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Abstract

A variety of diagnostic and therapeutic protocols rely on
locating in vivo target anatomical structures, which can be
obtained from medical scans. However, organs move and
deform as the patient changes his/her pose. In order to ob-
tain accurate target location information, clinicians have
to either conduct frequent intraoperative scans, resulting in
higher exposition of patients to radiations, or adopt proxy
procedures (e.g., creating and using custom molds to keep
patients in the exact same pose during both preoperative
organ scanning and subsequent treatment. Such custom
proxy methods are typically sub-optimal, constraining the
clinicians and costing precious time and money to the pa-
tients. To the best of our knowledge, this work is the first to
present a learning-based approach to estimate the patient’s
internal organ deformation for arbitrary human poses in
order to assist with radiotherapy and similar medical pro-
tocols. The underlying method first leverages medical scans
to learn a patient-specific representation that potentially
encodes the organ’s shape and elastic properties. During
inference, given the patient’s current body pose informa-
tion and the organ’s representation extracted from previous
medical scans, our method can estimate their current organ
deformation to offer guidance to clinicians. We conduct
experiments on a well-sized dataset which is augmented
through real clinical data using finite element modeling.
Our results suggest that pose-dependent organ deformation
can be learned through a point cloud autoencoder condi-
tioned on the parametric pose input. We hope that this work
can be a starting point for future research towards closing
the loop between human mesh recovery and anatomical re-
construction, with applications beyond the medical domain.

1. Introduction
Many medical procedures rely on precise location and

shape information of target tissues. Since radioactive scans
are invasive, there is a maximum number that a patient can
safely undergo per specific time period [10,12]. Due to this
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Figure 1. Application overview. The information from previous
medical scans can facilitate estimating current organ’s shape and
deformation.

constraint, doctors have to carefully plan imaging protocols,
weighing risks for the patient versus spatial and temporal
inconsistency that may arise from too coarse scan-based
investigation. Any solution to help determine the evolu-
tion of an illness or the impact of a treatment without ex-
cessive imaging would greatly help clinicians and reduce
patients’ risks. Currently, complex protocols are used to
precisely target organ regions while minimizing potential
radioactive damage. For example, in radiotherapy (a can-
cer treatment that uses high doses of radiation to kill can-
cerous cells and shrink tumors [8]), it is common practice
to create and use patient-specific molds (usually made of
plastic or plaster) to keep patients in the exact same pose
during both preoperative organ scanning and during subse-
quent treatment sessions. Such customized molds help en-
sure the desired organ region is targeted accurately without
having to re-scan the patient and re-localize the tumors be-
fore each session. This custom proxy method—like other
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methods specific to different scan-reliant treatments—are
typically sub-optimal, constraining the clinicians and cost-
ing precious time and money to the patients. These proto-
cols could however be relaxed with appropriate organ pose
estimation, thereby removing the need for patient-specific
molds and decreasing cost and delays of such vital proce-
dures (i.e., more generic and thus less costly molds could be
adopted with the sole purpose of keeping patients still dur-
ing treatment). Other less sensitive domains could also ben-
efit from cheaper and computationally-lighter organ pose
estimation. Existing simulation tools mostly rely on finite-
element modeling (FEM) [11, 16, 23] to predict the defor-
mation of soft tissues—such as organs—based on input load
forces. Their inherent computational footprint and abstrac-
tion makes them unpractical for real-time and artistic appli-
cations (e.g., movie or video-game industries). In this paper,
we not only propose a modeling function that relies on light-
weight operations during inference, but we also condition it
on more concrete parameters, i.e., the pose of the target per-
son; therefore making this kind of simulation accessible to
a larger audience.

In order to learn the latent correspondences between hu-
man contours and in vivo organ deformations, we need a
representation of the human body model. While the popu-
lar skinned multi-person linear (SMPL) model [22] and its
variants [27, 33] provide a flexible statistical representation
to capture human pose and shape deformations, they do not
have the necessary information to model in vivo organ de-
formations. In our work, we propose a novel approach to
address this issue. While retaining the computational flex-
ibility offered by the family of SMPL models, we take one
new step: modeling how the pose parameters affect inter-
nal organ deformations. Our intuition is that when a pa-
tient changes pose (e.g., arms stretched over head as in Fig-
ure 2), internal organs deform accordingly, and we seek
to capture all these changes (pose and internal deforma-
tions) jointly. Concretely, while the SMPL family defines
two parameters, θ for pose and β for shape, our method
adds one additional parameter for organ deformation: α.
Consequently, whereas the SMPL model learns the func-
tion mapping (β, θ) to the vertices of the human mesh, our
method seeks to additionally capture organ deformations
from (β, θ, α). In particular, we propose a framework that
can (1) extract patient-specific organ representation from
previous medical scans and (2) estimate the organ defor-
mation conditioned on arbitrary human poses for any scans
in the future. To the best of our knowledge, there has been
little previous work studying similar topics, despite the need
transpiring from the medical community.

To summarize, our contributions are three-fold:

1. We unify the shape representation for one specific or-
gan across different patients by automatically setting
up anatomical correspondences. Specifically, we ap-

Case A Case B Case DCase C

Figure 2. Four data samples in our dataset. For each subject, the
segmentation of lung (yellow), livers (green), spleen (grey) and
kidneys (blue) are available, alongside with full-body skin seg-
mentation (red).

ply a 3D deformable registration between a mean or-
gan binary segmentation and any given segmentation
in the dataset. The generated deformation field can
warp the mean organ’s 3D mesh into any shape in the
dataset such that every organ’s representation can be
unified into a fixed-length point cloud representation
with anatomical correspondences, as in Figure 3.

2. We propose SMPL-A (“A” for anatomy), an extenstion
to the SMPL model for pose/shape-dependent organ
deformation estimation. SMPL-A encodes the organ’s
shape into a low-dimensional representation α and can
reconstruct a deformed organ shape conditioned on
different poses during inference. In a novel fashion,
the proposed framework correlates a patient’s external
pose change to internal organ deformation, which may
significantly contribute to surgical guidance;

3. Our work suggests that the organ’s shape and elas-
tic properties can indeed be encoded into lower-
dimensional representations α. The experimental re-
sults also demonstrate that conditioned on the patient’s
exterior body movement, a deformed organ mesh can
be reconstructed with the patient-specific organ repre-
sentation that was extracted from previous scans.

2. Related Work
Modeling Human Body. Person-specific 3D models

can be obtained through a variety of means. Most state-
of-the-art solutions start from a mean/template 3D mesh
(set of vertices encoding the body surface information) and
apply adequate deformations so to fit the person’s appear-
ance [24]. Such paradigm resulted in the creation of var-
ious statistical models of the 3D human body [1, 14, 22].
The most predominant in the literature, the skinned multi-
person linear (SMPL) model [22] is based on skinning and
blend shapes, and is learned from thousands of 3D body
scans. SMPL originally uses rotation vectors for 24 joints—
encoded as a vector θ ∈ R3×24—and a shape parameter
β ∈ R10 to represent a human mesh at a specific pose.
As β domain is defined via dimensional reduction over the
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dataset of body scans (principal component analysis), each
of its dimension maps to specific morphological changes,
e.g., the first dimension controls the body height and thick-
ness, the second dimension mostly impacts waist size, etc.
Simple yet highly expressive, this model has been widely
adopted by the community [5, 17, 20, 28, 36] and many ex-
tensions have been proposed since, e.g., adding different
parameters to articulates the hands [33], the head (eyeball,
jaw, and neck) [27], etc. Based on all these parameters,
SMPL can model realistic surface deformations linked to
body shape and pose (e.g., visible contraction of muscles
and deformation of fat pad w.r.t. some poses). However, it
has no notion of the underlying anatomy, i.e., volumetric
content under the skin surface. In this work, we propose
to adopt SMPL’s methodology and extend its model with
volumetric information on patient-specific anatomy.

Learning Tissue Deformation. At the crossroad be-
tween computer science and medicine, the modeling of
anatomical elements and their behavior under various con-
ditions has gained a lot of interest in recent years [31],
driven by extensive developments in machine learning.
Data-driven models based on artificial neural networks, ap-
plied to the simulation of deformable organs, have achieved
commendable accuracy [25,29,30,34]. For example, Pfeif-
fer et al. [30] have demonstrated that a convolutional neu-
ral network (CNN), trained on synthetic data, is able to ex-
trapolate the displacement field of all points inside an organ
based on a partial input surface force field. Similarly, Salehi
et al. [34] leverages a graph convolutional network (GCN)
to better induce the deformation of organs’ 3D structures
caused by force loads applied to surface vertices. Most
of these learning-based methods are proposed as alterna-
tive to the more traditional but much heavier FEM [13].
Yeo et al. [38] proposed an interesting approach which uses
learned pose/shape factors to facilitate segmenting adipose
tissue. Unlike these previous models that express the shape
of organs as functions of local, abstract load forces, our goal
is to estimate the deformation of internal organs based on
the pose and shape of the patients themselves, as well as
past observations (scans) providing patient-specific organ
information.

Point Cloud Registration. In order to morph a tem-
plate 3D shape into custom ones (e.g., person-specific body
mesh), a unified representation needs to be applied to the
considered samples. For example, SMPL defines the hu-
man body as a mesh composed of 13,776 triangular surfaces
supported by 6,890 vertices, whose displacements from one
individual to the other can be controlled by a direct map-
ping [22]. We adopt a similar, common shape represen-
tation for the organs across all patients, homogenizing the
number and organization of their surface vertices, as high-
lighted in Figure 3. Opting for a vertex-based representation
allows us to leverage the extensive efforts in recent years

Spleen 2Spleen 1

SMPL 2SMPL 1

Spleen Vertex Index

SMPL Vertex Index

Figure 3. Point correspondences across samples. The idea of uni-
fying the shape representation of organs originates from the SMPL
model. However, instead of creating an artistic template model
as in SMPL, we use Elastix registration to set up point-to-point
correspondence for organs’ surface [19], e.g., using 944 points to
represent the surface of the spleen. The color coding indicates the
vertex’s index in the points cloud: two points with the same color
are locating on the corresponding anatomical structures.

towards the efficient processing of 3D point-cloud struc-
tures. Among other operations, the registration of point
clouds is the basis for 3D reconstruction and scenes per-
ception [6, 15]. It helps set up correspondence between two
sets of 3D points. The same-source points cloud registration
can be further divided into optimization-based registration
methods [21, 37], feature-learning methods [9], end-to-end
learning registration [35]. The vast majority of works on
points cloud registration focus on laser-scanning captured
data and aim for natural scenery understanding. One re-
cent work [3] proposed a global feature extraction module
with PointNet [32] backbone to fuse ultrasound and mag-
netic resonance images for surgery guidance, by generating
3D displacement vectors for each input point. The afore-
mentioned methods can all serve as candidates to set up
point-to-point correspondence.

3. Methodology

In this section, we detail our methodology for pose-
dependent organ deformation estimation. We start by for-
malizing the problem, and then justify the design of each
component of the proposed , showing how to condition the
deformed organ mesh reconstruction on the patient’s exter-
nal body shape and pose.
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Figure 4. Overview of SMPL-A Let M be the 3D shape of a tar-
get organ scanned from a patient with pose θ and body shape β.
We jointly learn a shape-encoding function E to extract patient-
specific organ properties α, as well as a pose-dependent decoding
function D that predicts proper organ deformation from new com-
binations of the three parameter sets (θ, β, and α).

3.1. Formalization

For a given patient, we assume that a custom SMPL
model is provided (i.e., optimizing β according to pictures
of the patient), as well as a set of annotated computed to-
mography (CT) scans I captured at known patient poses θCT
(we assume that 3D model and scans are captured not too
long apart so that the patient’s shape β can be assumed con-
stant between the two modalities). Originally inspired by
the human SMPL model, we represent organs as 3D point
clouds M ∈ R3×m (m number of points) in order to cap-
ture the organs’ complex topology (see Figure 3 and details
in Subsection 4.2). After converting the 3D CT scans I into
point clouds, our goal is thus to define a parametric set of
functions to model their patient-specific properties.

From correspondences between these modalities (SMPL
models and scanned point clouds), we propose to learn a
low-dimensional vector α ∈ Rk (i.e., composed of kα real-
valued parameters) that encodes patient-specific properties
of the target organ(s), partially disentangled from the pa-
tient’s shape and pose. This feature vector can later guide
the inference of the 3D shape of target organ(s) under dif-
ferent body poses θ′, e.g., if during treatment the patient
should assume a pose θ′ ̸= θCT (we later discuss how our
scheme can also be extended to predicting organ deforma-
tion for different body shape β′, e.g., if the patient lost or
gained weight since the last scans).

To that end, as shown in Figure 4, the proposed solution
consists of a learning-based function E(θ, β,M) = α that
encodes the patient-specific organ characteristics, and a de-
coding function D(θ′, β′, α) = Mpred, i.e., predicting the
deformed organ shape when the patient takes a pose to θ′.

The design of these two models E and D, as well as the

methodology w.r.t. to their training and data preprocessing,
are subsequently detailed.

3.2. Model Definition

The aforementioned patient-specific organ shape en-
coder E and pose-conditioned organ shape decoder D are
defined as artificial neural networks, trained jointly in an
end-to-end way.
Patient-Specific Organ Shape Encoder EEE aims to map
the organ’s 3D mesh (represented as points cloud) to a
low-dimensional feature representation α. Similar to how
the shape parameter β in SMPL encodes complex person-
specific morphological information, α represents here the
complex shape information of target organ, encoded into a
lower-dimension space.

Since the shape of anatomic structures is intrinsically de-
pendent on the pose and shape parameters of the subject
him/herself, we also provide E with the corresponding θ
and β parameters as input, so that the network can learn to
decouple the organ shape information from them. To guide
the shape encoding, a point-cloud feature extractor F first
takes the processed organ point cloud (cf . Section 4.2) as
input and produce a latent feature vector zM ∈ Rkz . Fixing
a reasonable value for kz (set to 128 in our experiments)
allows to balance the contributions of M compared to the
contributions of low-dimensional SMPL parameters, during
organ shape encoding. Afterwards, a multi-layer perceptron
(MLP) takes the concatenated organ feature vector zM and
the SMPL parameters θ and β as input to encode a patient-
specific, pose-agnostic organ representation α. Overall, the
patient-specific organ shape encoder can be denoted as:

E(θ, β,M) = MLP (θ, β, F (M)) = α. (1)

Pose-Conditioned Organ Shape Decoder DDD aims to re-
construct the deformed organ mesh conditioned on different
poses for the same patient. It takes the patient’s organ shape
prior α, SMPL shape parameter β and a different pose pa-
rameters θ′ as input to infer the deformation of the organ
under the new body pose θ′, i.e.:

D(θ′, β, α) = Mpred (2)

where Mpred ∈ R3×m is deformed organ mesh prediction
to obtain M ′, organ shape of the patient under body pose θ′.
Training: We propose to train the aforementioned system
in an end-to-end manner cf . literature on autoencoders. We
compute the reconstruction loss, named Lmesh, directly on
the set of vertices, as follows:

Lmesh = ∥M ′ −Mpred∥2 . (3)

Optimizing the parameters of E and D based on this crite-
rion will encourage E to extract patient-specific organ prior
α disentangled from the reparameterized variable θ/θ′, and
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Figure 5. SMPL-A dataset overview. The color bar indicates the index of the vertex in the points cloud, which shows the point-to-point
correspondence across different subjects.

will encourage D to leverage all available information to
predict proper organ displacement. Note, however that
while this objective encourages Mpred to approximate M ′,
D may generate non-smooth displacement fields δM =
Mpred − M that are physically unrealistic. To further im-
pose a constraint on the smoothness of the deformed organ
surface, a regularization term Lsmooth, weighted by a fac-
tor λ, is considered. Borrowed from [2], this term approxi-
mates the spatial gradients of δM using differences between
neighboring points (see paper for further details). The full
loss function for training is, therefore, denoted as:

L = Lmesh + λLsmooth. (4)

For training, our framework thus needs pairs of seg-
mented organ shapes M and M ′, along with their corre-
sponding patient’s pose parameters θ and θ′, and suppos-
edly constant patient’s body shape β. To relax these data
requirements, we present in the next section how to use
non-rigid registration to unify the organs’ representations
and how to apply FEM to effectively augment the data with
synthetic deformation pairs (θ,M ) and (θ′,M ′).

4. Data Preparation

Due to the complexity and heterogeneity of the data
modalities considered in this paper, and for reproducibil-
ity purposes, we share details on data pre-processing in the
following section.

4.1. SMPL Pose/Shape Annotation

Every patient in our dataset has their CT scan processed
into full-body skin segmentation that highlights the contour
of the patient, as in Figure 2. To find the corresponding pose
parameter θ and shape parameter β, we manually generate
the SMPL model that matches the skin best. We use the
SMPL-X [27] add-on in Blender [7] to adjust the pose joints
by joints and alter the shape parameters to match the body
contour. Manually generating the matching SMPL model
for the skin segmentation is considered more accurate for
downstream analysis, though this step can also benefit from
automatic human modeling process, e.g., applying the Im-
plicit Part Network (IPNet) [4] or similar solutions.
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4.2. Organ Correspondence

The classical SMPL model, sculpted by an artist, has a
fixed-length design which unifies the representation of dif-
ferent human subjects, even given different body shapes and
poses. Another benefit is that, for different human subjects,
the i-th vertex denotes the same anatomical structure. In
our task, we also need to parameterize the shape of organs
across different patients, by homogenizing the size of their
representation as in Figure 3.

Specifically, we create one mean mesh model for each
type of organ and then use it as a template to warp into other
shapes for a uniform representation (Figure 5). Taking the
spleen as an example: we first gather a dataset that con-
tains 3D spleen segmentation {In|n = 1, ..., N}, where In
denotes the n-th patient’s binary spleen segmentation im-
age. We first compute a mean segmented 3D scan Î from all
the cases in the dataset through simple averaging, and then
evenly sample m vertices on its surface to obtain a mean or-
gan mesh M̂ . The organ mean shape M̂ serves as template
to unify the representation of the organ from different sub-
jects, with the j-th vertex assigned to the same anatomical
location across the patients.

To obtain such unified representation, we apply
Elastix [19]—an intensity-based medical image registration
method—to set up the correspondence between organs from
different subjects. The optimization function is denoted as

µ̂k = argmin
µ

C(Ik, T (Î;µ)), (5)

where we aim to find a transformation Tµ to non-rigidly
align the 3D template image Î to any give target fixed image
In, in order to minimize the selected cost function C. The
optimization target µ contains the transformation parame-
ters of a linear transformation and a B-spline deformation
field. We use here the mean square difference (MSD) for
C. The optimized transformation Tµ̂ can then be applied to
the 3D template mesh M̂ , such that we could use the trans-
formed template mesh T (M̂ ; µ̂) to represent any other cases
in the dataset. Considering the template mesh M̂ has m ver-
tices, every other case in the dataset can all be represented
by m vertices correspondingly.

4.3. Finite Element Modeling for Deformation

Our work aims to model the organ’s deformation under
different poses. To learn such pattern, multiple scans are
needed for each patient under various pose conditions. As a
matter of fact, such data is extremely difficult to require as
it may introduce additional radiation to the subjects during
acquisition. To make up for the lack of data, we run FEM
simulations [11,16,23] to create organ deformations, by ap-
plying different amounts of load to the organ mesh model.

We first study the statistics of the patients’ pose informa-
tion collected from the annotated SMPL dataset. The ma-

Nodal Loads

Boundary 
Constraints

Rest Pose Medium Pose Extreme Pose

Figure 6. Synthetic data augmentation. We correlate some body
movements (e.g., arms lifting) to the amount of internal organs
stretching for synthetic data generation, using FEM.

jority of subjects are lifting their arms to guarantee a better
imaging purpose, as in Figure 2. To match such scenario,
we simulate the relationship between pose and organ de-
formation with a focus on the rotation angles of collar and
shoulder joints, i.e., the more lifted the arms are, the larger
the stretching forces—and therefore deformation—applied
to the organs are, as shown in Figure 6. We thus corre-
late the collars/shoulders’ joints rotations parameters to the
loads applied during finite element modeling, to produce a
reasonable amount of deformation to the organ. Specifi-
cally, we assign nodal loads to the upper surface of the or-
gans and place boundary constraints to stabilize the lower
surface. The applied load will slightly stretch the organ in
the positive Z-direction, so as to simulate how the organs
deform while raising arms. For each case, we run FEM
to generate a deformation sequence length of 10, from a
resting pose to an extreme pose with corresponding amount
of stretch in the organs. During the downstream analysis,
we expect the trained network to recover such simulated re-
lationship between the pose parameters and the organ de-
formation for a prove of theory. Used only during train-
ing (when computational constraints can be relaxed), the
FEM method is a compensation for the lack of data sam-
ples. Even once multiple scans from each patient end up
being collected, this simulation could be preserved to fur-
ther augment the dataset.

5. Experiments
5.1. Implementation Details

We collected 30 cases from IRB-approved clinical trial,
each with the skin, lungs, kidneys, liver, and spleen segmen-
tation. We follow the aforementioned data preparation (cf .
Section 4.3) to generate the SMPL models for each patient
by aligning the template model to the skin segmentation,
and to further augment the dataset using FEM to create a se-
quence of deformed organs. We opt for different mesh size
m for the template of each organ due to the varying volume
size of each organ (e.g., m = 944 vertices for the spleen,
3,184 vertices for the left lung, etc., as illustrated in Fig-
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Figure 7. (A) Predicted deformation error (color-coded, in mm) for the left lung; (B) Impact of patients’ pose parameter θ and organ
parameter α on deformed spleen shape reconstruction (color-coded by the stretch amount w.r.t. the first frame in each sequence, in mm).

ure 5). During training, we subsample 512 equally spaced
points to guarantee computational efficiency and maintain
the point-to-point correspondence. We use 24/3/3 sequence
splits respectively for training, validation, and testing.

The network structure of feature extractor F and organ
shape decoder D are both multi-layer perceptrons, imple-
mented using PyTorch [26]. Note that our solution is meant
to be network-agnostic, e.g., the backbone for F could be
switched to any other network structures such as Point-
Net [32]. For each organ, we train the network end-to-end
for 300 epochs with batch size K = 8 using Adam opti-
mizer [18] with an initial learning rate of 1×10−5, which
decays by 0.9 after every five epochs.

5.2. Results and Discussions

For each testing subject with FEM simulated deforma-
tion sequence {(θi, β, αi,Mi)|i = 0, ..., 10}, we evaluate
the proposed SMPL-A by reconstructing the 3D deformed
meshes {Mpred,i|i = 1, ..., 10} from the first frame’s pa-
rameters α0 and θi, βi. Since there is little previous refer-
ences for comparison, we compute a mean mesh for each
sequence that serves as baseline method. Since the surface
of the organ have point-to-point correspondence, we com-
pute the surface distance error in millimeters as metric.

The results for multi-organ reconstruction are shown in
Table 1. We run a paired t-test for statistical analysis with a
confidence interval of 0.05. The results suggest that the re-
construction error of the proposed SMPL-A is significantly
lower than the baseline error. This indicates that the pro-
posed SMPL-A is able to reconstruct the same person’s 3D

organ shape, stretched by a different pose.
Figure 7-A shows the results for one left lung deforma-

tion sequence (refer to supplemental materials for more).
Lifting of the arms is gradually increased from first to
last row, leading to the stretching of the internal organs.
The ground-truth column shows the organ deformed by the
FEM. The color bar encodes the point-wise surface error
(in mm), compared to the ground-truth. Comparing the
two rightmost columns, we can observe how the smooth-
ness constraint Lsmooth prevents the organ surface to be-
come uneven (with points deviating from the expected sur-
face planes) by enforcing smooth local deformations.

Figure 7-B shows how different θ and α impacts our
SMPL-A model. We reconstruct the spleen shape for dif-
ferent patients (i.e., varying α across columns) and different
poses (i.e., varying θ across rows). The morphological dif-
ferences indicate that SMPL-A can encode patient-specific
organ information into α and recover the 3D point cloud
from it, while also learning a correspondence between the
patient pose information θ and predicted deformation. Ad-
ditionally, Figure 8 shows the left lung mesh reconstruction
for a different patient. We plot the errors onto the mesh
surface for visual purposes.

5.3. Ablation Studies

To demonstrate that the low-dimensional representation
α can encode the organ’s shape information (similar to the
10-D shape parameter β for the SMPL model), we train a
3D points cloud autoencoder with various sizes of latent
space, noted as kα. This experiment does not involve or-
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Figure 8. Predicted deformation error (color-coded, in mm) for a
left lung, using 3D mesh as target modality.

Table 1. Reconstruction error (mm) for the deformation of six or-
gan parts. The baseline method computes the error between mean
and ground-truth shape.

Baseline Error SMPL-A Error

Spleen 2.5353 ± 0.1088 1.4496 ± 0.0949
Liver 2.9810 ± 0.1395 1.7832 ± 0.1012
Left Kidney 2.2364 ± 0.1174 1.2694 ± 0.0974
Right Kidney 2.4608 ± 0.1207 1.2504 ± 0.1088
Left Lung 4.4784 ± 0.2586 2.2475 ± 0.1688
Right Lung 4.9846 ± 0.2407 2.3716 ± 0.1942

Table 2. We train a point-cloud autoencoder to reconstruct the
organ’s shape for α’s ablation study, without pose-conditioned de-
formation.

kα
Reconstruction Error (mm)

Spleen Liver Lung left Kidney left
5 1.45 ± 0.23 2.45 ± 0.23 2.65 ± 0.21 1.65 ± 0.24

10 1.09 ± 0.17 1.76 ± 0.20 1.75 ± 0.23 1.33 ± 0.14
20 0.78 ± 0.13 1.21 ± 0.15 1.22 ± 0.18 0.84 ± 0.12
40 0.74 ± 0.16 1.05 ± 0.19 1.15 ± 0.16 0.82 ± 0.14

gan deformation and only concentrates on the shape encod-
ing. From Table 2 we can see that, for any organ mesh
M ∈ R3×512, we can still reconstruct its shape from its la-
tent representation α with relatively low reconstruction er-
ror, even when kα is as low as 5. The larger the size of α,
the more expressive it can be, which matches the intuition.

We also try to understand the potential meaning behind
each dimension in the latent representation α. In Figure
9, we gradually increase the first three values within the α
vector to see their respective impacts on the organ shape re-
construction. The first value α[1] seems to correlate with

Figure 9. Impact of the first three values of α in reconstruction.

the orientation of the organ; the second value α[2] corre-
lates to the thickness in the vertical direction; the third value
α[3] correlates more to the horizontal thickness. Similar to
how changing the β values results in SMPL models [22]
that have different height, fatness and proportions; chang-
ing the α values results in our SMPL-A model recovering
organs showing a variety of shapes.

6. Conclusion

In this work, we propose SMPL-A, a model for in vivo
organ deformation based on the subject’s different poses, as
an extension to the SMPL family. We first set up the or-
gan mesh correspondences through deformable image reg-
istration, followed by FEM to simulate organ deformation
caused by lifting the arms. The generated organ mesh rep-
resentations and corresponding pose/shape parameters are
used for training the SMPL-A network. Upon convergence,
the SMPL-A network can extract the organ’s shape repre-
sentation α specific to each patient, and predict its deformed
shape, conditioned on different pose parameters. During in-
ference, given the organ shape representation α of a per-
son in record, and his/her current pose/shape parameters,
SMPL-A can predict the current organ shape for various ap-
plications such as surgery guidance and radiotherapy.

To reflect on our method, we use FEM to simulate pose-
dependent organ deformation as a compensation to data
scarcity. The simulation may not perfectly match real-life
data, yet experimental results demonstrate that proposed
SMPL-A can recover such complex, simulated relationship.
Given sufficient data, we could further disentangle θ (e.g.,
for body articulations not covered yet by SMPL) and also
β (requiring, e.g., time-series morphological information)
from the organ’s information, and reveal the intrinsic rela-
tionship between body pose/shape and in vivo organ’s de-
formation.

As the first study of this kind (leveraging cross-modal
correspondences to tie human pose and organ deformation),
our work aims to demonstrate the soundness and feasibility
of such an approach, and to inspire further studies, as well
as further data collection effort to enable them.
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