loss Functions

Segmentation loss. The standard cross-entropy loss is used
for the final segmentation results (LSEG) and the auxiliary
segmentation head after the deep branch (LAUX ).
Super-resolution loss. The deep branch uses low-
resolution images as input, thus producing noisy features,
especially around boundaries. To learn a more accurate rep-
resentation, we add a super-resolution head to reconstruct
the original image I0. The common mean squared error
loss LSR is used to supervise the reconstructed image Irec:

LSR = ∥I0 − Irec∥22 . (6)

Structure distillation loss. Directly adding the above
super-resolution task without interaction brings limited im-
provement. To strengthen the interaction between the super-
resolution and semantic segmentation tasks, inspired by
[31], we propose to distill structural information from the
last layer of the super-resolution head, to strengthen the
deep branch feature. Specifically, we denote by Fd the deep
branch feature, and Fsr the super-resolution head feature
down-sampled to the same resolution as Fd, the structure
distillation loss LSD is defined as follows:

LSD =
∥∥FT

d Fd − FT
srFsr

∥∥ . (7)

Overall loss. The overall loss L is a weighted combination
of all above losses:

L = LSEG + λ1LAUX + λ2LSR + λ3LSD. (8)

Note that both the super-resolution head and the segmenta-
tion head for the deep branch are only used in training.
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4. Experimental Results

We first introduce the datasets and implementation de-
tails. Then, we make a contrastive analysis with other
methods. We adopt mean of class-wise intersection over
union (mIoU), memory consumption, and Frames-per-
second (FPS) as the main metrics. Finally, we discuss the
impact of each component in our proposed approach.

4.1. Datasets

To evaluate the proposed method, we carry out compre-
hensive experiments on two widely used ultra-high resolu-
tion image segmentation datasets: DeepGlobe [7] and Inria
Aerial [26]. In addition, we use a popular generic dataset
Cityscapes [6] to verify the generality of our method.

DeepGlobe. The DeepGlobe dataset contains 803 im-
ages with 2448 × 2448 resolution. It contains 7 classes of
landscape regions, in which the class named ”unknown” is
not considered in the evaluation. We follow the protocol
as [3], by splitting images all of the images into training,
validation and test set with 455, 207 and 142 images re-
spectively.

Inria Aerial. The Inria Aerial dataset provides 180 im-
ages with 5000 × 5000 resolution and dense annotations
with a binary mask for building and non-building areas.
Following [3], we split images into training, validation and
test set with 126, 27 and 27 images respectively.

Cityscapes. The Cityscapes dataset is a popular generic
dataset for semantic segmentation, which has 5,000 fine an-
notated images with 1024× 2048 resolution. We follow the
official data split for our experiments, which contains 2,975
images for training, 500 images for validation and the rest
1525 images for testing.

4.2. Implementation Details

Our method integrates the deep and shallow models,
which can be leveraged to combine lots of general se-
mantic segmentation networks. Without specifical state-
ment, we employ DeepLabv3 [1] with ResNet18 [14] as
the deep branch, in which the segmentation head will be
discarded during the inference. Besides, we utilize a re-
cent lightweight model STDC [11] as the shallow branch,
in which only the first four stages are used. We initialize
both branches by the corresponding pretrained models on
ImageNet. It is worth noting that we copy the weights 2
times for the first layer in the pretrained model to match the
6 channels heterogeneous input for the shallow branch. We
use λ1 = 1, λ2 = 0.1, λ3 = 1 for all experiments.

We adopt the mmsegmenation [5] toolbox as our code-
base and follow the default augmentations without bells and
whistles. All parameters are optimized by SGD with mo-
mentum 0.9. The initial learning rate is configured as 10−3

with the polynomial decay parameter of 0.9, together with

the maximum iteration number set to 40k, 80k and 160k for
Inria Aerial, DeepGlobe and Cityscapes respectively. All
experiments use a batch size of 8 for training on a DGX-1
workstation with Tesla V100 GPUs. We use the command
line tool “gpustat” to measure the GPU memory. Mem-
ory and Frames-per-second (FPS) are measured on a RTX
2080Ti GPU with a batch size of 1. 1

4.3. Experiments on the DeepGlobe Dataset

We first apply our framework to DeepGlobe [7], an aerial
dataset with ultra-high resolution images. Due to the diver-
sity of land cover types and the high density of annotations,
this dataset is very challenging.

Firstly, we compare our method with several generic
and specifically designed segmentation methods. Table 1
shows comparison results. On the one hand, since generic
methods are not suitable to input images with a large scale,
there are two common ways to segment large scale images
for generic models: (1) Global Inference, which train and
test the model on a downsample scale. (2) Local Infer-
ence, which train and test the model on cropped images, re-
quire multiple times inference then merge local results. On
the other hand, we also compare with methods specifically
for ultra-high images, denoted as UHR Methods, including
GLNet [3], MagNet [18] and FCtL [22] etc.

Compared with approaches in Table 1, our method not
only achieves the highest mIoU, but also attains a better bal-
ance among accuracy, speed and memory. Concretely, there
are two critical observations: 1) Processing patches will in-
crease inference time. Recent UHR methods require abun-
dant refinement on uncertain regions, which limits the infer-
ence speed. Besides, for generic methods, local inference
need to process more pixels than global inference, caus-
ing a slow inference speed. 2) Using down-sample inputs
causes the missing of small objects and reduced accuracy at
semantic boundaries. As shown in Table 1, for generic mod-
els, local inference is better than global inference on mIoU
since that global inference loses much detailed information.

Qualitative results are shown in Figure 5. The first row
shows that our method achieves more detailed segmentation
results on ”ubran” class, represented by cyan. In the second
row, compared with FCtL [22] and STDC [11], our method
attains a clear segmentation result on the boundary between
”agriculture” and ”forest” classes, marked by yellow and
green, respectively.

In conclusion, our method utilizes the deep branch to ex-
tract semantic context from downsampled images and em-

1It isn’t recommended to compare FPS from different papers: speed is
related on environments, so we measured most of the competitors under
our environments. We provide this script in the supplementary.

2The results of FCtL are slightly different from the original paper, in
which test time augmentation(TTA) are used. For a fair comparison with
other methods, we evaluate it with the checkpoints provide by the official
repository without TTA.
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Input Image GT Ours FCtL STDC

Figure 5. We illustrate several examples of the DeepGlobe dataset, comparing with the SOTAs. In this figure, masks with varied colors
represent different semantic regions. Particularly, cyan represents “urban”, yellow represents “agriculture”, purple represents “rangeland”,
green represents “forest”, blue represents “water”, white represents “barren” and black represents “unknown”.

Method mIoU ↑ FPS ↑ Memory(MB) ↓
Local Inference
UNet [29] 46.53 1.26 1741
FCN-8s [25] 62.43 4.55 970
DeepLabv3+ [2] 69.69 1.60 1541

Global Inference
UNet [29] 50.11 3.54 7627
FCN-8s [25] 52.86 7.91 1984
DeepLabv3+ [2] 63.50 4.44 3226
BiSeNetV1 [37] 53.00 14.20 1801
STDC [11] 70.30 14.00 2580

UHR Methods
GLNet [3] 71.60 0.17 1865
CascadePSP [4] 68.50 0.11 3236
PPN [33] 71.90 12.90 1193
PointRend [20] 71.78 6.25 1593
MagNet [18] 72.96 0.80 1559
MagNet-Fast [18] 71.85 3.40 1559
FCtL2 [22] 72.76 0.13 4332
Ours(ISDNet) 73.30 27.70 1948

Table 1. Segmentation results on the DeepGlobe dataset. We eval-
uate the speed and memory under our environment, and the accu-
racy of competitors are collected from [18].

ploy the shallow branch to inference whole images. There-
fore, without inputting cropped patches, our method can
achieve 2.5× faster than PPN [33] with higher accuracy.

4.4. Experiments on the Inria Aerial Dataset

To further illustrate the effectiveness of our method, we
apply our method to Inria Aerial [26]. In this dataset, the
number of pixels for each image has reached 25 million
which is around four times than that in the DeepGlobe. Be-

sides, the foreground regions in each image are finer, which
makes it more challenging for segmentation methods.

Similarly, we compare our method with generic and
UHR methods. As shown in Table 2, our method achieves
the best performance on both mIoU and FPS. In gen-
eral, UHR methods are more accurate than generic meth-
ods along with lower memory consumption. However,
most of UHR methods suffer from the local refinement are
too slow to real-world application. Compared with FCN-
8s [25] that occupies the least memory, our method attains a
clear improvement on both mIoU and FPS. Compared with
FCtL [22], a recent UHR method, the inference speed (6.90
FPS) of our method is nearly 172× than FCtL (0.04 FPS).
More importantly, our method only increases a few mem-
ory. Besides, Figure 6 shows qualitative results. From the
cropped patches that marked by orange bounding boxes, we
can see that our segmentation results are more precise in
contrast to other methods. In a nutshell, our method also
achieves a better balance among accuracy, speed and mem-
ory on the Inria Aerial dataset.

4.5. Experiments on the Cityscapes Dataset

The Cityscapes [6] is a high resolution datasets for au-
tonomous driving, which is popular in semantic segmenta-
tion community. Therefore, we also apply our framework
to this datasets to evaluate the model generality.

We conduct two experiments on the Cityscapes dataset.
Table 3 shows the comparison of our method with generic
and UHR segmentation methods. Our method significantly
boosts the accuracy among UHR methods, and achieves
comparable performance compared with generic methods.
Compared with deep models such as Deeplabv3 [1], our
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Figure 6. We illustrate several examples of the Inria Aeril dataset, comparing with the SOTAs. In this figure, white and black represent
building and non-building respectively. Besides, in the segmentation results, we employ red and blue to mark the area with misclassification.
Specifically, red represents foreground is classified into background, and vice versa for blue.

Method mIoU ↑ FPS ↑ Memory(MB) ↓

Generic Methods
DeepLabv3+ [2] 55.90 1.67 5122
FCN-8s [25] 69.10 1.90 2447
STDC [11] 72.44 4.97 7410
UHR Methods
CascadePSP [4] 69.40 0.03 3236
GLNet [3] 71.20 0.05 2663
FCtL2 [22] 72.87 0.04 4332
Ours (ISDNet) 74.23 6.90 4680

Table 2. Segmentation results on the Inria Aerial dataset. We eval-
uate the speed and memory under our environment, and the accu-
racy of competitors are collected from [22].

method attain a clear improvement on the speed with sim-
ilar accuracy and memory. On the other hand, compared
with lightweight methods, our method still maintains an ad-
vantage in accuracy and memory consumption.

Table 4 shows the generality of our method. We
integrate PSPNet [40] (CNN-based) and Segformer [35]
(Transformer-based) as the deep branch in our framework.
For full scale input, we use the setting of mmsegmentation
toolbox to train the model. For fair comparison, we uti-
lize random scale [0.5, 1] and [0.125, 0.5] respectively to
train models with downscale 2 and 4 input. The results
show that our mIoU is higher than PSPNet with downscale
2 and downscale 4 input. Compared with PSPNet using
full size inputs, our method is 3.8× faster than PSPNet al-
though we loss some accuracy. Moreover, we also utilize
Segformer [35], a transformer-based method, to validate the
generality. From the Table 4 we can obtain a similar con-
clusion with CNN-based methods.

In a summary, our method achieves high accuracy with
less inference time on Cityscapes dataset with a good gen-
erality to extend existing segmentation models.

Method mIoU ↑ FPS ↑ Memory(MB) ↓
Generic Methods
BiSeNetV1 [37] 74.44 42.43 2147
BiSeNetV2 [36] 75.80 43.07 1602
PSPNet [40] 74.87 15.15 1584
ICNet [39] 74.43 68.55 1390
STDC [11] 74.5 62.15 1536
DeepLabv3 [1] 76.70 13.32 1468

UHR Methods
DenseCRF [21] 62.95 0.04 1575
DGF [32] 63.33 3.13 1727
SegFix [38] 65.83 2.63 2033
PointRend [20] 64.39 7.14 2052
MagNet [18] 67.57 0.34 2007
MagNet-Fast [18] 66.91 3.13 2007
Ours (ISDNet) 76.02 50.79 1510

Table 3. Segmentation results on the CityScapes dataset. We eval-
uate the speed and memory under our environment, and the accu-
racy of UHR competitors are collected from [18].

Method mIoU FPS Mem(MB)
PSPNet [40] 74.87 15.15 1584
PSPNet [40] (½ scale) 72.87 54.99 1160
PSPNet [40] (¼ scale) 65.20 169.91 1076
PSPNet [40] + ISD 74.30 58.29 1540
Segformer-b0 [35] 73.45 13.70 3114
Segformer-b0 [35] (½ scale) 71.20 65.49 1174
Segformer-b0 [35] (¼ scale) 51.19 76.22 1032
Segformer-b0 [35] + ISD 72.99 41.82 1500

Table 4. Comparison of existing models integrating with our
framework. We evaluate the corresponding methods with differ-
ent scales to compare the accuracy and inference cost.

4.6. Ablation Study

Effectiveness of our architecture. We conduct an ablation
experiment on each branch to evaluate the effectiveness of
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D S Full Scale ¼ Scale mIoU FPS
✓ ✓ 61.40 64.64
✓ ✓ 73.23 5.40

✓ ✓ 56.39 200.64
✓ ✓ 70.30 13.79

✓ ✓ ✓ ✓ 71.69 31.69

Table 5. Effectiveness of our architecture. D and S denote the
deep and shallow branch, respectively. Scale means the input size
compared with original images.

the trade-off between accuracy and speed. Table 5 shows
the comparison result. We only use the baseline network for
a fair comparison. Specifically, the baseline model contains
deep and shallow branches, optimized by LSEG and LAUX .
Besides, we utilize simple addition to fuse Fs and Fd in-
stead of RAF. As shown in Table 5, whether it is the deep
or shallow networks, it is hard to reach a desirable trade be-
tween speed and accuracy. For the deep branch, full-scale
inputs have satisfied accuracy but slow speed. But 1

4 scale
input cannot maintain the accuracy with high speed. And
the shallow branch has a similar conclusion. However, the
baseline achieves a proper balance between speed and accu-
racy. The baseline increases speed for the deep branch with
full-scale inputs by nearly 6×. Besides, we significantly
improve the accuracy compared to the shallow branch with
1
4 scale inputs. Hence, our architecture can attain a satiable
trade-off between accuracy and speed.

Comparison of feature fusion methods. We conduct an
ablation experiment to assess the effectiveness of Relation-
Aware feature Fusion module. Table 6 shows results. This
experiment employs the baseline with the high-frequency
residual input H , optimized by overall loss functions in Sec-
tion 3.4. Besides, the addition and concatenate with
channel-wise attention are ARM and FFM in [37], respec-
tively. As shown in Table 6, our relation-aware attention
strategy achieves a satisfying trade-off among accuracy,
speed, and memory. Compared with naively addition and
ARM, our module has better performance on accuracy. Be-
sides, the RAF requires less memory and inference faster
than concatenation and FFM. Therefore, the proposed mod-
ule is suitable to fuse the Fs and Fd from deep and shallow
branches, respectively.

Effectiveness of losses and input types. We carry out
an ablation experiment to validate the usefulness of LSR

and LSD in our method. And we also evaluate the utility
of high-frequency residual inputs. In this experiment, we
train the ISDNet with LSEG and LAUX as the baseline.
As shown in Table 7, the LSR and LSD increase the ac-
curacy with +0.39. Moreover, for the input of the shallow
input, replacing the RGB image with high-frequency resid-
uals can obtain the improvement of +0.6. In conclusion,
Both the auxiliary super-resolution task and high-frequency
inputs can increase the performance.

ADD CAT CW Ms Md mIoU FPS Mem(MB)
✓ - - 72.20 31.69 -
✓ ✓ - - 72.42 29.73 1891

✓ - - 71.88 23.98 -
✓ ✓ - - 72.57 25.76 2204

✓ ✓ ✓ 72.63 28.93 -
✓ ✓ ✓ ✓ 73.30 27.70 1948

Table 6. Comparison of feature fusion methods. ADD and CAT
represent two simple fusion strategies: addition and concatena-
tion. CW means channel-wise attention mechanism. Ms and Md

denote the relation-aware attention for deep and shallow branch.

Baseline LSR LSD H mIoU
✓ 72.31
✓ ✓ 72.55
✓ ✓ ✓ 72.70
✓ ✓ ✓ ✓ 73.30

Table 7. Comparison of loss components and heterogeneous input.
H indicates high-frequency residual inputs for the shallow branch.

5. Conclusion and Limitations

This paper has explored integrating deep and shal-
low networks for efficient ultra-high resolution image seg-
mentation. To exploit relational information between
branches, we have introduced a novel feature fusion mod-
ule: Relation-Aware feature Fusion (RAF). To further en-
hance the shallow branch, we have proposed to use high-
frequency residuals as input to strengthen spatial details.
Besides, super-resolution loss and structure distillation loss
are introduced to enhance features from the deep branch.
Our method substantially speeds up ultra-high image seg-
mentation and has achieved state-of-the-art performance
across three popular datasets.

Nevertheless, there are some limitations to this work.
For example, uniform down-sampling is used for the deep
branch. Replacing it with other adaptive down-sampling
methods (e.g., deformable down-sampling) might improve
performance. Besides, we only provided one type of shal-
low network. A systematic exploration of more architecture
is worthy of future research with more resources.
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