
RecDis-SNN: Rectifying Membrane Potential Distribution for Directly Training
Spiking Neural Networks

Yufei Guo*, Xinyi Tong*, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Zhe Ma, Xuhui Huang†

X LAB, The Second Academy of CASIC, China
yfguo@pku.edu.cn, tongxinyi@buaa.edu.cn, starhxh@126.com

Abstract

The brain-inspired and event-driven Spiking Neural Net-
work (SNN) aiming at mimicking the synaptic activity of
biological neurons has received increasing attention. It
transmits binary spike signals between network units when
the membrane potential exceeds the firing threshold. This
bio-mimetic mechanism of SNN appears energy-efficiency
with its power sparsity and asynchronous operations on
spike events. Unfortunately, with the propagation of binary
spikes, the distribution of membrane potential will shift,
leading to degeneration, saturation, and gradient mismatch
problems, which would be disadvantageous to the network
optimization and convergence. Such undesired shifts would
prevent the SNN from performing well and going deep. To
tackle these problems, we attempt to rectify the membrane
potential distribution (MPD) by designing a novel distribu-
tion loss, MPD-Loss, which can explicitly penalize the un-
desired shifts without introducing any additional operations
in the inference phase. Moreover, the proposed method can
also mitigate the quantization error in SNNs, which is usu-
ally ignored in other works. Experimental results demon-
strate that the proposed method can directly train a deeper,
larger, and better-performing SNN within fewer timesteps.

1. Introduction
Artificial Neural Networks (ANNs) have achieved huge

success in many application fields, including image clas-
sification [16, 44, 45], object detection [14, 31, 39], ma-
chine translation [2], gaming [43, 46], etc. However, the
increased computing resource required by ANNs poses a
burden on latency-sensitive applications and energy-limited
devices [28,30,51]. Recently, The Spiking Neural Networks
(SNN) has received increasing attention and been regarded
as a potential competitor of ANNs, due to their biology-
inspired neural behavior and efficient computation [40].

*Equal contribution.
†Corresponding author.

SNNs utilize binary spike activity i.e., 0 for nothing and
1 for spike event, to transmit information. This transmitting
mode bridges the gap between real value-based information
processing of ANNs and spike-based information process-
ing of brains. With the characteristics of binary spike-based
and sparse temporal communicating mechanisms, SNNs
enjoy power-efficiency for implementation on specific neu-
romorphic hardwares [3, 7, 21, 33], and have been increas-
ingly promising in neuromorphic computation [7], pattern
recognition [20], robotics [18], brain-inspired devices [33],
etc.

However, the discontinuous and non-differentiable spike
activity poses difficulty to directly train SNNs using gradi-
ent descent in back-propagation. The current SNN training
algorithms for avoiding the dilemma of non-differentiability
can be categorized as (i) the ANN-to-SNN conversionand
(ii) the surrogate gradient (SG) descent method. The con-
version methods usually convert a pre-trained non-spike
ANN to its SNN counterpart with the same architecture [4,
5,9,11,15,26,38,42]. Although the converted networks can
achieve comparable performances to the original ANNs,
they come at the cost of numerous inference timesteps,
which are much more time and energy-consuming. The
SG descent method adopts SGs (i.e., 1|x−Vth|<0.5 or 0,
otherwise, where Vth is the firing threshold and usually
is 0.5) to replace the all-or-nothing gradients of the spike
activity function [10, 17, 24, 29, 34, 41, 49]. It provides a
chance to directly train SNNs with several timesteps. How-
ever, it also suffers from the problem of gradient vanish-
ing or explosion. These problems will lead to performance
degradation and shallow network architectures. Many ef-
forts [12,13,23,37,52] have been made to solve these prob-
lems and drive the models to achieve state-of-the-art per-
formance. Nevertheless, due to the lack of comprehen-
sive analysis of the difficulty of training SNNs directly,
there still has room for improvement in these works. Here,
we provide a novel perspective to understand the dilemma
of training an SNN by analyzing the membrane potential
shifts. The brief analysis for a single channel is as follows.

As the binary spikes propagating through layers, the dis-

326

1101001

Pre-Spikes

0101110

0011001

0100110

���� = ��+��+��

MPD-Loss

 Degeneration Saturation Gradient Mismatch Balanced Distribution
Membrane Potential

1010001

0100110

0101000

1100000

Post-SpikesSpike Feature Map Spike Feature Map

Membrane Potential Spike

V th

u

LIF
W1

W2

1.5-0.5 0.50 1

V t h

0 1 20.5 1.5

V t h

0 210.5 1.5

V t h

2-1.5 0.50-
1 1.51

V t h

(a) (b)

(c)

The differential approximated gradient interval Firing Threshold V t h LIF Model Synapse

Output

Figure 1. The overall framework of the proposed RecDis-SNN. (a) The detailed LIF model. (b) The propagation and update of the neuron
spikes in two adjacent layers. (c) The examples of the three undesired membrane potential distribution shifts and the balanced distribution
adjusted by the proposed MPD-loss.

tribution of membrane potential will shift accumulatively
during the training and may fall into an inappropriate range,
which causes training difficulties. As illustrated in Fig. 1,
the membrane potential shift will appear three imbalances
in some extreme cases: (i) Degeneration: if almost all the
membrane potential values of the neurons in a channel are
beyond or below the firing threshold, the spikes of this chan-
nel will be homogeneity (i.e., all 0s or 1s) and the feature in-
formation of the channel will be negligible; (ii) Saturation:
if almost all the membrane potential values of the neurons
in a channel are out of the interval [0, 1], the gradients for
these neurons will be 0 and result in the back-propagation
inability. (iii) Gradient mismatch: if almost all the mem-
brane potential values in a channel fall into the interval
[0, 1], it is equivalent to use SGs for all gradient compu-
tation, which will enlarge the approximated errors from the
accurate gradients, and therefore lead to more severe gradi-
ent mismatches. The detailed analysis is in Sec. 3.2.

The uncontrollable shift of membrane potential distribu-
tion will increase the training difficulty for SNNs, and re-
strict the network scale. In this paper, the three undesired
membrane potential distribution (MPD) shifts will be ana-
lyzed in detail, firstly. Based on this analysis, a novel distri-
bution loss i.e., MPD-Loss is proposed to explicitly penalize
those undesired shifts. By incorporating MPD-Loss into an
SNN, we present RecDis-SNN, which will enjoy Rectified
membrane potential Distribution. The overall framework of
RecDis-SNN is illustrated in Fig. 1. The main contributions
are as follows:

• We present a new perspective to understand the diffi-
culty of training SNNs by analyzing three undesired
shifts of membrane potential distribution in forward

propagation. Then, the MPD-Loss is proposed to pe-
nalize the undesired shifts.

• The MPD-Loss is beneficial for alleviating the gradient
vanishing or explosion, adjusting the spike rate, and
speeding up the convergence. In this sense, it plays a
role of the normalization without extra operations in
the inference phase. As far as we know, this is one of
the few works that can directly train deep SNNs with-
out normalization techniques or any warm-start.

• The MPD-Loss can also mitigate the problem of quan-
tization error, which is usually ignored in other works.
To our best knowledge, this is the first work that has
noticed the problem in SNNs and provides a solution.

• The RecDis-SNN is evaluated on both standard non-
spiking and neuromorphic benchmarks. Experimen-
tal results show that by using MPD-Loss, the RecDis-
SNNs can achieve state-of-the-art performance. Mean-
while, MPD-Loss can be easily combined with other
methods and further improve their performance.

2. Related Work
The unwanted MPD shifts will aggravate the instabil-

ity of gradients (i.e., gradient vanishing or explosion) in
deep SNNs. Moreover, those shifts can cause over-firing or
under-firing of the SNN. The approaches for solving these
problems in previous works can be mainly categorized into
(i) normalization techniques and (ii) extensions with more
learnable parameters. These approaches alleviate the MPD
shift problems to some extent in an implicit way. We intro-
duce those related works in this section.

327

Normalization. Normalization techniques are com-
monly used to avoid gradient vanishing or explosion by
shrinking the internal variance shift in Deep Neural Net-
works (DNNs). With the verified advantages of increas-
ing accuracy and accelerating convergence in DNNs, many
variants had been presented, e.g., batch normalization [19],
group normalization [48], layer normalization [1], and
weight normalization [27]. There are also some other
normalization-like techniques adopting empirical settings
to redistribute data [35, 36]. For example, [35] presented
the similar degeneration problem of binarization and solved
it using a specially designed additional regularization loss.
We are inspired by this idea and apply it in SNN field.
We further reduce the quantization error through improve-
ment. Inspired by the huge success in DNNs, many im-
proved normalization techniques had also been presented
for training SNNs [11, 42, 47, 52]. The NeuNorm [47] was
proposed to balance neural selectivity and normalize the
neuron activity by using the input statistics (moving aver-
age firing rate). Theoretically, NeuNorm is similar with the
batch normalization. By normalizing the spatio-temporal
pre-activations to N (µ, V 2

th), the threshold-dependent batch
normalization (tdBN) [52] can weaken the dependence on
the firing threshold in pre-activations. It is clear that nor-
malization restricts the neuron pre-activation range, which
could be beneficial to overcome the degeneration and sat-
uration problems caused by the undesired shifts. However,
the existing normalization methods in SNNs all ignore the
gradient mismatch problem to our best knowledge.

Extension with more learnable parameters. To adjust
the neuron firing, plenty of works attempted to use more
learnable parameters to balance the firing threshold and
membrane potential in neurons. For example, the paramet-
ric Leaky Integrate-and-Fire (PLIF) neuron [13] was pro-
posed as an alternative for the original neuron, in which, the
membrane leak is a learnable parameter rather than an em-
pirical hyper-parameter. Furthermore, the Diet-SNN [37]
is presented to jointly optimize the membrane leak and
the firing threshold. Nevertheless, a better relationship be-
tween membrane potentials and firing threshold can be ex-
plored by introducing more learnable parameters, this kind
of method is still plagued by the gradient mismatch prob-
lem.

Different from the current SNN methods, the proposed
method simultaneously addresses the three undesired MPD
shift problems without losing sight of the quantization er-
ror problem. Like [6, 35], we try to carve the distribution
by embedding the regularization in the loss function, i.e.,
MPD-Loss. Furthermore, it can also alleviate the quanti-
zation error, which is usually ignored in other works. We
suppose that this new insight on SNNs including the quan-
tization error problems may bring some interesting enlight-
enment to the following-up research.

3. Materials and Methodology
This section first theoretically introduces the Leaky-

Integrate-and-Fire (LIF) neuron model and the SGs utilized
in the proposed approach. Then the proposed method of
rectifying MPD will be introduced in detail. Finally, its
effectiveness and performance are demonstrated in an an-
alytic way.

3.1. Spiking Neural Networks

Leaky-Integrate-and-Fire Neuron Model. The spik-
ing neuron is the fundamental computing unit of SNNs. Its
membrane potential and internal voltage change response
to the input signals through the connected synapses. Unlike
ANNs, which process information with a series of contin-
uous and high-precision values, the spiking neuron prop-
agates information by emitting a binary spike signal and
transmitting it to the next connected one when membrane
potential exceeds the firing threshold, following the princi-
ple of biological neuron firing rules. As a commonly used
neuron model in SNNs, the Leaky-Integrate-and-Fire (LIF)
model is adopted in this paper. It can be described as the
following differential equations:

τ
du

dt
= −u+RI, u < Vth (1)

u = ureset & fire a spike, u ≥ Vth (2)

where u is the neuron membrane potential, ureset denotes
the initial neuron resting potential, which is usually as-
sumed as 0, the product of the input current I and resistance
R denotes the changing voltage towards the pre-synaptic
signals, τ is a time constant, and Vth is the firing threshold.
Equation (1) describes the membrane potential accumula-
tion below Vth. Equation (2) shows that when u is up to
Vth, the neuron fires a spike and the u is reset to the resting
potential, ureset.

Note that the differential representation with continu-
ously varying voltages is not easy to be implemented in
mainstream machine learning frameworks. Hence, an it-
erative model [47] is conducted as follows,

ut = (1− dt

τ
)ut−1 +

dt

τ
RI (3)

where ut is the membrane potential of the neuron at
timestep t. The factor (1 − dt

τ) can be denoted as λτ ,
the input voltage dt

τ RI can be expanded to the weighted
summation of pre-synaptic signals as

∑
j wjo

t
j , where the

weight wj is used to connect the j-th pre-neuron and cur-
rent neuron, and otj indicates the binary spike from the j-th
pre-neuron at timestep t. Then the iterative LIF model is
updated as

ut = λτu
t−1(1− ôt−1) +

∑
j

wjo
t
j (4)

328

ôt−1 =

{
1, if ut−1 ≥ Vth,
0, otherwise.

(5)

Equation (4) indicates that the membrane potential of the
current neuron, ut is affected by the spike otj from the pre-
neuron. And the spike emission, ôt−1 from the previous
timestep also contributes to ut in current timestep t.

In this paper, we set the firing threshold Vth to 0.5, the
leaky factor τ to 0.2, and the resting potential ureset to 0.
Since the LIF model in the last layer would damage the net-
work performance severely, we replace the LIF model in the
output layer with a modified model that only accumulates
the incoming inputs without using any leakage or emitting
spike following recent works [13,37,47,52]. This modified
model can be described by

ut = ut−1 +
∑
j

wjo
t
j (6)

Surrogate Gradients in Back-Propagation. As afore-
mentioned, using SGs to replace the all-or-nothing gradi-
ents of the spike activity function is one of the most com-
monly used SNN training methods. In this paper, the rect-
angular function is adopted as in the prior works [47,52]. It
can be denoted as

do

du
=

{
1, if 0 < u < 1,
0, otherwise.

(7)

3.2. Rectifying Membrane Potential Distribution

To explain the proposed method clearly, we first intro-
duce some notations and give formal definitions of the un-
wanted distribution shifts during the training process. Then,
the distribution loss, MPD-Loss for explicitly penalizing the
shifts is elaborated in detail. Next, how MPD-Loss is in-
corporated into the objective function is given. Finally, a
deeper understanding of the proposed method is presented
by the experiment and analysis.

We use Ub,l,c to denote the membrane potentials for all
timesteps in the c-th channel of the l-th layer for the b-th
batch of data. Thus, Ub,l,c is a 4-D tensor with a size of B×
T ×W ×H , where B, T , W and H denote the batch size,
the number of timesteps, width and height of the membrane
potential map, respectively. For brevity, we simplify Ub,l,c

as U. And U(q) denotes the q quantile of the ascending
ordered elements of U, where 0 ≤ q ≤ 1. Then the three
undesired distribution shifts shown in Fig. 1 can be defined
as follows,

• Degeneration: U(0) ≥ Vth or U(1) ≤ Vth

• Saturation: U(0) ≥ 1 or U(1) ≤ 0

• Gradient mismatch: 0 ≤ U(0) ≤ 1 and 0 ≤ U(1) ≤ 1

We will show how to design the distribution loss for pe-
nalizing the three undesired shifts and explain the reasons
for such design, as below.

Degeneration. In the forward-propagation, if U(0) ≥
Vth or U(1) ≤ Vth, the spike rate of neurons will be 1 or 0.
To avoid this situation, the loss function can be written as

LD =
[
(U(0) − Vth)+

]2
+

[
(Vth − U(1))+

]2
(8)

where (·)+ is equivalent to max{·, 0}.
LD is only related to the maximum and minimum of U ,

and it is an isolated value. Hence it will cause limited back-
propagation. To enhance the robustness of LD, the punish-
ment can be relaxed by a pair of quantiles, ϵ and 1−ϵ. Then
LD can be rewritten as

LD =
[
(U(ϵ) − Vth)+

]2
+

[
(Vth − U(1−ϵ))+

]2
(9)

To further make LD fit in the back-propagation phase,
it should be transformed into a differentiable form. In such
case, according to the experience in [52], we assume that the
values of U can be sampled from a Gaussian distribution,
N (µ, σ2), where µ and σ can be estimated by the mean and
standard deviation over the U . Thus, the quantile ϵ can be
formulated as µ − kϵσ following the predefined Gaussian
distribution, where kϵ is constantly determined by ϵ. Then,
LD can be further updated as

LD = [(µ− kϵσ − Vth)+]
2
+ [(Vth − (µ+ kϵσ))+]

2

= [(µ− kϵσ − Vth)+]
2
+ [(Vth − µ− kϵσ)+]

2
(10)

Saturation. This case occurs when most of the mem-
brane potentials are out of the interval [0, 1], so it can be
penalized by

LS =
[
(U(0) − 1)+

]2
+

[
0− U(1))+

]2
(11)

Similar to LD, it can also be relaxed by the pair of quantiles,
ϵ and 1− ϵ as follows

LS =
[
(U(ϵ) − 1)+

]2
+

[
(0− U(1−ϵ))+

]2
. (12)

Similar to LD, LS can be formulated into a differentiable
form by introducing the Gaussian distribution estimation,
as follows

LS = [(µ− kϵσ − 1)+]
2
+ [0− (µ+ kϵσ)+]

2

= [(µ− kϵσ − 1)+]
2
+ [−µ− kϵσ)+]

2
.

(13)

Gradient Mismatch. In the back-propagation, a rect-
angular function is utilized to approximate the gradient of
the spike activity function with the interval of [0, 1]. Hence,
the more membrane potentials are in the range of [0, 1], the
worse the gradient mismatch problem will be. Therefore,
the loss function can be designed as

LM =
[
min(U(0) − 0, 1− U(1))+

]2
, (14)

329

Algorithm 1 Training SNNs for classification with MPD-
Loss for one epoch.
Input: an SNN to be trained; Timestep: T ; Firing thresh-
old: Vth; Training dataset; Validation dataset; Total training
iteration in one epoch Itrian; Total validation iteration in
one epoch: Ival.
Output: The trained SNN.

1: for all i = 1, 2, . . . , Itrain iteration do
2: Get mini-batch training data and class label: Yi;
3: Calculate the SNN output Oi(t) of each time step;
4: Compute classification loss LCE =

1
T

∑T
t=1 LCE(Oi(t),Yi);

5: for all l = 1, 2, . . . , L layers do
6: Compute LD, LS , and LM for every layer l.
7: Compute MPD-Loss LMPD by Eq. (19).
8: end for
9: Compute the total loss LCE-MPD by Eq. (20);

10: Backpropagation and update model parameters.
11: end for
12: for all i = 1, 2, . . . , Ival iteration do
13: Get mini-batch training data and class label: Yi;
14: Calculate the SNN average output Oi

mean =
1
T

∑T
t=1 Oi(t) over all timestep;

15: Compare the classfication factor Oi
mean and Yi for

classification.
16: end for

or
LM =

[
max(U(0) − 0, 1− U(1))+

]2
. (15)

Obviously, Eq. (14) tends to bias the potential distribu-
tion to 0 or 1, while Eq. (15) tends to pull away U(0) and
U(1), so that the distribution will expand out of the inter-
val [0, 1]. Though the two both can mitigate the problem of
gradient mismatch, Eq. (14) will cause over-firing or under-
firing of the SNN. In addition, Eq. (15) can result in a bi-
modal potential distribution, while Eq. (14) can not in prac-
tice. Since a bimodal potential distribution enjoys quantiza-
tion error reduction (see details in the next subsection), we
choose Eq. (15) here. Then, the loss function can be relaxed
as

LM =
[
max(U(ϵ) − 0, 1− U(1−ϵ))+

]2
. (16)

Similarly, we have

LM = [max(µ− kϵσ − 0, 1− (µ+ kϵσ))+]
2

= [max(µ− kϵσ, 1− µ− kϵσ)+]
2
.

(17)

Then, the proposed distribution loss, MPD-Loss, which
aims at addressing the three challenges can be defined as
the integration of the above loss functions as follows,

LMPD = LD + LS + LM . (18)

In practice, except for the last output layer, the undesired
shifts are penalized in every channel for each layer in the
training phase. Specifically, LMPD for the b-th batch of
input data is determined as

Lb
MPD =

1

l

∑
l

(
1

c

∑
c

Lb,l,c
D + Lb,l,c

S + Lb,l,c
M). (19)

Finally, taking classification loss into consideration, the to-
tal loss can be written as

Lb
CE-MPD = Lb

CE + λLb
MPD (20)

where LCE is the cross-entropy loss, and λ is a balanced
coefficient, which is set as 2 in the paper.

For implementation, we only replace LCE with
LCE-MPD in the training process, and keeps the inference
rules of SNNs in the evaluation phase. To penalize the de-
generation, saturation, and gradient mismatch, the corre-
sponding parameter kϵ are set to 1, 0.25, and 1.25, respec-
tively. The training algorithm for one epoch is detailed in
Algorithm 1.

3.3. Analysis and Discusion

In contrast with the prior works for alleviating the un-
desired shifts implicitly using normalization techniques, we
propose to rectify the membrane potential distribution by
the loss, so that those undesired shifts can be alleviated in
an explicit way. Besides, the proposed method has another
three advantages compared to normalization: (i) the SNN
trained with normalization will inevitably introduce addi-
tional operations in the inference phase than its counterpart
that trained without normalization, while the SNN trained
with MPD-Loss will not; (ii) MPD-Loss can address the
gradient mismatch problem; (iii) MPD-Loss helps reduce
quantization error, i.e., the information loss in forward prop-
agation.

To verify the advantage of MPD-Loss in terms of the
gradient mismatch problem, we investigate the membrane
potential distribution change of the last layer of the first
block in the ResNet-19 model trained with tdBN (threshold-
dependent batch normalization) [52] and MPD-Loss, re-
spectively. As shown in Fig. 2, MPD-Loss gradually
changes an offset-free unimodal distribution into a uni-
modal distribution with offset, and finally into a bimodal
distribution. However, for the tdBN-based model, the dis-
tribution is eventually turned into a unimodal distribution
with offset. Both methods tend to maintain the MPD within
the interval of [−1, 2], hence they are all able to address the
degeneration and saturation problems well. However, com-
pared with MPD-Loss-based SNN, the SNN trained with
tdBN has more membrane potential values in the interval
[0, 1]. This difference indicates that without an explicit pe-
nalizing mechanism for such the shift like MPD-Loss, tdBN
would not alleviate gradient mismatch well.

330

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8 MPD-Loss_epoch = 0

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8 MPD-Loss_epoch = 500

2 1 0 1 2

0.0

0.2

0.4

0.6

0.8 MPD-Loss_epoch = 1000

2 1 0 1 2

0.0

0.2

0.4

0.6

0.8 tdBN_epoch = 1000

Figure 2. The membrane potential distribution of the specific layer
in ResNet-19 trained with MPD-Loss in epoch 0, 500, and 1000,
as well as the one trained with tdBN normalization in epoch 1000.

Moreover, the bimodal MPD also helps SNNs reduce
quantization error, which is introduced by the transforma-
tion from real values into 0/1 spikes. In specific, the firing
threshold divides the membrane potentials into two parts,
the part with smaller values is assigned to ”0” spike, and
the one with larger values is assigned to ”1” spike. Then
the quantization error depends on the margin between the
membrane potential and its corresponding spike. Hence, the
quantization error can be defined as the square of the differ-
ence between the membrane potential and its corresponding
quantization spike value. It can be seen that, compared to a
unimodal distribution, a bimodal distribution will be more
friendly to this mechanism, since the latter one can natu-
rally gather the membrane potentials near ”0” and ”1”, but
the former one squeeze those potentials close to some value
in [0, 1]. Therefore, constraining the membrane potentials
into a bimodal distribution is more likely to obtain an SNN
with less quantization error, and it also takes care of the in-
formation expressivity of the network.

4. Experiment
We evaluated the proposed training framework on the

standard non-spiking datasets, CIFAR10/100 [22] and Im-
ageNet [8], as well as the neuromorphic dataset, DVS-
CIFAR10 [25]. The network architectures in this paper
include CIFARNet [47], ResNet-19 [52], Spiking-ResNet-
34 [52], and VGG-16 [37].

4.1. Ablation Study for MPD-Loss

We first conducted a set of ablation experiments to verify
the effectiveness of the three proposed distribution losses
on CIFAR10 using CIFARNet and ResNet-19 as backbones
with timestep = 4. The results are shown in Tab. 1.

Table 1. Ablation study for MPD-Loss.

Architecture Method Accuracy

CIFARNet

None 89.83%
w/ LD 91.29%
w/ LS 91.01%
w/ LM 91.72%
w/ MPD-Loss 92.08%

ResNet-19

None 91.23%
w/ LD 93.84%
w/ LS 93.83%
w/ LM 94.04%
w/ MPD-Loss 94.34%

Benefitting from the 0/1 spike information processing
paradigm, SNNs run efficiently on neuromorphic hard-
wares. However, this information processing paradigm also
causes SNN models not easy to be trained, since the spike
rate of an SNN model with random weights always de-
creases layer by layer. The spike rate will soon become
0 after several layers when an SNN is trained from scratch,
resulting in information flow disappearing and difficulty to
train large and deep SNNs. As shown in Tab. 1, the mod-
els initialized by random weights without any training tech-
niques were stuck in dilemma, and the accuracy was nearly
the same after hundreds of epochs (details can be seen in
Fig. 3). After applying any proposed distribution loss, the
trapped networks all can jump out of the dilemma. Our
method shows the potential to train deep SNNs. To fur-
ther compare the accuracy, we use the model trained by the
MDP-Loss after several iterations when the spike rate of its
last layer is not 0 as the initialization of the vanilla SNNs.

The CIFARNet based on LD, LS , LM achieve 91.29%,
91.01%, 91.72% accuracy, surpassing the vanilla one by
1.46%, 1.18%, 1.89% respectively. For ResNet-19, The
three proposed distribution losses also demonstrate their su-
periority. These distribution losses are all effective for train-
ing deep SNNs and improving their performance. More-
over, it can be seen that the improvements brought by these
distribution losses together can be superimposed.

4.2. Ablation Study for Training Cost

We then conducted some experiments to explore the
added training cost by MPD-Loss. The results of train-
ing cost experiments for CIFAR10 using CIFARNet and
ResNet-19 as backbones with 4 timesteps on a single RTX
2080Ti in the Tab. 2. We set batchsize and epoch as 64 and
1000. It can be seen that the extra training cost do not ex-
ceed 17% for MPD-Loss. In the inference, our method will
not add extra time since MPD-Loss will not be computed in
this phase.

331

Table 2. Ablation study for training cost.

Architecture Method Time cost (min.)

CIFARNet
None 2524.82
w/ tdBN 2753.65
w/ MPD-Loss 2948.88

ResNet-19
None 7685.88
w/ tdBN 8099.43
w/ MPD-Loss 8648.85

Table 3. The result of quantization error.

Dataset Method Ave. error

CIFAR10 w/ MPD-Loss 0.66
w/ tdBN 0.78

CIFAR100 w/ MPD-Loss 0.64
w/ tdBN 0.77

CIFAR10-DVS w/ MPD-Loss 0.61
w/ tdBN 0.83

4.3. Study for Quantization Error Reduction

To verify the advantages of the MPD-Loss in reducing
quantization error, we computed the average quantization
error of the last layer of the first block in the ResNet-19
with 4 timesteps trained by tdBN and the MPD-loss on CI-
FAR10, CIFAR100, and CIFAR10-DVS respectively. The
result is reported in the Tab. 3. It shows that the average
quantization error of tdBN is much bigger than that of the
MPD-Loss.

4.4. Comparison with The Normalization

We further conducted experiments to compare the pro-
posed MPD-Loss with tdBN on CIFAR10 using CIFARNet
and ResNet-19 with timestep = 4. The comparison results
of the SNNs trained without any techniques as well as the
one trained with tdBN only, MPD-Loss only, and the com-
bination of tdBN and MPD-Loss are shown in Tab. 4.

As abovementioned, the models with random initializa-
tion maybe not be trainable. Tab. 4 shows that after apply-
ing tdBN or MPD-Loss, these all can be trained then. How-
ever, it can be seen in Fig. 3, that our method enjoys easier
convergence than tdBN technique. Furthermore, the tdBN
needs more epochs to get out of the trouble. The MPD-Loss
based on CIFARNet achieves 92.08% accuracy, surpassing
the tdBN by 1.39%. For ResNet-19, The proposed frame-
work can reach 94.34%, outperforming the tdBN technique
(92.92%) with 1.42% improvement. It can be claimed that
the regularization conducted by the proposed method has
a similar positive effect as normalization techniques in the
SNN training, or even better.

It can also be seen that after combining the MPD-loss

Table 4. Comparison with the normalization.

Architecture Method Accuracy

CIFARNet

None -
w/ tdBN 90.69%
w/ MPD-Loss 92.08%
w/ tdBN & MPD-Loss 92.20%

ResNet-19

None -
w/ tdBN 92.92%
w/ MPD-Loss 94.34%
w/ tdBN & MPD-Loss 95.53%

and the tdBN, the SNNs can show higher performance,
reaching the top-1 accuracy of 92.20% on CifarNet and
95.53% on ResNet-19. It proves that the MPD-loss is com-
patible with other normalization techniques and can be used
in combination with them.

0 200 400 600 800 1000
epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0
tra

in
in

g
lo

ss MPD-Loss + tdBN
tdBN
MPD-Loss
None

0 200 400 600 800 1000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

 % MPD-Loss + tdBN
tdBN
MPD-Loss
None

Figure 3. Comparisons of the training loss (left) and test accuracy
(right) on CIFAR10.

4.5. Comparisons with Other Methods

In this section, we compared our experimental results
with previous works. The experimental results of the classi-
fication accuracy on non-spiking datasets and neuromorphic
datasets are listed in Tab. 5 and Tab. 6, respectively. Since
the tdBN [52] can improve the performance of the proposed
RecDis-SNN, we combined it with our MPD-Loss. For
each run, we report the mean accuracy as well as the stan-
dard deviation with 3 trials.

For CIFAR10, the RecDis-SNN based on ResNet-
19 [52] is superior to all the other compared methods
by achieving the top-1 accuracy of 95.55% with only 6
timesteps. Especially, our RecDis-SNN significantly out-
performs the STBP-tdBN [52] with 2.39% improvement, in
which the network architecture is consistent with ours. The
CIFARNet [47] trained with the proposed method is also
competitive among the other state-of-the-art approaches,
reaching 92.20% with 4 timesteps and 92.91% with 6
timesteps.

On CIFAR100, the top-1 accuracy of the RecDis-SNN
using ResNet-19 as backbone gets to 74.10% with only 4

332

Table 5. Comparisons with state-of-the-art SNNs on CIFAR10, CIFAR100, and ImageNet.

Dataset Method Type Architecture Timestep Accuracy

CIFAR10

RMP-SNN [15] ANN2SNN ResNet-20 2048 91.36%
ANN-SNN [9] ANN2SNN CIFARNet 128 90.58%
Hybrid Training [38] Hybrid training ResNet-20 250 92.22%
STBP [47] SNN training CIFARNet 12 90.53%
Spike-basedBP [23] SNN training ResNet-11 100 90.95%
STBP-tdBN [52] SNN training ResNet-19 6 93.16%
PLIF [13] SNN training PLIFNet 8 93.50%
TSSL-BP [50] SNN training CIFARNet 5 91.41%
Diet-SNN [37] SNN training CIFARNet 5 91.59%

RecDis-SNN (ours) SNN training

CIFARNet
2 90.58% ±0.12
4 92.20% ±0.10
6 92.91% ±0.09

ResNet-19
2 93.64% ±0.07
4 95.53% ±0.05
6 95.55% ±0.05

CIFAR100

RMP-SNN [15] ANN2SNN ResNet-20 2048 67.82%
ANN-SNN [9] ANN2SNN VGG-16 128 70.47%
BinarySNN [32] BNN2SNN VGG-15 62 63.20%
Hybrid Training [38] Hybrid training VGG-11 125 67.78%
Diet-SNN [37] SNN training VGG-16 5 69.67%

RecDis-SNN (ours) SNN training VGG-16 5 69.88% ±0.08
ResNet-19 4 74.10% ±0.13

ImageNet

RMP-SNN [15] ANN2SNN ResNet-34 1024 66.61%
Hybrid Training [38] Hybrid training ResNet-34 250 61.48%
STBP-tdBN [52] SNN training ResNet-34 6 63.72%
PLIF [13] SNN training ResNet-34 7 67.04%
RecDis-SNN (ours) SNN training ResNet-34 6 67.33% ±0.10

timesteps. It is also 0.21% higher than Diet-SNN [37] based
on the VGG-16 with 5 timesteps.

For ImageNet, the standard ResNet-34 [16] was selected
as the backbone for the SNNs. Our RecDis-SNN achieves
67.33% top-1 accuracy with 6 timesteps, it significantly out-
performs the STBP-tdBN [52] with 3.61% improvement. In
addition, the reported accuracy is also higher than PLIF [13]
but with fewer parameters and timesteps.

Table 6. Performance comparisons on DVS-CIFAR10.

Methods Architecture Accuracy

STBP [47] CIFARNet 60.50%
STBP-tdBN [52] ResNet-19 67.80%

RecDis-SNN (ours) CIFARNet 67.30% ±0.05
ResNet-19 72.42% ±0.06

For DVS-CIFAR10, our CIFARNet and ResNet-19
achieve 67.30% and 72.42% top-1 accuracy with 10
timesteps, respectively, with 6.80% and 4.62% absolute ac-
curacy improvements compared with the other state-of-the-

art methods with the same backbones and the timesteps.

5. Conclusion

In this paper, we present a new perspective to under-
stand the difficulty of training SNNs. With the propaga-
tion of spikes, the distribution of membrane potential will
shift, causing degeneration, saturation, and gradient mis-
match problems. We then introduce MPD-Loss to penal-
ize the undesired shifts. Experimental results and analy-
sis show that the proposed distribution loss performs bet-
ter than other normalization techniques by regularizing the
distribution in many aspects. Our method can also help re-
duce the gradient mismatch and quantization error of SNNs,
which are usually ignored in other prior works. Based on
these advantages, the MPD-Loss-based SNN can outper-
form the current methods on both typical non-spiking and
neuromorphic datasets with fewer timesteps. The proposed
method has the great potential to expand the scale and depth
of the SNN and is also flexible to be combined with other
advanced techniques to further improve the performance.

333

References
[1] J. Ba, J. Kiros, and G. Hinton. Layer normalization. arXiv,

07 2016. 3
[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv, 2014.
1

[3] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith. Bench-
marking keyword spotting efficiency on neuromorphic hard-
ware. arXiv, 2018. 1

[4] R. Bodo, L. Iulia-Alexandra, Y. Hu, P. Michael, and S. C.
Liu. Conversion of continuous-valued deep networks to ef-
ficient event-driven networks for image classification. Fron-
tiers in Neuroscience, 11:682, 2017. 1

[5] Y. Cao, Y. Chen, and D. Khosla. Spiking deep convolu-
tional neural networks for energy-efficient object recogni-
tion. International Journal of Computer Vision, 113(1):54–
66, 2015. 1

[6] S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia. Reg-
ularized binary network training. arXiv, 2018. 3

[7] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, P. Joshi, A.
Lines, A. Wild, H. Wang, and et al. Loihi: A neuromor-
phic manycore processor with on-chip learning. IEEE Micro,
38(1):82–99, 2018. 1

[8] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Ima-
genet: a large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 248–255, 06 2009. 6

[9] S. Deng and S. Gu. Optimal conversion of conventional arti-
ficial neural networks to spiking neural networks. arXiv, 02
2021. 1, 8

[10] S. Deng, Y. Li, S. Zhang, and S. Gu. Temporal efficient
training of spiking neural network via gradient re-weighting.
arXiv, 2022. 1

[11] P. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeif-
fer. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In 2015 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages
1–8, 07 2015. 1, 3

[12] W. Fang, Z. Yu, Y. Chen, T. Huang, Timothée M., and Y.
Tian. Deep residual learning in spiking neural networks.
arXiv, 2021. 1

[13] W. Fang, Z. yu, Y. Chen, T. Masquelier, T. Huang, and Y.
Tian. Incorporating learnable membrane time constant to en-
hance learning of spiking neural networks. arXiv, 08 2021.
1, 3, 4, 8

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition(CVPR), pages
580–587, 2014. 1

[15] B. Han, G. Srinivasan, and K. Roy. Rmp-snn: Residual mem-
brane potential neuron for enabling deeper high-accuracy
and low-latency spiking neural network. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13555–13564, 2020. 1, 8

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, 06 2016. 1, 8

[17] D. Huh and T. Sejnowski. Gradient descent for spiking neu-
ral networks. arXiv, 06 2017. 1

[18] T. Hwu, J. Isbell, N. Oros, and J. Krichmar. A self-driving
robot using deep convolutional neural networks on neuro-
morphic hardware. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 635–641, 05 2017. 1

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In 2015 Proceedings of the 32nd International Conference
on Machine Learning (ICML), 02 2015. 3

[20] Y. Jin, P. Li, and W. Zhang. Hybrid macro/micro level back-
propagation for training deep spiking neural networks. In
2018 Proceedings of the 32nd International Conference on
Neural Information Processing(NIPS), page 7005–7015, 09
2018. 1

[21] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras,
and S. B. Furber. Spinnaker: Mapping neural networks onto
a massively-parallel chip multiprocessor. In 2008 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages
2849–2856, 2008. 1

[22] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian
institute for advanced research). 2010. 6

[23] C. Lee, S. Sarwar, P. Panda, G. Srinivasan, and K. Roy. En-
abling spike-based backpropagation for training deep neural
network architectures. Frontiers in Neuroscience, 14:119, 02
2020. 1, 8

[24] J. H. Lee, T. Delbruck, and M. Pfeiffer. Training deep spik-
ing neural networks using backpropagation. Frontiers in
Neuroscience, 10(508):1662–4548, 2016. 1

[25] H. Li, H. Liu, X. Ji, G. Li, and L. Shi. Cifar10-dvs: An
event-stream dataset for object classification. Frontiers in
Neuroscience, 11:309, 2017. 6

[26] Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu. A free lunch
from ann: Towards efficient, accurate spiking neural net-
works calibration. In 2021 Proceedings of the 38th Inter-
national Conference on Machine Learning (ICML), volume
139 of Proceedings of Machine Learning Research, pages
6316–6325. PMLR, 18–24 Jul 2021. 1

[27] Y. Li, X. Dong, and W. Wang. Additive powers-of-two quan-
tization: An efficient non-uniform discretization for neural
networks. arXiv, 2019. 3

[28] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W.
Wang, and S. Gu. Brecq: Pushing the limit of post-training
quantization by block reconstruction. arXiv, 2021. 1

[29] Y Li, Y Guo, S Zhang, S Deng, Y Hai, and S Gu. Differen-
tiable spike: Rethinking gradient-descent for training spik-
ing neural networks. 2021 Advances in Neural Information
Processing Systems (NIPS), 34, 2021. 1

[30] Y. Li, F. Zhu, R. Gong, M. Shen, X. Dong, F. Yu, S. Lu, and
S. Gu. Mixmix: All you need for data-free compression are
feature and data mixing. In 2021 IEEE International Confer-
ence on Computer Vision (ICCV), pages 4410–4419, 2021. 1

334

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In 2016 European Conference on Computer Vision(ECCV),
pages 21–37, 2016. 1

[32] S. Lu and A. Sengupta. Exploring the connection between bi-
nary and spiking neural networks. Frontiers in Neuroscience,
14:535, 2020. 8

[33] P. Merolla, J. Arthur, R. Alvarez-Icaza, A. Cassidy, J.
Sawada, F. Akopyan, and et al. A million spiking-neuron in-
tegrated circuit with a scalable communication network and
interface. Science (New York, N.Y.), 345(6197):668–673, 08
2014. 1

[34] E. Neftci, C. Augustine, S. Paul, and G. Detorakis. Event-
driven random backpropagation: Enabling neuromorphic
deep learning machines. In 2017 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 1–4, 2017.
1

[35] Ding R., Chin T., Liu Z., and Marculescu D. Regularizing
activation distribution for training binarized deep networks,
2019. 3

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In 2016 European Conference on Computer
Vision (ECCV), pages 525–542, 2016. 3

[37] N. Rathi and K. Roy. Diet-snn: Direct input encoding with
leakage and threshold optimization in deep spiking neural
networks. arXiv, 08 2020. 1, 3, 4, 6, 8

[38] N. Rathi, G. Srinivasan, P. Panda, and K. Roy. Enabling deep
spiking neural networks with hybrid conversion and spike
timing dependent backpropagation. arXiv, 05 2020. 1, 8

[39] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 779–788, 2016. 1

[40] K. Roy, A. Jaiswal, and P. Panda. Towards spike-based ma-
chine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019. 1

[41] A. Samadi, T. P. Lillicrap, and D. B. Tweed. Deep learning
with dynamic spiking neurons and fixed feedback weights.
Neural Computation, 29(3):578–602, 2017. 1

[42] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy. Going
deeper in spiking neural networks: Vgg and residual archi-
tectures. Frontiers in Neuroscience, 13, 2019. 1, 3

[43] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. V. D. Driessche, and et al. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489,
2016. 1

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv, 2014. 1

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and et al.. Go-
ing deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–
9, 2015. 1

[46] M. Volodymyr, K. Koray, S. David, A. A. Rusu, V. Joel,
M. G. Bellemare, G. Alex, R. Martin, A. K. Fidjeland, O.
Georg, and et al. Human-level control through deep rein-
forcement learning. Nature, 518:529–533, 2015. 1

[47] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L.P. Shi. Direct
training for spiking neural networks: Faster, larger, better.
2019 Proceedings of the AAAI Conference on Artificial In-
telligence(AAAI), 33:1311–1318, 07 2019. 3, 4, 6, 7, 8

[48] Y. Wu and K. He. Group normalization. International Jour-
nal of Computer Vision, 128:742–755, 03 2020. 3

[49] Y. Wu, D. Lei, G. Li, J. Zhu, and L. Shi. Spatio-temporal
backpropagation for training high-performance spiking neu-
ral networks. Frontiers in Neuroscience, 12:331, 2018. 1

[50] W.i Zhang and P. Li. Spike-train level backpropagation for
training deep recurrent spiking neural networks. In 2019
Proceedings of the International Conference on Neural In-
formation Processing(NIPS), 08 2019. 8

[51] X. Zhang, H. Qin, Y. Ding, R. Gong, Q. Yan, R. Tao, Y.
Li, F. Yu, and X. Liu. Diversifying sample generation for
accurate data-free quantization. In 2021 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
15658–15667, 2021. 1

[52] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li. Going deeper
with directly-trained larger spiking neural networks. arXiv,
10 2020. 1, 3, 4, 5, 6, 7, 8

335

