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Abstract

Despite single image dehazing has been made promis-
ing progress with Convolutional Neural Networks (CNNs),
the inherent equivariance and locality of convolution still
bottleneck dehazing performance. Though Transformer has
occupied various computer vision tasks, directly leveraging
Transformer for image dehazing is challenging: 1) it tends
to result in ambiguous and coarse details that are undesired
for image reconstruction; 2) previous position embedding
of Transformer is provided in logic or spatial position order
that neglects the variational haze densities, which results in
the sub-optimal dehazing performance.

The key insight of this study is to investigate how to
combine CNN and Transformer for image dehazing. To
solve the feature inconsistency issue between Transformer
and CNN, we propose to modulate CNN features via learn-
ing modulation matrices (i.e., coefficient matrix and bias
matrix) conditioned on Transformer features instead of sim-
ple feature addition or concatenation. The feature modula-
tion naturally inherits the global context modeling capabil-
ity of Transformer and the local representation capability
of CNN. We bring a haze density-related prior into Trans-
former via a novel transmission-aware 3D position embed-
ding module, which not only provides the relative position
but also suggests the haze density of different spatial re-
gions. Extensive experiments demonstrate that our method,
DeHamer, attains state-of-the-art performance on several
image dehazing benchmarks.

1. Introduction
Single image dehazing aims to restore the haze-free im-

age from the hazy counterpart that suffers from the reduced
contrast and dull colors caused by spatial variant haze den-
sities. This task has been a longstanding and challeng-
ing problem with a wide range of applications, such as

*Chongyi Li (lichongyi25@gmail.com) is the corresponding author.

Figure 1. Thumbnail of main idea. Transformer is introduced
into image dehazing via 1) transmission-aware 3D position em-
bedding and 2) feature modulation. The proposed method com-
bines the global modeling capability of Transformer and the local
representation capability of CNN.

surveillance systems and autonomous driving. To solve this
ill-posed problem, prior-based methods like Dark Channel
Prior (DCP) [14] and Color Attenuation Prior (CAP) [37]
adopt priors as external information to estimate the param-
eters of the hazy image formation model. The robustness
of these methods is limited, especially facing challenging
scenes. With the learning capability of CNNs, CNN-based
dehazing networks have achieved impressive performance
by either estimating the imaging model’s parameters [25] or
directly learning the haze-free counterpart [20]. However,
these networks are still bottlenecked by the local nature of
the convolution for modeling the long-range dependencies
and the translation equivariance [12]. Global context and
spatially variant operations are particularly important for
haze removal [8].

Although Transformer has swept across many computer
vision tasks [6, 21, 31], directly using it in image dehazing
exits some inherent issues: 1) despite Transformer is able
to provide long-distance feature dependencies via the cas-
caded self-attention, even in the early stage, it lacks the ca-
pability of retaining local feature details, thus leading to am-
biguous and coarse details for image reconstruction; 2) pre-
vious position embedding methods neglect the differences
among the regions with variational haze densities, which
affects image dehazing performance.
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To overcome these barriers, we propose several novel de-
signs to bring the power of Transformer to image dehazing.
The main idea is illustrated in Figure 1. Specifically, we
attempt to combine the best world of the global modeling
capability of Transformer and the local representation ca-
pability of CNN for image dehazing. To achieve that, given
a hazy image, we separately extract the hierarchical global
features via a Transformer module while the corresponding
hierarchical local features are obtained by a CNN module.
We propose a transmission (suggesting the haze density by
prior information)-aware 3D position embedding module,
which provides the relative position information and haze
density information for the Transformer, thus improving
image dehazing performance. Instead of simply concate-
nating or adding Transformer features and CNN features,
we propose to integrate these features by a feature modu-
lation module that learns the modulation matrices, which
solves the feature inconsistency issue. With the modulated
features, a CNN decoder module is utilized to enlarge image
resolution and render local details of the haze-free image.

The inspired designs in this study can provide guid-
ance for Transformer-based image reconstruction, espe-
cially about how to 1) inherit the advantages of both Trans-
former features and CNN features via feature modulation
and 2) introduce prior information into Transformer via po-
sition embedding. Experiments and comparisons demon-
strate the superiority of our method (called DeHamer) over
state-of-the-art image dehazing methods.

In a nutshell, our contributions are as follows:

• In comparison to pure CNN-based image dehazing
networks, our work is the first to introduce the power
of Transformer into image dehazing via novel designs.

• We propose a novel transmission-aware 3D position
embedding to involve haze density-related prior infor-
mation into Transformer.

• Extensive experiments on image dehazing benchmark
datasets demonstrate the outstanding performance of
our method against state-of-the-art methods.

2. Related Work
Image Dehazing. For single image dehazing, existing so-
lutions can be mainly divided into physical model-based
methods and deep learning-based methods. Early meth-
ods employ haze or image degradation-related priors to esti-
mate the transmission map and global atmospheric light that
are key parameters in hazy image formation models such
as the atmospheric scattering model [22]. Along this line,
DCP [14] assumes that the pixels in non-haze regions have
low intensity in at least one color channel. Subsequently,
a variety of priors are proposed, such as color-line prior
(CLP) [13] and haze-line prior (HLP) [3].

With the success of CNNs, data-driven-based networks
have achieved promising results in image dehazing [7, 18,
19, 34]. These methods adopt CNNs to estimate the key
parameters of the atmospheric scattering model or directly
learn the haze-free image. For instance, Zhang et al. [33]
proposed a densely connected pyramid network to estimate
the transmission map and the atmospheric light. These esti-
mated parameters are used to obtain a haze-free image. To
avoid the accumulated errors in the process of estimating
multiple parameters, end-to-end networks have been inves-
tigated to directly estimate a haze-free image. For example,
Li et al. [17] proposed an all-in-one network for end-to-end
image dehazing by reformulating the atmospheric scattering
model. Liu et al. [20] proposed a GridDehazeNet, which
consists of pre-processing, backbone, and post-processing.
In the GridDehazeNet, an attention-based multi-scale es-
timation on a grid network is used to achieve robust de-
hazing results. Singh et al. [26] proposed a back-projected
pyramid network for image dehazing, which contains itera-
tive U-Net blocks and pyramid convolution blocks. Physics
model-based feature learning was proposed for image de-
hazing [10]. In addition to L1 and L2 losses, various losses
such as contrastive loss [30] and adversarial loss [8,11] have
been used into image dehazing networks.

Different from previous image dehazing methods, we
bring the long-range modeling capability of Transformer to
image dehazing and effectively combine such a capability
with the local representation capability of CNN via a se-
rial of novel designs. Unlike previous position embedding
methods, we involve both the haze density-related prior and
spatial position information into Transformer by 3D posi-
tion embedding. In comparison to the adaptive instance
normalization [15, 16, 29] that impose constraints on ref-
erence image or semantic information to align the content
features, we leverage the feature modulation to inherit the
advantages of both CNN and Transformer. These designs
produce state-of-the-art dehazing performance and provide
insights into Transformer-based image reconstruction.

Visual Transformer. Transformer [28] has been success-
fully applied in natural language processing tasks. Based
on its strong capability of modeling long-range dependen-
cies by stacked self-attention and feed-forward, it has in-
spired the computer vision community to investigate how
to apply Transformer in related tasks such as object detec-
tion [5], image segmentation [31], and autonomous driv-
ing [23]. For instance, Strudel et al. [31] extended the Vi-
sion Transformer (ViT) to semantic segmentation while Xie
et al. [12] built the self-supervised learning on Swin Trans-
former [21]. Chen et al. [6] proposed a Transformer back-
bone for multi-task image restoration; however, this Trans-
former relies on large-scale training data for optimal perfor-
mance. Large-scale paired trained data is scarce for image
enhancement and restoration tasks in the real world.
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Figure 2. Overview structure of our method. Our method consists of five key modules: a transmission-aware 3D position embedding
module, a Transformer module, a CNN encoder module, a feature modulation module, and a CNN decoder module.

Although visual Transformers have made great efforts to
improve the performance of visual tasks, it is still difficult
to directly follow the existing schemes for effectively intro-
ducing Transformer into the image dehazing task. This is
because Transformer lacks the local representation capabil-
ity and performs unsuitable position embedding for image
dehazing. Therefore, we are motivated to explore exquisite
designs to combine the best world of Transformer and CNN
in image dehazing.

3. Methodology

The overview structure of our method is presented in
Figure 2. Given a hazy image, we first introduce a
haze density-related prior into a Transformer module via a
transmission-aware 3D position embedding module. Then,
our network separately extracts global features and local
features via the Transformer module and a CNN encoder
module. Afterward, we treat the Transformer features as the
condition information and feed them to a feature modula-
tion module to predict modulation matrices (i.e., coefficient
matrix and bias matrix) that are employed to scale and shift
the corresponding CNN encoder features. In this way, the
modulated encoder features enhance the global modeling
capability of local features. Following this scheme, the hi-
erarchical Transformer features and CNN encoder features
are adaptively integrated. At last, the haze-free image is
obtained through a CNN decoder module that gradually en-
larges resolutions and renders local details.

In what follows, we will detail these modules. More de-
tailed network structure and parameters can be found in the
supplementary material.

3.1. 3D Position Embedding

In vision Transformers, position embedding is crucial to
retain spatial position information. However, previous po-
sition embedding is provided in logic or spatial position or-
der, which neglects the variational haze densities of differ-
ent spatial regions in a hazy image. Moreover, variational
haze densities challenge existing image dehazing methods.

To solve this issue, we propose a new position embed-
ding method for image dehazing, transmission-aware 3D
position embedding, that embeds the haze density-related
prior information (e.g., transmission map) into the position
encoder. Such a manner suggests the haze densities of dif-
ferent spatial regions. We expect the regions with similar
haze density could share similar non-linear mapping rela-
tionships in the dehazing process.

To achieve that, we first compute the Dark Channel Prior
[14] of the input hazy image I:

DCP (I) = min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y))) (1)

where Ω(x) is a local patch centered at x. Assuming the
value of the atmospheric background light is 1, DCP (I)
would be 1− t, where t is the transmission map [14]. Note
that we choose Dark Channel Prior to generate the haze den-
sity information based on its robust performance for image
dehazing. Other priors can also be used in our method.

The pipeline of our 3D position embedding module is il-
lustrated in Figure 3. Following the previous work of vision
computer [12, 21], we first adopt patch partition and linear
embedding to reduce the spatial dimension and increase the
channel dimension of the image for efficiently and accu-
rately obtaining long-range dependencies. After patch par-
tition and linear embedding, the dimension of the token vec-
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Figure 3. Illustration of our 3D position embedding. The dimensions from 0 to 31 represent the horizontal positions, from 32 to 63
represent the vertical positions, and from 64 to 95 represent the haze density positions.

tors becomes H
2 × W

2 × C, where H , W , and C represent
the height and width of the input image and the number of
channels of the token vectors, respectively. Specifically, C
is set to 96 in our implementation. Then, we encode the po-
sition and haze density information via sinusoidal position
encoding as:

PE(posD, 2i) = sin(posD/100002i/ptotal),

PE(posD, 2i+ 1) = cos(posD/100002i/ptotal),
(2)

where PE represents the 3D encoder information, and
posD is the position of image patch in dim D (i.e., horizon-
tal dimension, vertical dimension, and haze density dimen-
sion). By adding the haze density information DCP (I),
we expand the two-dimensional spatial coordinates (x, y) of
each pixel to three-dimensional coordinates (x, y, d). The
variable i is the position in the token vectors. We set ptotal
to 32 for each dimension, thus forming 96 positions that
consist of spatial positions and haze density information.
We set the number to 96 for matching the dimension num-
ber of the token vectors. Finally, the token vectors and po-
sition coding information are combined through an addition
operation, as shown in Figure 3.

As the illustration of 3D position embedding presented
in Figure 3, for the horizontal position embedding, each
column of patches shares the same embedding information,
while different embedding values in the horizontal direc-
tion represent their relative positional relationships. Sim-
ilarly, for the vertical position embedding, each row of
patches shares the same embedding information, while dif-
ferent embedding values in the vertical direction indicate
their relative positional relationships. For the haze density
positions, a patch-level embedding, the embedding values
represent the haze densities of different spatial regions.

3.2. Network Structure

Transformer Module. To achieve global context to deal
with the spatially variant haze, we adopt a Transformer that
has a strong capability of modeling the long-range depen-
dencies. Concretely, we adopt Swin Transformer [21] as
the backbone to extract the hierarchical Transformer fea-
tures based on its good trade-off between effectiveness and
efficiency. Other Transformer backbones can also be used
in our framework. Although a larger image patch could
improve the computational efficiency of the Swin Trans-
former [21], it leads to obvious border artifacts around each
patch. Thus, instead of using the default image patch size
i.e., 4, we set the patch size to 2. We only adopt the three-
stage Swin Transformer, where the lightweight transformer
parameters are adopted, i.e., the depth and numbers of at-
tention heads are set to [2,2,2] and [3,6,9], respectively. We
did not find obvious gains by using more parameters.
CNN Encoder Module. To obtain local features, we adopt
three convolution blocks to extract hierarchical convolution
features that correspond to the three-stage Transformer fea-
tures. In each convolution block, two convolution layers
are followed by the ReLU activation function. After the
last convolution layer, a max-pooling layer is employed to
reduce the image size. The purpose is to ensure the sizes
of CNN features are consistent with the corresponding fea-
tures’ sizes of the Swin Transformer. To achieve larger re-
ceptive fields, we employ a pyramid pooling module (PPM)
[35] at the end of each convolution block, which fuses fea-
tures under four different scales.
Feature Modulation Module. We found that the features
extracted by Transformer have unique characteristics such
as long-range attention but coarse textures in comparison
to CNN features that have local attention and clear details,
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Figure 4. Visual results of the intermediate features in the CNN encoder module and the Transformer module. The corresponding
modulated features are also presented. The feature maps are illustrated in heatmaps. The features in the Transformer have long-range
attention but coarse textures, while the features in the CNN are with clear details. The modulated features inherit the characteristics of both
Transformer features and CNN features, i.e., long-range dependencies and clear textures.

Figure 5. Illustration of feature modulation block. Ft: Trans-
former features; Fc: CNN features; Fm: modulated features.

see Figure 4. We argue the differences are stemmed from
the nature of self-attention-based Transformer features and
convolution-based CNN features. Thus, directly leveraging
the commonly used feature fusion methods such as concate-
nation and addition may produce suboptimal performance.

Inspired by the style transfer and conditioned image en-
hancement [16, 29], we treat the Transformer features as
the condition information to predict modulation matrices
and then modulate the CNN features. In this way, we ex-
pect to migrate the long-range attention of Transformer to
CNN features without damaging the details of CNN fea-
tures, which can be expressed as:

F s
m = Gs

γ(F
s
t )⊗ IN(F s

c )⊕Gs
β(F

s
t ), (3)

where Fm represents the modulated features, s ∈ {1, 2, 3}
denotes the stage level. We adopt three stages, in which
we half the resolution of features. IN represents the in-
stance normalization operation [27]. γs = Gs

γ(F
s
t ) and

βs = Gs
β(F

s
t ). γ and β are the scaling and shifting pa-

rameters which both have the same spatial dimensions with
the corresponding CNN features Fc. Gγ(·) and Gβ(·) are
the modulation matrices estimation blocks that contain two
convolution layers conditioned on Transformer features Ft.
⊕ and ⊗ denote the element-wise addition and element-
wise multiplication, respectively. A feature modulation
block is shown in Figure 5.
CNN Decoder Module. At last, we use sufficient feature
representations to reconstruct the haze-free counterpart with

the same size as the input hazy image. More specifically, we
first concatenate the modulated features, the corresponding
CNN encoder features, and the upsampled decoder features.
Here, we discard the corresponding Transformer features
due to the coarse texture. Then, these concatenated fea-
tures are fed to a convolution block consisting of three con-
volution layers. After that, we adopt the multiscale resid-
ual block [32] which includes multiple fully convolutional
streams connected in parallel to produce spatially precise
features to select the effective features for image dehazing
adaptively. After each convolution block, a 2× up-sampling
operation is followed to enlarge resolutions. After three
convolution blocks, the features are sent to a convolution
layer to generate a high-quality haze-free image.

4. Experiments
4.1. Experimental Settings

Implementation Details. Our method is implemented with
the PyTorch on an NVIDIA Tesla V100 GPU. We use an
ADAM optimizer with default parameters to optimize our
method. We set the initial learning rate to 0.0001 and uti-
lized the cosine annealing strategy to adjust the learning rate
until convergence. Instead of using complex loss functions,
we use only L1 loss to optimize our network. We randomly
crop image patches for training and gradually enlarge the
size of the image patch from 128×128 to the full size in the
training process.
Training and Testing Datasets. Following previous works
[10,20,30], we use ITS and OTS subsets of RESIDE dataset
[18] as the training datasets and conduct the evaluations on
SOTS subset that contains 500 indoor and 500 outdoor hazy
images. In addition, we also include the real-world Dense-
Haze [1] and NH-HAZE [2] datasets in the experiments.
Dense-Haze consists of 45 training images, 5 validation im-
ages, and 5 test images. The hazy images of Dense-Haze
are captured in the dense and homogeneous hazy scenes.
NH-Haze also consists of 45 training images, 5 validation
images, and 5 test images that are captured in dense and
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(a) input (b) DCP [14] (c) DehazeNet [4] (d) AODNet [17] (e) GridDehazeNet [20]

(f) FFANet [24] (g) MSBDN [9] (h) UHD [36] (i) DeHamer (ours) (j) GT

Figure 6. Visual comparisons on a synthetic hazy image sampled from SOTS-Outdoor testing set. Zoom in for best view.

(a) input (b) DCP [14] (c) DehazeNet [4] (d) AODNe [17] (e) GridDehazeNet [20]

(f) FFANet [24] (g) MSBDN [9] (h) UHD [36] (i) DeHamer (ours) (j) GT

Figure 7. Visual comparisons on a synthetic hazy image sampled from SOTS-indoor testing set. Zoom in for best view.

nonhomogeneous hazy scenes.
Comparison Methods and Evaluation Metrics. We
compare our method with one prior-based method (DCP
[14]) and six state-of-the-art deep learning-based meth-
ods (DehazeNet [4], AODNet [17], GridDehazeNet [20],
FFANet [24], MSBDN [9], UHD [36]). We use the
released code of these methods for fair comparisons if
they are publicly available, otherwise we retrain them us-
ing the same training data with our method. We employ
commonly-used PSNR (dB) and SSIM to quantify the de-
hazing performance of different methods.

4.2. Experiments on Synthetic Hazy Images

We first compare different methods on synthetic hazy
image datasets SOTS-Indoor and SOTS-Outdoor. The vi-
sual comparisons on the hazy images sampled from the
SOTS-Outdoor and SOTS-Indoor testing sets are presented
in Figure 6 and Figure 7, respectively. As shown, the com-
pared methods either remain haze on the results or produce

Table 1. Quantitative comparisons on synthetic dehazing
datasets: SOTS-Indoor and SOTS-Outdoor The bold numbers
denote the best performer under each case.

Methods SOTS-Indoor SOTS-Outdoor
PSNR↑ SSIM↑ PSNR↑ SSIM↑

DCP 16.61 0.8546 19.14 0.8605
DehazeNet 19.82 0.8209 27.75 0.9269
AODNet 20.51 0.8162 24.14 0.9198

GridDehazeNet 32.16 0.9836 30.86 0.9819
FFANet 36.39 0.9886 33.57 0.9840
MSBDN 32.77 0.9812 34.81 0.9857

UHD 21.75 0.8786 26.48 0.9420
DeHamer (ours) 36.63 0.9881 35.18 0.9860

color deviations while the results of our method are most
close to the ground truth images. The better performance of
our method is also reflected by the PSNR and SSIM scores
on the results.
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(a) input (b) DCP [14] (c) DehazeNet [4] (d) AODNet [17] (e) GridDehazeNet [20]

(f) FFANet [24] (g) MSBDN [9] (h) UHD [36] (i) DeHamer (ours) (j) GT

Figure 8. Visual comparisons on a real hazy image sampled from NH-HAZE testing set. Zoom in for best view.

(a) input (b) DCP [14] (c) DehazeNet [4] (d) AODNet [17] (e) GridDehazeNet [20]

(f) FFANet [24] (g) MSBDN [9] (h) UHD [36] (i) DeHamer (ours) (j) GT

Figure 9. Visual comparisons on a real hazy image sampled from Dense-Haze testing set. Zoom in for best view.

Table 2. Quantitative comparisons on real dehazing datasets:
Dense-Haze and NH-HAZE. The bold numbers denote the best
performer under each case.

Methods Dense-Haze NH-HAZE
PSNR↑ SSIM↑ PSNR↑ SSIM↑

DCP 11.01 0.4165 12.72 0.4419
DehazeNet 9.48 0.4383 11.76 0.3988
AODNet 12.82 0.4683 15.69 0.5728

GridDehazeNet 14.96 0.5326 18.33 0.6667
FFANet 12.22 0.4440 18.13 0.6473
MSBDN 15.13 0.5551 17.97 0.6591

UHD 12.16 0.4594 16.05 0.4612
DeHamer (ours) 16.62 0.5602 20.66 0.6844

Additionally, the quantitative results on all testing sets
are compared in Table 1. As presented, our method achieves
the highest PSNR and SSIM scores on the SOTS-Outdoor.
Moreover, the PSNR score of our method is the highest

among the compared methods on the SOTS-Indoor while
our SSIM score (0.9881 versus 0.9886) is just 0.0005 lower
than the state-of-the-art performer FFANet [24]. The results
suggest the good performance of our method, which bene-
fits from the combination of Transformer and CNN with the
novel designs.

4.3. Experiments on Real Hazy Images

To further validate the performance of our method, we
compare different methods on real hazy images sampled
from Dense-Haze and NH-HAZE testing sets. The visual
results are presented in Figure 8 and Figure 9, respectively.
As presented in Figure 8(a) and Figure 9(a), the real hazy
images are extremely challenging, especially the hazy im-
age captured in the nonhomogeneous hazy scene. In com-
parison to the results of different methods in Figure 8, only
our method can remove the haze and recover a similar color
with the ground truth image. Besides, our results look more
visually pleasing than the compared results. For the results
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(a) input (b) full model (c) w/ 2DPE (d) w/o Transformer (e) w/o ConvE (f) w/ add

Figure 10. Visual comparisons for ablated models. Red arrows suggest the obvious differences between the ablated model and the full
model. Zoom in for best view.

in Figure 9, only GrideDehazeNet [20], MSBDN [9], and
our method can unveil the structure of the input image cap-
tured in the dense, hazy scene. In contrast, our method
achieves more realistic results and is more similar to the
ground truth image than the compared results in terms of
color and details.

Quantitative results on the real hazy images are com-
pared in Table 2. For PSNR and SSIM scores, our method
achieves the best performance across all testing sets. The
PSNR scores of our method on these two testing sets ex-
ceed current methods 1-4 dB. The results on such challeng-
ing datasets further demonstrate the effectiveness and ad-
vantages of our approach.

4.4. Ablation Study

We perform ablation studies to investigate the impacts of
our designs on image dehazing performance. The studies
include the following ablated models:
w/ 2DPE: 2D position embedding, i.e., removing the haze
density position in our Transformer module;
w/o Transformer: removing the Transformer module, i.e.,
U-Net-like CNN for image dehazing;
w/o ConvE: removing the CNN encoder module, i.e., a
Transformer module followed by a CNN decoder;
w/o PPM: removing the pyramid pooing module in the
CNN encoder module;
w/ add and w/ cat: replacing the feature modulation block
with the features addition or features concatenation;
w/o MRB: removing the multiscale residual block in the
CNN decoder module.

These models are trained using the same training data as
our method (i.e., the full model). The quantitative results of
ablated models on the NH-HAZE testing set are shown in
Table 3. Observing Table 3, we can see all modules could
improve the dehazing performance of our method, which
suggests the effectiveness of our designs. The result of w/
2DPE demonstrates that the haze density information em-
bedded in the Transformer module is essential for image
dehazing, improving the PSNR/SSIM from 18.90/0.6373 to
20.66/0.6844. Besides, removing the Transformer module
or CNN encoder module significantly degrades the perfor-
mance, suggesting that the combination of Transformer and
CNN is effective. Compared to the commonly used feature
addition and concatenation, modulating the CNN features

Table 3. Quantitative comparisons of ablated models.

Modules Baselines NH-HAZE
PSNR↑ SSIM↑

full model 20.66 0.6844
3D Position w/ 2DPE 18.90 0.6373
Transformer w/o Transformer 18.25 0.6058

CNN Encoder w/o ConvE 16.31 0.5731
w/o PPM 19.04 0.6545

Feature Mod w/ add 17.07 0.5381
w/ cat 18.69 0.6457

CNN Decoder w/o MRB 18.68 0.6425

conditioned on the Transformer features is more suitable for
combining Transformer features and CNN features.

Some visual comparisons of ablated models are pre-
sented in Figure 10. As shown, w/ 2DPE remains haze on
the result, as indicated by the red arrow. w/o Transformer
cannot handle dense haze well while w/o ConvE produces
coarse details in the result. w/ add cannot recover the color
of the ColorChecker well, and the remaining haze can be
found in its result. In contrast, our full model achieves a
more visually pleasing result, which removes the dense haze
and recovers relatively good details. The visual compar-
isons demonstrate the effectiveness of our modules again.

5. Conclusion

In this work, we propose a novel method for single im-
age dehazing. The key insights of this work are to effec-
tively integrate Transformer features and CNN features and
bring the domain knowledge such as task-specific prior into
Transformer for improving the performance. Leveraging
feature modulation enables our method to enjoy the best
world of Transformer and CNN. Besides, we found that
prior information can be effectively introduced to Trans-
former via 3D position embedding, which further improves
the dehazing performance. Extensive comparisons demon-
strate that our method achieves state-of-the-art performance
in synthetic and real benchmark datasets.
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