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Abstract

Previous super-resolution (SR) approaches often formu-
late SR as a regression problem and pixel wise restora-
tion, which leads to a blurry and unreal SR output. Re-
cent works combine adversarial loss with pixel-wise loss to
train a GAN-based model or introduce normalizing flows
into SR problems to generate more realistic images. As an-
other powerful generative approach, autoregressive (AR)
model has not been noticed in low level tasks due to its
limitation. Based on the fact that given the structural in-
formation, the textural details in the natural images are lo-
cally related without long term dependency, in this paper we
propose a novel autoregressive model-based SR approach,
namely LAR-SR, which can efficiently generate realistic SR
images using a novel local autoregressive (LAR) module.
The proposed LAR module can sample all the patches of
textural components in parallel, which greatly reduces the
time consumption. In addition to high time efficiency, it is
also able to leverage contextual information of pixels and
can be optimized with a consistent loss. Experimental re-
sults on the widely-used datasets show that the proposed
LAR-SR approach achieves superior performance on the vi-
sual quality and quantitative metrics compared with other
generative models such as GAN, Flow, and is competitive
with the mixture generative model.

1. Introduction
Recent years have witnessed great progress in deep

learning based method for image super-resolution (SR)
[5, 14, 33]. Most of the existing methods formulate image
SR as a pixel-wise regression problem, which is optimized
with a pixel-wise loss such as L1 or MSE. As image super-
resolution is inherently an ill-posed problem, when trained
with many-to-one mapping between the high resolution im-
ages and the low resolution images, the regression-based
models, with the per-pixel loss design, tend to adopt the av-

*Equal contribution(co-first authors).
†Corresponding author.

Figure 1. The purpose of regression-based methods (a) is to min-
imize the pixel-wise loss, i.e., MSE-loss or L1-loss between the
ground truth and the output, which results in blur images lacking
of details. Our algorithm is based on the autoregresssive method
(b), which considers the relation between adjacent pixels. Accord-
ing to the HR datasets, the first pixel has a probability of 3/4 of
0 and a probability of 1/4 of 1. Once we sample the first pixel as
0, the second pixel has a posterior probability of 2/3 of 0 and a
posterior probability of 1/3 of 1 et al.

erage of all possible HR images, thus suffering from blurry
and unreal SR images. See Figure 1(a) for an illustration.

To generate more realistic images, Generative Adversar-
ial Network (GAN) [7]-based models and Flow [4]-based
models have recently been introduced into image super-
resolution. Both types of these methods generate all the
pixels in parallel where the correlation between pixels is
implicitly embedded in the latent space. During the training
procedure, the discriminator or the invertable network maps
the normal distribution to the joint distribution of the pix-
els. Thus GAN-based and Flow-based models can generate
high-fidelity details compared with traditional regression-
based models. However, GAN-based models pose the chal-
lenge of joint optimization, while Flow-based models are
limited by the specific invertable network.

As another powerful generative model, autoregressive
model has recently been explored in image synthesis tasks
[6], which expressively learn relationships among its input.
Because Taming transformer [6] is designed for general im-
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age synthesis where global understanding of the input is
acquired by modeling long-range relationship through se-
quential sampling, one great challenge of such expressive
modeling is its computationally infeasibility for long se-
quences, especially for high-resolution images. Although
patch-wise processing in a sliding-window manner has been
adopted for speeding, its computation cost is still based on
the size of the images and unacceptable especially for the
super-resolution beyond High Definition (HD) resolution.

Focusing on the super-resolution task, with the LR in-
put, we can obtain a coarse SR result by a simple regres-
sion model, which has already included the main content
and semantic structure. And thus we only need the expres-
sive model to generate the additional texture details or high
frequency components of images, which can be modelled
locally (experiments also verify this hypothesis). There-
fore, in this paper we propose to take advantage of both
regression and autoregressive models. With a coarse SR
achieved by a regression model, we can efficiently and ef-
fectively generate texture details by a local autoregressive
model with a learned texture codebook by our proposed
LAR-SR model.

Specifically, for textural details generation, we partition
the image into non-overlapping patches, and pixels in all the
patches are sampled in parallel by the local autoregressive
module as shown in Figure 2. Thus the time consumption
is significantly reduced because of the parallelism. What’s
more, inspired by [20] that the AR-based model benefits
from the quantization compression for the data space, a
novel texture codebook based on Vector Quantized Varia-
tional AutoEncoder (VQVAE) [20] is adopted to learn and
discretize the textural detail. Since this texture codebook
is only for generating texture details, it is much easier to
learn. Leveraging the texture codebook learned from the
VQVAE and coarse-SR from the regression model, the pro-
posed LAR-SR method can generate texture details effi-
ciently in a patch-wise and parallel mode.

Our main contributions can be summarized as follows:

• We propose a novel local autoregressive super-
resolution framework by taking advantage of both re-
gression and autoregressive models, which can gener-
ate SR images with high-fidelity details but also high
computation efficiency. To the best of our knowledge,
it is the first AR-based framework designed for the
super-resolution task.

• A novel local autoregressive (LAR) module is pro-
posed to efficiently generate texture details in patch-
wise and parallel mode, through a learned texture
codebook from VQVAE and a coarse-SR from a re-
gression model.

• We construct extensive experiments for two super res-
olution tasks: general super resolution and face super

Figure 2. Example of our local autoregressive method, with a
patch size of 4×4. All the pixels are labeled by their locations
in each patch. The same labeled pixels are sampled in parallel.
Thus the sampling time complexity only depends on the size of
the patch.

resolution. Objective quality metrics and visual results
on three popular datasets (DIV2k [1], celebA [15] and
FFHQ [10]) show that LAR-SR can yield state-of-the-
art results compared with baseline approaches.

2. Related Work

2.1. Perceptual-Oriented Super-Resolution

Regression-based methods such as RCAN [33], RRDB
[28] and EDSR [14] aim to pursue pixel level restoration,
which suffer from the blurry SR images. As shown in part
(a) of Figure 1, multiple high resolution images correspond-
ing to the same low resolution image after degradation and
reducing the pixel-wise loss results in unreal patterns. Thus
Perceptual-oriented methods include the GAN-based and
Flow-based models are proposed to generate more realistic
SR images. The GAN-based models are the most popular
generative models for perceptual-oriented super-resolution.
SRGAN [12] combine the adversarial loss with perceptual
loss [9] to improve the visual quality. SFTGAN [27] pro-
pose a novel spatial feature transform to incorporate the se-
mantic priors to generate rich and realistic textures. ESR-
GAN [28] enhances the original SRGAN by the modifica-
tion of the architecture and the loss function. Moreover, re-
cent works introduce the normalization flow [4] into super-
resolution tasks. The flow-based SR models SRflow [16] in-
troduce the normalization flow into super-resolution tasks.
Then HCflow [13] adopts the multi-layer structure based
on SRFlow to achieve a better performance. Moreover,
HCFlow++ [13] combines the Flow-based and GAN-based
models to generate more realistic SR images.

Both GAN-based and Flow-based models implicitly
model the correlation between pixels and have their own
limitations as we mentioned. Thus we adapt the autore-
gression model to the super-resolution to explicitly model
the pixel-level correlation with a flexible network structure,
which can be optimized by a single consistent loss.

1910



Figure 3. Data flow of the regression-based method and LAR-SR.
LAR-SR divides the image into structural components and textural
details. A regression-based module is used to restore the basic
structure, and the details are then sampled by a local autoregressive
(AR) module based on the recovered structure.

2.2. Autoregressive Models

Autoregressive models are common probabilistic mod-
els that fully factorize the probability density function with
powerful generation and stable training procedures. Pixel-
RNN [24] and PixelCNN [19] are the first proposed AR-
based models for image generation. To improve the Pixel-
CNN model, PixelCNN++ [21] replaces the full 256-way
softmax with a logistic mixture likelihood to estimate the
distribution of the pixels. On the other hand, VQVAE [20]
is proposed to learn a discrete representation, which is uti-
lized to build a powerful generative model with PixelCNN.
Besides, Taming transformer [6] combined VQVAE with
adversarial loss and transformer [25] for image generation.

Autoregressive model has demonstrated the promising
results in image generation. But it is still inapplicable in
low level tasks due to its severe time complexity. Our pro-
posed LAR-SR adapts autoregressive model to the field of
super-resolution. LAR-SR generates a discrete representa-
tion first only for the components of textural details in nat-
ural images, which are then be leveraged by a novel local
autoregressive module (shown in Figure 2). Thus the time
consumption is highly reduced while the model can gener-
ate a high-fidelity SR image.

3. Methodology
Our LAR-SR model follows a two-stage approach: in

Stage 1, a textural VQVAE (tex-VQVAE) extracts and en-
codes the components of textural details in images into a
discrete latent space. A local autoregressive model is pro-
posed in Stage 2 based on the latent representation obtained
from Stage 1. As the data flow shown in Figure 3, the struc-
tural components of the output images are generated from
a regression network, i.e., a coarse SR module. The opti-
mization for the both stages is individual, i.e., the learned
tex-VQVAE is fixed in Stage 2. See appendix for more de-

tails about network structure.

3.1. Stage 1:textural VQVAE

VQVAE [20] designs a discrete learnable codebook with
all the components of the images into the latent repre-
sentations for image generation. For super-resolution, as
the regression-based method can well restore the structural
components, textural VQVAE (tex-VQVAE) is proposed to
focus on the textural details in natural images. The tex-
VQVAE includes an encoder E(·) and a decoder D(·).
Given an input HR x, its feature vector yi,j at each pixel-
wise position (i, j) is obtained using the encoder y = E(x).
Then the feature vector yi,j is replaced by its nearest proto-
type vector in the texture codebook z = {zk | k ∈ 1...K}
to obtain its quantized representation ŷi,j . This mapping
is determined according to the distance between the feature
vectors yi,j and zk, as described in Equation (1).

ŷi,j = zl,where l = argmin
k

∥yi,j − zk∥, (1)

we denote the mapped indices as I, the element in I, i.e.,
I(m,n), can be obtained by I(m,n) = argmink ∥ym,n −
zk∥ as shown in Stage 1 in Figure 4. The codebook maps
the indices back to the corresponding vectors to get ŷ.
Unlike VQVAE, an extra input from a coarse SR module
C(·) is added to the decoder in the proposed model, i.e.,
x̂ = D(ŷ, xc), where xc = C(x ↓) is the coarse SR
image, to restore the structural components by regression-
based method. Note that ↓ represents the degradation pro-
cess (e.g., Bicubic in this paper) for generating the training
pairs. The codebook can therefore focus more on the tex-
tural components to restore the image thanks to the extra
input. Meanwhile, the goal of tex-VQVAE is to close up
the distance between x̂ and the input x. The commitment
loss and codebook loss are also applied to solve the non-
derivable operations in the encoder [20]. The total objective
can be formulated as Equation (2):

L(x, x̂, xc) = ∥x− x̂∥+ ∥sg[y]− ŷ∥
+ β∥sg[ŷ]− y∥+ ∥xc − x∥, (2)

where the operator sg refers to a stop-gradient operation
and β is a hyper-parameter. The modified tex-VQVAE can
be used to extract and quantize the textural components.

In summary, the feature map extracted by the encoder
network is downsampled by a factor of two and then quan-
tized by the codebook. The quantized representation main-
tains the components of textural details in our design.
Meanwhile, the low resolution image is input to a coarse
super-resolution module. Both the quantized representa-
tions and the coarse SR image are the inputs of the decoder,
which consists of a few residual blocks and a transposed
convolution layer. Since the decoder receives the structural
and textural components from the inputs, it can restore the
whole image accurately.
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Figure 4. The overall pipeline of the proposed LAR-SR. The architecture follows a two-stage approach: in Stage 1, a customed textural
VQVAE (tex-VQVAE) extracts and discretizes the textural components of the HR images in the training dataset. Then in Stage 2, a local
autoregressive model is trained over the textural components’ embedding to fit a posterior probability.

3.2. Stage 2: Local Autoregressive Model

The goal of Stage 2 is to learn a posterior probability
distribution with a cross-entropy loss over the textural in-
dices I conditioned on the corresponding coarse SR image
xc, which is practically better than the origin LR image.
The main idea of the traditional autoregressive model is to
convert a joint probability distribution into a product of con-
ditional distributions:

Pθ(I) =
n∏

i=1

Pθ(Ii | I<i), (3)

where Ii is the i-th element in I from the top-left pixel to
the bottom-right pixel in sequence, and I<i = {Ij | j < i}.
Thus, the traditional autoregressive model can be seen as
a global autoregressive model, which results in enormous
computational complexity. More specially, to generate an
image of size H ∗ W , the model needs to propagate for-
ward H ∗ W times. To solve this problem, in this paper a
local autoregressive model is proposed to relieve such huge
time consumption. The diagram of the local autoregressive
model is shown in Stage 2 of Figure 4. Based on the fact that
the textural components of the images are almost locally
correlated given the structural components, the images are
divided into non-overlapping patches. In the local autore-
gressive model, image patches can be sampled in parallel.
However, these patches are not completely independent due

to the boundary of adjacent patches and the consistency of
generated data. To achieve this, the pixels in each patch
are sequentially labelled in the same way. As an example
in Figure 2, with the patches of size 4 ∗ 4, all the pixels
are labeled from 1 to 16 by their location and sampled in
sequence, which can be formulated as follows:

Pθ(I|xc) =

k∏
i=1

Pθ(I(i)|I(<i), xc) ≃
k∏

i=1

∏
j

Pθ(I
j
(i)| I(<i), xc),

(4)

where k is the number of the pixels in a patch and xc refers
to the coarse SR image, I(i) is the set of the pixels Ij with
same location i, I(<i) = {I(j) | j < i} refers to the set of all
the I(j) with j is smaller than i, and Ij(i) is the j-th element
of I(i). It’s worth noting that I(<i) is different from I<i.
Because the textural components are nearly locally related,
each two elements in I(i) are almost independent. Thus,
all the elements Ij(i) in I(i) can be sampled in parallel. In
this way, the time complexity of the sampling procedure of
the LAR only depends on the size of the patch. Thus, it
is significantly lower than that of the global autoregressive
model. Cross-entropy loss is used to optimize the estima-
tion for the distribution Pθ(I

j
(i) | I(<i), xc).

LAR module consists of three parts: two encoders to input
the coarse SR image xc and the textural indices I, l LAR-
layers and an output module G. Given the coarse SR image
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xc and the textural indices I, the initial input for the LAR-
layers can be calculated by

f = enc1(xc)⊕ enc2(I), (5)
{f1, f2 . . . , fs×s} = unfold(f, s), (6)

where ⊕ means to concatenate on the feature dimension,
s means the local patch size (as shown in Figure 2, the
patch size is 4). enc1 consists of 3 × 3 convolutional lay-
ers, while enc2 only consists of 1 × 1 convolutional lay-
ers to avoid seeing future pixels during training. Denote
{f (j)

i | i = 1, 2 . . . s × s} as the output of the j-th LAR-
layer and the input of the (j + 1)-th layer. In order to
unify the next calculation process at different LAR-layers,
f
(0)
i is initialized as fi−1 except f (0)

1 , which is initialized as
enc1(xc) ↓, where ↓ means a downsampling process. Then
the LAR-layer can be fomulated by:

f
(j+1)
i = C3×3(C1×1(f

(j)
1 ⊕ f

(j)
2 ⊕ · · · ⊕ f

(j)
i−1))), (7)

The output of the last LAR-layer is folded and input to the
output convolutional layer:

Pθ(I|xc) = softmax(G(fold(f (l)
1 , f

(l)
2 . . . , f

(l)
s×s))), (8)

where l is the number of the LAR-layers and G is the output
convolutional module. During the inference procedure, Ĩ is
sampled from Pθ(I |xc). Then the SR image is generated
by x̃ = D(ỹ, xc), where ỹ is mapped back by Ĩ through the
texture codebook obtained in Stage 1, and D is the decoder
of the tex-VQVAE which is also from Stage 1.

4. Experiments
We conduct our experiments on the widely-used super-

resolution dataset DIV2K [1](4×) following [13,16]. More-
over, to further demonstrate the effectiveness of the pro-
posed LAR-SR, we also conduct the additional experiments
on the face image super-resolution task using celebA [15]
dataset (8×) and FFHQ [10] dataset. Recent works such
as [26, 30] have made significant progress in face super-
resolution (FSR). However, these methods are based on a
pretrained StyleGAN [10] for face images which consumes
huge amounts of computing resources and is also difficult
to be adapted to other types of images. Thus, for FSR task,
we compare LAR-SR with more general approaches.

4.1. Experiments Setting

General Super-Resolution: For general image super-
resolution (4×), the both modules in Stage 1 and Stage 2
are trained and validated on the training dataset of DIV2K
[1] and Flicker2K [22], and finally tested on the valida-
tion dataset of DIV2K. RRDB [28] is used as the coarse

SR module. The size of the dictionary in Stage 1 is 1024.
The number of LAR modules in Stage 2 is set as 12. The
data augmentation strategy during training includes random
flipping and random crop (160×160 patch size). The batch
size is set to 32. Adam optimizer [11] is used with β1 = 0.9,
β2 = 0.99 and weightdecay = 1×10−7. The learning rate
for the Stage 1 is set to 1×10−4 during the fully 30 epochs.
And the learning rate in Stage 2 is initialized as 1 × 10−4

at the first 40 epochs, and set to 1 × 10−5 at the last 20
epochs. The tex-VQVAE in Stage 1 is trained first and is
fixed during the training procedure of Stage 2.
Face Super-Resolution Following [3, 18], we evaluate
LAR-SR on two datasets: CelebA [15] and FFHQ [10].
Both datasets are popularly used for evaluating FSR per-
formance. For each dataset, 90% of the images are used for
training and the rest are used for testing. The HR face im-
ages are cropped and resized to the 128 × 128 resolution.
We use random flipping method as the data augmentation
and use SPARNet [2] as the coarse SR module. The size
of the dictionary is set as 128. The number of LAR layers
is set as 12. Other training configurations are same as the
configurations in general super-resolution task.

4.2. Metrics For valuation

For evaluating the performance of models, LPIPS [31]
metric, which is proven to be correlated well with human
visual perception, is used as the metric for the evaluation
of the image perceptual quality. Peak Signal to Noise Ra-
tio (PSNR) and Structural Similarity (SSIM) [29] are also
reported in order to compare our method with other exist-
ing methods objectively, although they are known to be not
correlated well with the image quality for super-resolution
[8, 17, 23].

4.3. Result and Analysis

General Super-Resolution: We compare the proposed
LAR-SR method with various state-of-the-art methods.
EDSR [14] and RRDB [28] are the PSNR-oriented models.
GAN-based models include ESRGAN [28] and RankSR-
GAN [32]. Flow-based models include SRFlow [16] and
HCFlow [13]. The quantitative results are shown in Ta-
ble 1. We further visualize the SR images in Figure 5.
From Table 1 we can see that LAR-SR method outperforms
the baseline on the LPIPS metric and yields competitive
PSNR and SSIM performance comparing to the GAN and
flow-based approaches. Compared with the mixture genera-
tive model HCFlow++, LAR-SR gives a similar LPIPS and
higher PSNR and SSIM. Figure 5 also demonstrates that
LAR-SR has competitive detail-generative ability with the
fidelity to the corresponding LR images.
Face Super-Resolution: We further test LAR-SR on gen-
eral face super-resolution tasks. As we mentioned above,
the state-of-the-art methods [26, 30] are based on GAN in-
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RRDB ESRGAN SRFlow HCFlow HCFlow++ LAR-SR Ground Truth

Figure 5. Visual results of different methods for general image SR (×4) [1].

SPARNet FSRGAN DICGAN LAR-SR Ground Truth

Figure 6. Visual results of different methods for face image SR
(×8) [10].
version which requires a pretrained GAN model of face im-
ages, thus they are difficult to be adapted into other low
level tasks. As an additional experiments, we only com-
pare LAR-SR with several regular regression and genera-
tive methods. For GAN-based methods, instead of RankSR-
GAN and ESRGAN for general super-resolution, FSRGAN
[3] and DICGAN [18] are used as the baselines. And the
regression based methods include SPARNet [2] and DIC-
Net [18]. Note that all the models are retrained due to var-
ious preprocessing in different FSR models. It can be seen
that in Table 2 and Figure 6, LAR-SR outperforms all the
benchmarks on LPIPS metric with competitive PSNR and
SSIM. The visualization results further illustrate the effi-

Method PSNR↑ SSIM↑ LPIPS↓
Bicubic 26.70 0.77 0.409

Reg.-based EDSR [14] 28.98 0.83 0.270
RRDB [28] 29.44 0.84 0.253

GAN-based ESRGAN [28] 26.22 0.75 0.124
RankSRGAN [32] 26.55 0.75 0.128

Flow-based SRFlow [16] 27.09 0.76 0.121
HCFlow [13] 27.02 0.76 0.124

Flow+GAN HCFlow++ [13] 26.61 0.74 0.110
LAR-SR 27.03 0.77 0.114

Table 1. Quantitative comparison for general image SR (×4) on
DIV2K [1] validation set.
ciency of LAR-SR, where it shows that LAR-SR method
generates more realistic details with less artifacts.

LAR-attn-SR: Although the time consumption for
LAR-SR is massively reduced compared with the tradi-
tional AR-based models, it still costs more than ten seconds
during the sampling procedure. We further propose a more
lightweight, patch size independent LAR-attn-SR by adopt-
ing local mask attention, and the Formula 7 is changed to:

f
(j+1)
i = C3×3(

i∑
t=1

aitf
(j)
t ), (9)

where C3×3 means 3× 3 convolutional layer and the atten-
tion weight ait can be calculated by:

eit = g(f
(j)
i , f

(j)
t ) = W (f

(j)
i ⊕ pi)U(f

(j)
t ⊕ pt), (10)

ait =
exp(eit)∑i

k=1 exp(eik)
, (11)

1914



Method PSNR↑ SSIM↑ LPIPS↓
CelebA

Reg.-based DICNet [18] 28.84 0.838 0.174
SPARNet [2] 29.01 0.845 0.165

GAN-based FSRGAN [3] 27.15 0.780 0.085
DICGAN [18] 27.58 0.792 0.118
LAR-SR 27.26 0.784 0.077

FFHQ

Reg.-based DICNet [18] 27.69 0.801 0.185
SPARNet [2] 27.78 0.800 0.219

GAN-based FSRGAN [3] 25.25 0.785 0.118
DICGAN [18] 26.03 0.742 0.100
LAR-SR 25.66 0.740 0.088

Table 2. Quantitative comparison for face image SR (×8) on
CelebA and FFHQ test set. Note that PSNR is calculated on Y-
channel following [2, 18]

Method PSNR SSIM LPIPS Time SizeofModel
LAR-SR 27.03 0.77 0.114 14.7s 62.1M

LAR-attn-SR 27.23 0.79 0.118 7.8s 10.1M

Table 3. Comparison between LAR-SR and LAR-attn-SR. Tested
on the validation set of DIV2K on a NVIDIA Tesla V100 GPU.

where W and U are linear projection matrices and pi, pt
are the position encoding. The quantitative comparison
between LAR-SR and LAR-attn-SR with patch size 4 is
shown in Table 3. The model size is greatly reduced, and
the sampling time is reduced as well, but still with compa-
rable performance.

Study of the patch size: LAR-SR is based on the as-
sumption that the the textural components are local-related,
and uses patch-level local autoregression for the textural
components to reduce the huge time consumption in tra-
ditional autoregression method. Thus it’s important to vali-
date the patch size trade off between the speed and the per-
formance. In this section, we conduct a study to further
evaluate the effects of the patch size in LAR-SR. Specifi-
cally, the patch size is set from 1 to 4 in the experiments
while other settings remain unchanged. The quantitative re-
sults are shown in Table 4. There are several observations
from Table 4. First, The sampling time consumption is sig-
nificantly reduced by LAR-SR, which makes the AR-based
method promising in low-level tasks. Second, as the patch
size increases, the quantitative and visualization results are
also improved. Third, as the patch size increases, the gain
brought by increasing the patch size decreases rapidly. This
validates the locality of the textural components. The vi-
sualization results for different patch sizes are shown in
Figure 7, which shows a similar trend as that in Table 4.

Comparison with global autoregressive model: It is

Patch size PSNR SSIM LPIPS Time/s
1×1 27.21 0.775 0.163 1.4
2×2 26.98 0.774 0.120 2.3
3×3 27.08 0.775 0.116 6.9
4×4 27.04 0.776 0.114 14.7

Table 4. Quantitative comparison for different patch sizes on
DIV2K validation set [1]. Tested on a NVIDIA Tesla V100 GPU.

Patch size: 1 Patch size: 2

Patch size: 3 GTPatch size: 4

LR

Figure 7. Visual results of different patch sizes in LAR-SR.

necessary to compare LAR-SR with traditional autoregres-
sive models to validate the advantages of LAR-SR. Be-
cause there is no existing AR-based methods which are
specially proposed for super-resolution tasks, we construct
and train a baseline VQVAE+pixelCNN method based on
a VQVAE [20] and a conditional pixelCNN [19]. This
VQVAE+pixelCNN method represents a ”traditional” AR-
based method. First, we train the VQVAE to restore the
HR images and then a conditional pixelCNN is used to es-
timate the posterior probability distribution conditional on
the LR images. Due to the huge time consumption for tra-
ditional AR-based models, we only compare LAR-SR with
the baseline VQVAE+pixelCNN method on CelebA [15]
dataset. The quantitative results are shown in Table 5. It
shows that LAR-SR can not only yield consistent perfor-
mance gains over VQVAE+pixelCNN on all the quantita-
tive metrics, but also process the images with a significantly
lower time consumption. More specifically, our proposed
method reduces the time consumption to about 0.52% of
the global autoregressive method for images of resolution
128 × 128. It is worth noting that the time complexity of
our proposed local autoregressive method is mainly based
on the chosen patch size, which means that when the size
of input images increases our method shows more advan-
tages compared with global autoregressive method in the
time consumption.
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HR Coarse enc_1 enc_2 dec_1 dec_2

Figure 8. Visualization of the heatmap for the encoder and decoder in tex-VQVAE.

Method Time PSNR SSIM LPIPS
AR VQVAE+pixelCNN 230.7s 26.53 0.752 0.104
LAR LAR-SR 1.2s 27.26 0.784 0.077

Table 5. The quantitative comparison between LAR-SR and the
AR-based baseline.The time duration is measured with a NVIDIA
RTX 1080Ti GPU.

Analyze of the texture codebook: We conduct an-
other study to better investigate the effect of the text code-
book and tex-VQVAE, for which we visualize the heatmaps
for different layers in the encoder and the decoder of tex-
VQVAE. The results are shown in Figure 8. As expected,
it shows that tex-VQVAE indeed pays more attention to the
textual information, especially the image components that
are not well restored in the coarse SR image.

Ablation study: We further conduct ablation studies to
measure the effects of the restored structural components in
both stages. The structural component, i.e., xc is restored
by the regression-based coarse SR module. In Stage 1, xc is
used to construct the tex-VQVAE, while in Stage 2, the tex-
tural component Ĩ is sampled conditioned on xc. In the first
ablation study, structural branch is removed in stage one and
replaced by the origin LR image in stage two and the model
is named as LAR-vanilla. On the other hand, to compare the
difference between VQVAE [20] and tex-VQVAE, we re-
move the structural input, i.e., xc for the decoder in Stage 1,
which makes the modified tex-VQVAE similar to the origi-
nal VQVAE, and the model is denoted as LAR-full. Quanti-
tative and visualization comparison are constructed between
these two methods and LAR-SR. The quantitative results
are shown in Table 6. As expected, the structural compo-
nent is important in both stages. The comparison between
LAR-vanilla and LAR-full illustrates that the final SR im-
ages rely on the restoration of the basic structure, while the
comparison between LAR-full and LAR-SR shows that the

textural-structural components separation brings less arti-
facts. Moreover, both the ablation studies show that the vi-
sual quality, i.e., LPIPS metric, gains more from the split of
structure and texture in Stage 1.

Method Stage 1 Stage 2 PSNR/SSIM/LPIPS

LAR-vanilla % % 26.31/0.75/0.185
LAR-full % ! 26.56/0.76/0.164
LAR-SR ! ! 27.03/0.77/0.114

Table 6. Quantitative comparison of different models in ablation
study.

5. Conclusion
In this paper, we propose a novel approach called LAR-

SR for super-resolution task based on a tex-VQVAE and a
local autoregressive module. To the best of our knowledge,
it is the first work to adapt AR-based models into super-
resolution. The experiments demonstrate that our proposed
approach can yield state-of-the-art performance when com-
pared with previous super-resolution models. Besides, we
explore the implementation of LAR module and propose
LAR-attn module to further improve the computation effi-
ciency. In addition, the remarkable reduction of time com-
plexity resulted from the localized autoregressive operation
makes the proposed LAR-SR model much more applicable
for more low-level tasks.
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