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Abstract

Recent Semi-Supervised Object Detection (SS-OD)
methods are mainly based on self-training, i.e., generat-
ing hard pseudo-labels by a teacher model on unlabeled
data as supervisory signals. Although they achieved cer-
tain success, the limited labeled data in semi-supervised
learning scales up the challenges of object detection. We
analyze the challenges these methods meet with the em-
pirical experiment results. We find that the massive False
Negative samples and inferior localization precision lack
consideration. Besides, the large variance of object sizes
and class imbalance (i.e., the extreme ratio between back-
ground and object) hinder the performance of prior arts.
Further, we overcome these challenges by introducing a
novel approach, Scale-Equivalent Distillation (SED), which
is a simple yet effective end-to-end knowledge distillation
framework robust to large object size variance and class im-
balance. SED has several appealing benefits compared to
the previous works. (1) SED imposes a consistency regular-
ization to handle the large scale variance problem. (2) SED
alleviates the noise problem from the False Negative sam-
ples and inferior localization precision. (3) A re-weighting
strategy can implicitly screen the potential foreground re-
gions of the unlabeled data to reduce the effect of class im-
balance. Extensive experiments show that SED consistently
outperforms the recent state-of-the-art methods on different
datasets with significant margins. For example, it surpasses
the supervised counterpart by more than 10 mAP when us-
ing 5% and 10% labeled data on MS-COCO.

1. Introduction
Deep neural networks achieve strong results under

the supervised learning framework driven by large-scale
datasets, such as ImageNet [5] (about 1.28 million labeled
images). However, different from classification, object de-
tection further involves locating objects with a bounding
box. Therefore, the annotation for object detection is much
more expensive, leading to labeled data remaining scarcely
related to classification. Recently, Semi-Supervised Learn-

Figure 1. The overall framework of SED. Our model improves the
scale equivalence, which is critical for object detectors, by regu-
larizing the consistency between different-sized images. Further-
more, the inherent False Negative sample noise is alleviated by
self-distillation. A re-weighting strategy is adopted to solve the
severe class imbalance problem. The bird in the left example is a
False Negative sample when the threshold is set to 0.7. The right
example shows the scale inconsistency of different-sized images.

ing (SSL) for classification has received much attention
[2, 29, 33, 35], whose results are comparable to the fully su-
pervised model on ImageNet. However, Semi-supervised
Object Detection (SS-OD) is more challenging than SSL on
ImageNet classification. Recent SS-OD methods improve
the performance by leveraging both the limited labeled data
and the massive unlabeled data, but they suffer from the
large variance of object sizes, massive False Negative sam-
ples and class imbalance problem, as illustrated in Fig. 1.

The scale of objects varies in a small range for the Im-
ageNet classification model, whereas the scale variation of
MS-COCO dataset [18] is large across object instances for
the detector. As shown in Fig. 2a, the standard deviation of
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the scale of instances in MS-COCO is 188.4 pixels, while
that of ImageNet is 56.7 pixels (the square root of area).
A detector is supposed to be scale consistent to object in-
stances, which means that the predictions of an image in
different sizes should be equivalent [27, 28]. However, the
scale consistency has not been considered by the prior arts
[19, 30, 36, 39] in SS-OD. We observe a discrepancy in the
objectness score, as indicated in Fig. 2b. The ratio of fore-
ground anchor to background anchor increases as the score
distance becomes large, which implies that the model de-
tects an object instance while is blind to the instance in
a different size. This inconsistency is typically alleviated
by the multi-scale inference ensemble, which increases the
computational cost and requires complicated operations to
fuse the results.

Besides, the performance of recent SS-OD methods
[19, 29] is moderate in the high-data scenario as a conse-
quence of the False Negative object instance and inferior
localization precision. As illustrated in Fig. 2c, the re-
call drops to 0.1 and 0.3 separately when IoU is set to 0.5
and 0.9, which indicates that most foreground instances are
False Negative samples. The precision at IoU = 0.9 is less
than 0.2, showing that the location of bounding boxes is not
accurate enough. The False Negative object instances below
the hard threshold cause a recognition inconsistency.

Another obstacle is that the foreground and background
samples are highly imbalanced. The ratio of the foreground
to background sample is about 1:25,000 for RetinaNet [17].
Due to the class imbalance problem, treating all regions
equally [32] leads to the background samples contributing
significantly to the gradient, as illustrated in Fig. 4. Identi-
fying foreground regions from the unlabeled data with the
overwhelming background regions is challenging.

To overcome the challenges motioned above, we propose
Scale-Equivalent Distillation (SED), a simple yet effective
end-to-end semi-supervised learning framework for object
detection. Since scale is an essential factor of the low-
dimensional semantic manifolds, we design a scale consis-
tency regularization across the prediction in different levels
as a solution to the large object size variance. Moreover,
as the noise from hard pseudo-label has detrimental effects
on the recognition consistency, a self-distillation method
is proposed to improve generalization performance with-
out increasing the learnable parameters. Due to the class
imbalance problem, the overwhelming background sam-
ples diminish the effect of our method. We implement a
re-weighting strategy to focus on the inconsistency among
outputs in different levels and the discordance between the
teacher and student detector. As a result, our re-weighting
approach avoids selecting the potential foreground regions
from the unlabeled data explicitly.

To evaluate the validation of SED, we conduct exten-
sive experiments on benchmarks for object detection, Pas-

cal VOC [7] and MS-COCO [18]. Our method surpasses
the supervised counterpart by more than 10 mAP when us-
ing 5% and 10% labeled data on MS-COCO. Moreover, our
method is tested with both one-stage and two-stage detector
based on single feature map and feature pyramid.

Our contributions are listed as follows: (1) SED imposes
a scale consistency regularization to overcome the large
scale variance challenge. (2) SED alleviates the noise prob-
lem which arises from the False Negative samples and inac-
curate bounding box regression. (3) A re-weighting strategy
can implicitly screen the potential foreground regions from
unlabeled data to reduce the effect of class imbalance.

2. Related Works
Self-Training. Self-training methods first train a teacher

model with the labeled dataset and then generate pseudo-
labels for the unlabeled dataset. Finally, the student model
is optimized with both the labeled data and pseudo-labeled
data jointly. For the classification task, Self-training meth-
ods [1, 2, 29, 33] perform well. However, Semi-Supervised
Object Detection is more challenging than Semi-Supervised
Image Classification on the balanced dataset. Some works
[19, 39] contribute to alleviating the noise problem brought
by pseudo-label. Those methods attach additional modules
on the two-stage detector to overcome the heavy overfit-
ting problem on the foreground and background classifica-
tion and refine the hard pseudo-label by ensemble meth-
ods. Nevertheless, methods based on hard pseudo-label
have an inherent defect that False Negative object instances
influence the consistency of recognition, especially whose
scores are near the hard threshold. Humble Teacher [32]
adopts soft pseudo-labels to avoid the recognition inconsis-
tency but treat all the regions equally. Due to the extreme
imbalance of foreground and background, the contribution
of gradients from the two kinds of regions is quite different.
UBT [19] adopts Focal Loss to alleviate the problem. Un-
like the existing works, our method generates soft pseudo-
labels for unlabeled data in an online manner, and the re-
weighting strategy automatically screens the potential fore-
ground regions of the unlabeled data.

Consistency Regularization. Consistency-based Semi-
supervised learning uses unlabeled data to stabilize the pre-
dictions under input or weight perturbations. For instance,
two different views of the same image are supposed to have
similar output. This class of methods [20, 26, 33] does not
generate pseudo-label but constrains the discrepancy be-
tween the outputs, which is known to help smooth the man-
ifold [21]. For SS-OD, CSD [14] applies simple horizontal
flip consistency regularization to train a detector to be robust
to flip perturbations. The consistency loss fine-tunes the lo-
cation of the predicted boxes but ignores the object scale
perturbations, which are more common in datasets. In MS-
COCO [18] detection dataset, the scale of the smallest and
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Figure 2. (a) For the COCO dataset, all the images are resized such that the short edge has 800 pixels while the long edge has less than
1333 pixels. For the ImageNet dataset, all the images are resized to 224×224 to calculate the statistics. The scale of object is represented
as the square root of the area. We discuss the typical training input size for ImageNet classification and COCO detection tasks. (b) All the
scores are predicted on COCO minival dataset by the RetinaNet detector with FPN and ResNet 50 backbone, which is trained with 10%
COCO data. The score distance is the absolute difference between the predictions of the image in different sizes. The Y-axis is the average
number of anchors per image. (c) We predict pseudo-label on the rest of COCO training data with a converged Faster-RCNN detector (with
FPN and ResNet50 backbone), trained with 10% COCO data. The low average recall and precision show that hard pseudo-label incur more
noise with False Negative samples.

largest 10% of object instances is 0.024 and 0.472, respec-
tively. Our method regularizes the predictions of different
sizes to solve the large-scale variation. Furthermore, self-
distillation [8, 10, 38] benefits from the high-quality predic-
tion of EMA teacher [33], and can be viewed as consistency
regularization from the perspective of soft targets.

Pre-Training. In recent years, it has been a paradigm
that pre-train backbone on a large-scale dataset, such as Im-
ageNet [5] or JFT [31], and fine-tune the model on the tar-
get dataset, which contains less training data. Large-scale
dataset pre-training speeds up converge and helps improve
generalization in the small data scenario [12, 40], which is
an extreme of semi-supervised learning. SimCLR [4] and
MOCO [11] have been shown to build universal representa-
tion, which helps achieve a state-of-the-art result in the sce-
nario of semi-supervised learning classification with 10%
ImageNet labeled data. In this paper, we fine-tune with Im-
ageNet pre-trained backbone as default for faster conver-
gence and better results when we enter the low-data regime.

3. Scale-Equivalent Distillation
Problem Definition. Semi-supervised learning is

halfway between supervised and unsupervised learning.
More precisely, our model is trained with a labeled set
Ds = {xs

i, y
s
i}

Ns
i=1 and an unlabeled set Du = {xu

i}
Nu
i=1,

where x is image, Ns and Nu are the number of labeled
and unlabeled images. For each supervised image xs

i, the
annotation ys

i is composed of both the location and category
of the bounding boxes in image.

Overview. During training, Scale-Equivalent Distilla-
tion consists of two branches, the supervised and unsuper-
vised branch, as illustrated in Fig. 3. The supervised branch
is trained by following the normal procedure, like [17, 24].
The unsupervised branch is under a teacher-student frame-
work, in which the teacher is implemented as an exponen-

tial moving average of the student. SED aims to predict
consistently for the scale variants of input. In practice, the
student processes the strongly augmented unlabeled images
and resized images. The weakly augmented images are fed
into the teacher network to predict soft pseudo-label. The
scale consistency loss constrains the outputs of different-
sized images. Meanwhile, the soft pseudo-label is set as the
target of the strongly augmented images. The final loss is
the weighted sum of the supervised and unsupervised loss,

L = Lsupervised +
nu

ns
(λsLscale + λdLdistill), (1)

where nu, ns are the batch size of unlabeled data and labeled
data. Lscale and Ldistill are Scale Consistency Loss and Self-
Distillation Loss. For two-stage detectors, the unsupervised
losses are applied to both the RPN and RoI head.

3.1. Scale Consistency Regularization

Recognizing objects in different scales is a fundamen-
tal challenge in computer vision. Scale Consistency Reg-
ularization is proposed to optimize the detector to predict
smoothly and consistently in scale dimension. Typically,
mainstream detectors under the feature pyramid network
(FPN) framework outperform a single feature map counter-
part, as the multi-scale feature representations are semanti-
cally strong. Therefore, we take an example for a single-
stage detector with FPN to illustrate our method. Scale
Consistency Regularization can be extended to the two-
stage detectors and single feature map detectors.

As indicated in Fig. 3, scale consistency loss regularizes
predictions from images in different scales. To be more spe-
cific, the output class probability and bounding box regres-
sion of the f -th feature level, r-th row, c-th column and d-
th anchor box are denoted as P f,r,c,d(X) and Rf,r,c,d(X).
Considering the memory and calculational cost, the resized
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Figure 3. Details of our method. We take an example of a detector with FPN [16] to illustrate our method. P 2-P 6 are the prediction
details.The supervised branch shares the Student Model with the unsupervised branch. sg means the prediction of the Teacher Model is not
optimized by the gradient. For Scale Consistency Regularization, the loss constrains the predictions from different levels.

image is downsampled to 1
2s original size. Towards han-

dling the large scale variation, the s is uniformly selected
from {1, 2, ..., S}, which also matches the sizes of feature
maps in FPN and the label assignment rules. The resized
image X̂ and the original image X are supposed to be pre-
dicted consistently for the corresponding levels. Precisely,
the scale consistency loss is defined as

Lf
scale =DKL(sg(P f (X)), P f ′

(X̂))

+DKL(sg(P f ′
(X̂)), P f (X))

+ ||Rf (X)−Rf ′
(X̂)||2,

(2)

where f ′ equals f − s and sg is stop-gradient operator. For
simplicity, the r, c, d coordinate is ignored in Eq. 2. For
RPN and single-stage detector, all the anchor points are
regularized for consistency; even some of them may not
be assigned labels according to the simple IOU threshold
matching strategy. In the second-stage detector framework,
the proposals are first filtered by NMS and Top-K selec-
tion, which is also a default operation in the supervised
branch [13, 24] (typically 1000 proposals left for Faster-
RCNN FPN). Then the coordinates of the proposals pre-
dicted on the resized image are scaled up by 2s times to
match the original image, and vice versa. The proposals
from the image pair are simply concatenated as a new pro-
posal set for refining bounding boxes and predicting clas-
sification scores. For the second stage of Faster-RCNN, all
the predictions of the proposal pairs are regularized by scale
consistency loss in a similar way as shown in Eq. 2. It is
worth noting that, in implementing a two-stage detector, the
RoI-Pooling operator may extract features from the same
level for the proposal pair, which is slightly different from
single-stage detectors. Nevertheless, this operation shares
the same core idea that the detector is supposed to be scale
consistent.

3.2. Self-Distillation

Knowledge distillation improves generalization by re-
placing hard label supervision with soft label predicted by
a stronger teacher model. Based on the observation, the
teacher model is implemented as an exponential moving
average (EMA) of the detector, which is shown to pro-
duce a model with better generalization than the student
model [22, 33]. The input of the teacher model is weakly
augmented. Furthermore, the model is supposed to predict
consistently for similar data points. The student model is
input with the strongly augmented image to propagate label
to neighbor points in the semantic manifold space. For sim-
plicity, the strong augmentation is only composed of color
transformation and Cutout [6], which doesn’t contain the
geometric transformation. The self-distillation loss is for-
mulated as

Li
distll = DKL(sg(P i(X ′, θt)), P

i(X, θs))

+||sg(Ri(X ′, θt))−Ri(X, θs)||2,
(3)

where i is the i-th anchor box, X ′ is the weakly augmented
image and X is the strongly augmented image. P and R
represent the classification score and bounding box regres-
sion same as in Eq. 2. The slowly progressing teacher model
weights θt are updated from the student model weights θs
every iteration,

θt = αθt + (1− α)θs. (4)

Self-Distillation loss constrains each anchor point for RPN
and one-stage detector, similar to Scale Consistency Regu-
larization. In the scenario of the two-stage detector, all the
proposals are simply concatenated as a new proposal set.
Similar to Scale Consistency Regularization, all the predic-
tions of RoIs are regularized as Eq. 3.
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Figure 4. The average sample is the average anchor number in a single image. The vanilla method is simply treating all samples equally.
The samples with large gradients do not contribute significantly because the sample number is relatively small. Our re-weighting strategy
focuses on the samples with large score discrepancies and linearizes the relationship between gradient contribution and score distance.

3.3. Re-weighting Strategy

One-stage object detection methods, like RetinaNet [17]
and RPN [24], face an extremely class imbalance during
training. Due to the overwhelming background samples,
most objectness scores are close to 0. Therefore, the KL di-
vergence between the target and source distribution in Eq. 2
and Eq. 3 is close to 0 for most anchor boxes. Simply
averaging the unsupervised loss leads to the easy samples
contributing significantly to the gradient, as illustrated in
Fig. 4. We aim to reduce the discrepancy between simi-
lar unlabeled inputs, especially for the potential foreground
instances predicted with high objectness scores. In other
words, the hard examples should contribute to the gradi-
ent more than the easy examples. Inspired by the Gradi-
ent Harmonizing Mechanism [15], we re-weight the KL-
divergence by the sample numbers in a gradient range to
build a linear relationship between the gradient norm and
the integral gradient contribution, as illustrated in Fig. 4.
Specifically, the gradient of the logits z with KL divergence
loss between probability vector p and target probability vec-
tor p′ is g =

∑C
i=1 |pi − p′i|, where C is the length of prob-

ability vector. Then a histogram is constructed by splitting
the gradient range [0, 1] into M bins equally. The number
of samples in the j-th bin is denoted as Rj , and the index
of the bin where gradient g is located is defined as idx(g).
Finally, we have the loss function on N samples:

L =
1

M

N∑
i=1

DKL(p
′
i, pi)

Ridx(gi)
. (5)

As the main bottleneck is detecting objects from the back-
ground rather than regression, only the classification loss is
re-weighted by the above strategy in scale consistency loss
and self-distillation loss. Our goal is to enlarge the contri-
bution from the samples with significant discrepancies. The
other methods to solve the class imbalance problem may
also improve the performance.

Method Data LR Iter AP50

Supervised VOC07 0.01 40k 74.30
STAC [30] VOC07+12 0.001 180k 77.45
DGML [34] VOC07+12 - - 78.60

UBT [19] VOC07+12 0.01 180k 77.37
ISMT [36] VOC07+12 - - 77.23
IT [39] VOC07+12 0.01 180k 78.30
Ours VOC07+12 0.01 40k 80.60

Table 1. Results on Pascal VOC 2007 test set. For all the semi-
supervised methods, Pascal VOC 2012 train set is treated as unla-
beled data. Iter means the total training iterations. “-” means that
the results or training details are missing in the source paper.

4. Experiments

Datasets. We mainly verify the validity of our method
on the challenging objective detection dataset MS-COCO
[18], which contains 80 object categories with about 118k
images for training and 5k images for validation. For a fair
comparison, we follow the experimental setup as in the pre-
vious works [19,30,32,34,39]. In particular, there are three
experimental settings: (1) PASCAL VOC: the VOC07 [7]
trainval set is used as the labeled dataset and the VOC12
trainval set is used as the unlabeled dataset , as described
in Sec.3. The performance is evaluated on the VOC07 test
set. VOC07 trainval and VOC12 trainval contains 5,011
and 11,540 images respectively, resulting in a roughly 1:2
ratio of labeled data to unlabeled data. (2) COCO-standard:
we randomly sample 5 and 10% of MS-COCO 2017 train-
ing data as the labeled dataset and treat the rest of the train-
ing data as the unlabeled dataset. As the COCO train dataset
contains 118k images and is class-imbalanced, some cate-
gories are composed of less than 500 instances. When data
percent is 0.5% and 1%, there are only less than 5 instances
in the labeled dataset for these categories. This setting is
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Method Data Percent LR Iteration Stages
5% 10% 100%

Supervised 18.47 23.86 38.40 0.02 180k -
STAC [30] 24.38(+5.91) 28.64(+4.78) - 0.01 180k Two
Unbiased Teacher [19] 27.84(+9.37) 31.39(+7.53) - 0.01 180k Single
Instant Teacher [39] 26.75(+8.28) 30.40(+6.54) 40.20(+1.80) 0.01 180k Single
Interactive Teacher [36] 26.37(+7.90) 30.53(+6.67) 39.64 (+1.24) - - Single
Multi-Phase Learning [34] - - 40.30 (+1.90) - - Three
Ours 29.01(+10.54) 34.02(+10.16) 41.50(+3.10) 0.01 180k Single

Supervised - - 40.20 0.02 270k -
STAC [30] - - 39.21(-0.99) 0.01 540k Two
Unbiased Teacher [19] - - 41.30(+1.10) 0.01 270k Single
Ours - - 43.40(+3.20) 0.02 270k Single

Table 2. Results on MS-COCO 2017 val set. For 5% and 10% protocols, the results are the mean over 5 data folds. Stages are the number
of training phases. For example, STAC has two stages: train a teacher model first to hard pseudo-label and train a student model with both
labeled and pseudo-labeled data. “-” means that the results or training details are missing in the source paper.

more like few-shot learning than semi-supervised learning.
Therefore, we do not report the performance. For the 100%
data training setting, the whole training set is used as the la-
beled dataset, and the additional 123k unlabeled images are
used as the unlabeled dataset. The model is tested on the
MS-COCO 2017 validation set. (3) COCO-35k: we use the
35k subset of MS-COCO 2014 validation set as the labeled
dataset and the 80k training set as the unlabeled dataset. The
result is reported on the MS-COCO 2014 minival set.

Implementation Details. Following STAC [30], we use
Faster-RCNN [24] with FPN [16] and ResNet-50 back-
bone as our default object detector. The weights of the
backbone are initialized by the corresponding ImageNet-
Pretrained model, which is a default setting in the existing
works [14, 19, 30, 39]. The stem and first stage of the back-
bone are frozen, and all BatchNorm layers are in eval mode.
The weak data augmentation only contains random resize
from (1333, 640) to (1333, 800) and random horizontal flip.
The strong data augmentation comprises random Color Jit-
tering, Grayscale, Gaussian Blur, and Cutout [6], without
any geometric augmentation. More training and data aug-
mentation details are in the Appendix.

4.1. Results

Pascal VOC. In Tab. 1, our method outperforms both
previous multi-stage methods and single-stage methods by
a large margin. Our model achieves 80.6% AP with 6.3%
gain from additional VOC2012 data. In the meantime, our
proposed method requires fewer training iterations, show-
ing that our approach is effective yet efficient. Besides,
our augmentation only contains color transformation with-
out any geometric transformation or strong regularization,
such as Mixup [37] and DropBlock [9].

COCO-standard. Given the whole training set, our

Method SUP DD [23] DGML [34] Oracle Ours

mAP 31.3 33.1 35.2 37.4 38.1

Table 3. Results on MS-COCO 2014 minival set. SUP is to train
the model only with the labeled data. Oracle means treating all the
115k images as labeled data and training with only the supervised
loss.

method even further improves the strong baseline by 3.2
mAP. For a fair comparison, the learning rate and training
iterations are listed in Tab. 2. Our method surpasses the
previous methods under different settings of the ratio of la-
beled data to unlabeled data, from roughly 1:1 to 1:20, on
the class-imbalanced MS-COCO dataset. Note that UBT
uses Focal Loss to handle the class imbalance issue among
ground truths, while we adopt the original Faster-RCNN
implementation, standard cross-entropy loss. Our method
focuses on the imbalance problem between foreground and
background, which is more general in practice. Especially,
SED achieves more than 10 mAP improvements against the
supervised baseline when using 5% and 10% labeled MS-
COCO data. With 10% labeled data, the performance of
SED is comparable to the fully supervised baseline model.

COCO-35k. MS-COCO 2014 minival set is identical to
MS-COCO 2017 val set. Tab. 3 shows that our method even
outperforms the Oracle result with only 35k labeled data,
benefiting from the scale consistency regularization, self-
distillation, and strong augmentation. The promising re-
sult indicates that the semi-supervised method can achieve
a comparable result to a fully supervised counterpart.

4.2. Ablation Study

Scale Consistency Regularization constrains the dis-
crepancy between the predictions of images of different
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Method SCR Self-Distill Reweight mAP
Hard Soft

SUP 23.86

Ours

✔ 26.80
✔ ✔ 30.10

✔ 29.80
✔ ✔ 31.40

✔ ✔ ✔ 29.50
✔ ✔ ✔ 34.00

Table 4. The ablative results on MS-COCO 2017 val set. The mod-
els are trained with 10% labeled and 90% unlabeled MS-COCO
train 2017 split. The SCR represents the scale consistency reg-
ularization. We test the self-distillation with two types of target:
hard target and soft target.

sizes. By comparing the second row in Tab. 4 with baseline,
we find that Scale Consistency Regularization improves
about 3 mAP without our re-weighting strategy, naively av-
eraging the loss across the anchor boxes and RoIs. Although
suffering from the class imbalance problem, Scale Consis-
tency Regularization is promising. Fig. 2b shows that the
discordance between different sizes is alleviated.

Self-Distillation with Soft Target surpasses the hard
pseudo-label counterpart over 4.5 mAP, which demon-
strates that the quality of hard pseudo-label is inferior. Self-
Distillation gains about 6 mAP against the baseline indi-
vidually. The soft target method benefits from fewer False
Negative samples and the structural information via knowl-
edge distillation. Furthermore, our approach based on soft
target is threshold-free, which is simpler and easier to trans-
fer to other datasets.

Re-weighting Strategy focuses on the anchor or RoI
pairs with large discrepancies and transforms the relation-
ship between gradient contribution and score distance to
linearity. The results of Scale Consistency Regularization
and Self-Distillation with Soft Target are increased by 3.3
mAP and 1.6 mAP separately. For Faster-RCNN, our re-
weighting strategy still takes effect even though the RoIs
are predicted after NMS and Top-K selection operation, in-
creasing the foreground to background sample ratio.

4.3. Discussion

How to Extend SED to Other Detectors. Most de-
tectors (e.g. RetinaNet, Faster-RCNN) assign foreground
labels to the “anchor box” according to a similar rule,
the Intersection-over-Union (IoU) threshold criterion. For
DETR [3], a single feature map detector, we match the pre-
dictions of input in different views according to Hungarian
algorithm, where the pair-wise matching cost is defined as:
Lmatch = DJS(p1, p2) + λLIoU(b1, b2), where DJS(p1, p2)
is JS-Divergence between the probability vectors and LIoU

Model Retina w R50 Retina w R18 DETR w R50

SUP 23.6 21.5 64.9
Ours 33.0 31.4 69.3

Table 5. For RetinaNet, the experiments are conducted on MS-
COCO set with 10% labeled training data. Due to the extremely
long training epoch of DETR, we report the result on Pascal VOC
2007 test set. Both supervised and our DETR are trained for 300
epochs.

Range [640, 800] [300, 1200] Ours [640, 800]

Result 31.4 32.0 34.0

Table 6. The scale jittering results on MS-COCO 2017 val set.
The models are trained with 10% labeled and 90% unlabeled MS-
COCO train 2017 split. Range is the range of the short edge. The
results show that the scale consistency loss is beyond large scale
jittering augmentation.

is GIoU loss [25]. According to the above analysis, our
method can be extended to RetinaNet and DETR with dif-
ferent backbones. The results in Tab. 5 demonstrate that our
method is valid for different classes of the detector.

Relationship with Large Scale Jittering. The pro-
posed scale consistency regularization is more than large
scale jittering augmentation. The object of our method is
L = L(x) +L(x′) +Lscr(x, x

′), while the object of a large
scale jittering augmentation is L = L(x) + L(x′), where
x and x′ are the input image in different views. The Lscr
is the scale consistency loss. The constraint of our method
is stronger than large scale jittering augmentation. Thus we
believe that the parameter space of local minimum is a sub-
set of that of large scale jittering. Tab. 6 also shows that our
method encourages the model to converge with less gener-
alization error.

Relationship with Multi-Scale Testing. Tab. 7 shows
that the baseline models benefit from multi-scale testing by
an ensemble with NMS (Threshold=0.5). The model trained
with 10% labeled data is increased by 2.0 mAP, and the fully
supervised model (SUP 100%) gets 1.5 mAP improvement.
However, this improvement comes from the discrepancy be-
tween the predictions of images in different sizes. More-
over, the ensemble method also consumes 2.5× more infer-
ence time than the single-scale testing method. Our method
benefits less from multi-scale testing as a consequence of
the proposed scale consistency regularization. Our method
significantly improves the single-scale testing performance,
which has more practical value.

Downsampling Rate in Scale Consistency Regulariza-
tion. As shown in Tab. 8, the model achieves the best re-
sult when the downsampling rate is set to 2 (i.e. the S in
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Model Image Size Ensemble
480 800 1200

SUP 10% 22.9 24.1 22.5 26.1(+2.0)

SUP 100% 33.7 37.4 36.8 38.9(+1.5)

Ours 10% 31.5 34.2 33.0 34.8(+0.6)

Table 7. Multi-Scale Testing on MS-COCO 2017 val set. The
small gain indicates that the detector consistently predicts images
in different sizes, which means robust to scale variance.

21 23 25 27 29

Instance Size

0.0

0.2

0.4

0.6

0.8

1.0

Valid Range

r=1
r=2
r=4
r=8
r=16

Figure 5. The CDF of instance size for Faster-RCNN detector on
MS-COCO train dataset. The range of valid instance is calculated
according to the label assignment rule.

Sec. 3.1 is set to 1.). The performance is inferior as the
downsampling rate scales up, which means that regulariz-
ing the scale consistency with too small images is less ef-
fective. The anchor-based detector refines the prior boxes,
which constrains the valid detection scale range (from 22.6
to 724.1 pixel2, theoretically). Fig. 5 shows that the fraction
of instances in the valid range is highest when the down-
sampling rate is set to 2. All the models are trained with
10% COCO training data, using RetinaNet with FPN and
ResNet-18 backbone in Tab. 8.

Exponential Moving Average (EMA) Rate of Teacher
model. In Eq. 4, the weight of the teacher is updated in an
exponential moving average manner. The EMA update can
be viewed as the average weight of the models in the past
α

1−α steps approximately. As the learning rate policy is step,
which decays the learning rate by 0.1 at each milestone it-
eration, the performance of the teacher is inferior to the stu-
dent model after switching the learning rate, which leads to
the degradation of the student model. We observe the same
appearance in UBT [19], which sets the α to 0.9996 and
adopts step learning rate policy. To alleviate the degrada-
tion, we propose to decay the EMA update rate at the same
milestone iteration as the learning rate. The results in Tab. 9
show that our step decay method and cosine decay method
both surpass the baseline model.

Compare Re-weighting strategy with other methods.
We conduct experiments by replacing our re-weighting

Rate mAP

1 23.0
2 26.1
4 25.2
8 23.1
16 21.1

Table 8. Results
on COCO val set.
Rate is the down-
sampling rate.

Start End Policy mAP

0.996 0.9 Cosine 33.0
0.99 0.9 Step 34.1
0.95 0.95 None 32.0

Table 9. Results on COCO val set.
Start and End mean the initial EMA
update rate and the target rate. Co-
sine policy is cosine annealing sched-
ule. Our Step policy only decays once
at the first milestone iteration.

Method Vanilla OHEM [32] Focal [17] Ours

Result 30.1 31.4 31.2 34.0

Table 10. The comparison results of re-weight strategy on MS-
COCO 2017 val set. The Faster-RCNN models are trained with
10% labeled and 90% unlabeled MS-COCO train 2017 split.

strategy with OHEM (Online Hard Example Mining) and
Focal Loss [17]. The vanilla method is training without any
class balancing technique. The results in Tab. 10 show that
our method is effective.

5. Conclusion

In this work, we introduce a novel semi-supervised ob-
ject detection framework based on the consistency regular-
ization method. Our scale consistency regularization over-
comes the large scale variance challenge and significantly
improves the performance on single-scale testing. Further,
SED alleviates the negative effect of False Negative sam-
ples and benefits from the structural information via knowl-
edge distillation. The re-weighting strategy focuses on the
potential fore-ground regions of the unlabeled data and lin-
earizes the relationship gradient contribution and score dis-
tance. Experiments on MS-COCO and Pascal VOC show
that Scale-Equivalent Distillation significantly improves the
performance with different ratios of labeled data to unla-
beled data and can be extended to different detector classes.
Our framework is a holistic approach compatible with other
semi-supervised methods, such as Mixmatch and Noisy stu-
dent self-distillation. In addition, Scale-Equivalent Distil-
lation framework could be further extended to other dense
prediction tasks, like instance segmentation, joint human
parsing, and post estimation. Our method has great poten-
tial to promote the development of semi-supervised learning
and further reduce the dependence of labeled data with no
negative social impact.

Acknowledgement. Ping Luo is supported by the Gen-
eral Research Fund of HK No.27208720 and 17212120.

14529



References
[1] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-

rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution matching
and augmentation anchoring. 2020. 2

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems, 32, 2019. 1, 2

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020.
7

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In Hal Daumé III and Aarti
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