
OW-DETR: Open-world Detection Transformer

Akshita Gupta* 1 Sanath Narayan* 1 K J Joseph2,4

Salman Khan4,3 Fahad Shahbaz Khan4,5 Mubarak Shah6

1Inception Institute of Artificial Intelligence 2IIT Hyderabad 3Australian National University
4Mohamed Bin Zayed University of Artificial Intelligence 5CVL, Linköping University 6University of Central Florida

Abstract

Open-world object detection (OWOD) is a challenging
computer vision problem, where the task is to detect a
known set of object categories while simultaneously iden-
tifying unknown objects. Additionally, the model must in-
crementally learn new classes that become known in the
next training episodes. Distinct from standard object de-
tection, the OWOD setting poses significant challenges for
generating quality candidate proposals on potentially un-
known objects, separating the unknown objects from the
background and detecting diverse unknown objects. Here,
we introduce a novel end-to-end transformer-based frame-
work, OW-DETR, for open-world object detection. The
proposed OW-DETR comprises three dedicated components
namely, attention-driven pseudo-labeling, novelty classi-
fication and objectness scoring to explicitly address the
aforementioned OWOD challenges. Our OW-DETR explic-
itly encodes multi-scale contextual information, possesses
less inductive bias, enables knowledge transfer from known
classes to the unknown class and can better discriminate
between unknown objects and background. Comprehensive
experiments are performed on two benchmarks: MS-COCO
and PASCAL VOC. The extensive ablations reveal the mer-
its of our proposed contributions. Further, our model out-
performs the recently introduced OWOD approach, ORE,
with absolute gains ranging from 1.8% to 3.3% in terms of
unknown recall on MS-COCO. In the case of incremental
object detection, OW-DETR outperforms the state-of-the-
art for all settings on PASCAL VOC. Our code is available
at https://github.com/akshitac8/OW-DETR.

1. Introduction
Open-world object detection (OWOD) relaxes the

closed-world assumption in popular benchmarks, where
only seen classes appear at inference. Within the OWOD
paradigm [15], at each training episode, a model learns to
detect a given set of known objects while simultaneously

*Equal contribution

Figure 1. Visual illustration of the proposed OW-DETR for
open-world object detection (OWOD). Here, attention maps ob-
tained from the intermediate features are utilized to score the ob-
ject queries. The objectness scores of queries are then used to
identify the pseudo-unknowns. A separation is enforced between
these pseudo-unknowns and ground-truth knowns to detect novel
classes. In addition, a separation is also learned between the back-
ground and foreground (knowns + unknowns) for effective knowl-
edge transfer from known to unknown class w.r.t. characteristics
of foreground objects. Our OW-DETR explicitly encodes multi-
scale context, has less inductive bias, and assumes no supervision
for unknown objects, thus well suited for OWOD problem.

capable of identifying unknown objects. These flagged un-
knowns can then be forwarded to an oracle (e.g., human
annotator), which can label a few classes of interest. Given
these new knowns, the model would continue updating its
knowledge incrementally without retraining from scratch
on the previously known classes. This iterative learning
process continues in a cycle over the model’s life-span.

The identification of unknown object classes in OWOD
setting poses significant challenges for conventional detec-
tors. First, besides an accurate proposal set for seen objects,
a detector must also generate quality candidate boxes for
potentially unknown objects. Second, the model should be
able to separate unknown objects from the background uti-
lizing its knowledge about the already seen objects, thereby
learning what constitutes a valid object. Finally, objects
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of different sizes must be detected while flexibly modeling
their rich context and relations with co-occurring objects.

Recently, the work of [15] introduces an open-world
object detector, ORE, based on the two-stage Faster R-
CNN [31] pipeline. Since unknown object annotations are
not available during training in the open-world paradigm,
ORE proposes to utilize an auto-labeling step to obtain a set
of pseudo-unknowns for training. The auto-labeling is per-
formed on class-agnostic proposals output by a region pro-
posal network (RPN). The proposals not overlapping with
the ground-truth (GT) known objects but having high ‘ob-
jectness’ scores are auto-labeled as unknowns and used in
training. These auto-labeled unknowns are then utilized
along with GT knowns to perform latent space clustering.
Such a clustering attempts to separate the multiple known
classes and the unknown class in the latent space and aids
in learning a prototype for the unknown class. Furthermore,
ORE learns an energy-based binary classifier to distinguish
the unknown class from the class-agnostic known class.

While being the first to introduce and explore the chal-
lenging OWOD problem formulation, ORE suffers from
several issues. (i) ORE relies on a held-out validation set
with weak supervision for the unknowns to estimate the dis-
tribution of novel category in its energy-based classifier. (ii)
To perform contrastive clustering, ORE learns the unknown
category with a single latent prototype, which is insuffi-
cient to model the diverse intra-class variations commonly
present in the unknown objects. Consequently, this can lead
to a sub-optimal separation between the knowns and un-
knowns. (iii) ORE does not explicitly encode long-range
dependencies due to a convolution-based design, crucial to
capture the contextual information in an image comprising
diverse objects. Here, we set out to alleviate the above is-
sues for the challenging OWOD problem formulation.
Contributions: Motivated by the aforementioned observa-
tions, we introduce a multi-scale context aware detection
framework, based on vision transformers [37], with ded-
icated components to address open-world setting includ-
ing attention-driven pseudo-labeling, novelty classification
and objectness scoring for effectively detecting unknown
objects in images (see Fig. 1). Specifically, in compari-
son to the recent OWOD approach ORE [15], that uses a
two-stage CNN pipeline, ours is a single-stage framework
based on transformers that require less inductive biases and
can encode long-term dependencies at multi-scales to en-
rich contextual information. Different to ORE, which relies
on a held-out validation set for estimating the distribution of
novel categories, our setting assumes no supervision given
for the unknown and is closer to the true open-world sce-
nario. Overall, our novel design offers more flexibility with
broad context modeling and less assumptions to address the
open-world detection problem. Our main contributions are:

• We propose a transformer-based open-world detector,

OW-DETR, that better models the context with mutli-
scale self-attention and deformable receptive fields, in
addition to fewer assumptions about the open-world
setup along with reduced inductive biases.

• We introduce an attention-driven pseudo-labeling
scheme for selecting the object query boxes having
high attention scores but not matching any known class
box as unknown class. The pseudo-unknowns along
with the ground-truth knowns are utilized to learn a
novelty classifier to distinguish the unknown objects
from the known ones.

• We introduce an objectness branch to effectively learn
a separation between foreground objects (knowns,
pseudo-unknowns) and the background by enabling
knowledge transfer from known classes to the un-
known class w.r.t. the characteristics that constitute a
foreground object.

• Our extensive experiments on two popular benchmarks
demonstrate the effectiveness of the proposed OW-
DETR. Specifically, OW-DETR outperforms the re-
cently introduced ORE for both OWOD and incremen-
tal object detection tasks. On MS-COCO, OW-DETR
achieves absolute gains ranging from 1.8% to 3.3% in
terms of unknown recall over ORE.

2. Open-world Detection Transformer
Problem Formulation: Let Kt={1, 2, · · · , C} denote the
set of known object categories at time t. Let Dt={It,Yt}
be a dataset containing N images It = {I1, · · · , IN}
with corresponding labels Yt = {Y1, · · · ,YN}. Here,
each Yi = {y1, · · · ,yK} denotes the labels of a set of
K object instances annotated in the image with yk =
[lk, xk, yk, wk, hk], where lk ∈ Kt is the class label for a
bounding box represented by xk, yk, wk, hk. Furthermore,
let U = {C+1, · · · } denote a set of unknown classes that
might be encountered at test time.

As discussed in Sec. 1, in the open-world object detec-
tion (OWOD) setting, a model Mt at time t is trained to
identify an unseen class instance as belonging to the un-
known class (denoted by label 0), in addition to detecting
the previously encountered known classes C. A set of un-
known instances U t ⊂ U identified by Mt are then for-
warded to an oracle, which labels n novel classes of inter-
est and provides a corresponding set of new training exam-
ples. The learner then incrementally adds this set of new
classes to the known classes such that Kt+1 =Kt + {C +
1, · · · , C+n}. For the previous classes Kt, only few exam-
ples can be stored in a bounded memory, mimicking privacy
concerns, limited compute and memory resources in real-
world settings. Then, Mt is incrementally trained, without
retraining from scratch on the whole dataset, to obtain an
updated model Mt+1 which can detect all object classes
in Kt+1. This cycle continues over the life-span of the de-
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Figure 2. Proposed OW-DETR framework. Our approach adapts the standard Deformable DETR for the OWOD problem formulation by
introducing (i) an attention driven pseudo-labeling scheme to select the candidate unknown queries, (ii) a novelty classification branch Fcls

to distinguish the pseudo unknowns from each of the known classes and (iii) an objectness branch Fobj that learns to separate foreground
objects (known + pseudo unknowns) from the background. In our OW-DETR, D-dimensional multi-scale features for an image I are
extracted from the backbone and input to the deformable encoder-decoder along with a set of M learnable object queries q ∈ RD to
the decoder. At the decoder output, each object query embedding qe ∈ RD is input to three different branches: box regression, novelty
classification and objectness. The box co-ordinates are output by the regression branch Freg . The objectness branch outputs the confidence
of a query being a foreground object, whereas the novelty classification branch classifies the query into one of the known and unknown
classes. Our OW-DETR is jointly learned end-to-end with novelty classification loss Ln, objectness loss Lo and box regression loss Lr .

tector, which updates itself with new knowledge at every
episode without forgetting the previously learned classes.

2.1. Overall Architecture

Fig. 2 shows the overall architecture of the proposed
open-world detection transformer, OW-DETR. The pro-
posed OW-DETR adapts the standard Deformable DETR
(DDETR) [37] for the problem of open-world object detec-
tion (OWOD) by introducing (i) an attention-driven pseudo-
labeling mechanism (Sec. 2.3) for selecting likely un-
known query candidates; (ii) a novelty classification branch
(Sec. 2.4) for learning to classify the object queries into one
of the many known classes or the unknown class; and (iii)
an ‘objectness’ branch (Sec. 2.5) for learning to separate
the foreground objects (ground-truth known and pseudo-
labeled unknown instances) from the background. In the
proposed OW-DETR, an image I of spatial size H × W
with a set of object instances Y is input to a feature ex-
traction backbone. D-dimensional multi-scale features are
obtained at different resolutions and input to a transformer
encoder-decoder containing multi-scale deformable atten-
tion modules. The decoder transforms a set of M learnable
object queries, aided by interleaved cross-attention and self-
attention modules, to a set of M object query embeddings
qe∈RD that encode potential object instances in the image.

The qe are then input to three branches: bounding box
regression, novelty classification and objectness. While the
novelty classification (Fcls) and objectness (Fobj) branches
are single layer feed-forward networks (FFN), the regres-

sion branch Freg is a 3-layer FFN. A bipartite matching
loss, based on the class and box co-ordinate predictions,
is employed to select unique queries that best match the
ground-truth (GT) known instances. The remaining object
queries are then utilized to select the candidate unknown
class instances, which are crucial for learning in the OWOD
setting. To this end, an attention map A obtained from the
latent feature maps of the backbone is utilized to compute
an objectness score so for a query qe. The score so is based
on the activation magnitude inside the query’s region-of-
interest in A. The queries with high scores so are selected
as candidate instances and pseudo-labeled as ‘unknown’.
These pseudo-labeled unknown queries along with the col-
lective GT known queries are employed as foreground ob-
jects to train the objectness branch. Moreover, while regres-
sion branch predicts the bounding box, the novelty classifi-
cation branch classifies a query into one of the many known
classes and an unknown class. The proposed OW-DETR
framework is trained end-to-end using dedicated loss terms
for novelty classification (Ln), objectness scoring (Lo), in
addition to bounding box regression (Lr) in a joint formu-
lation. Next, we present our OW-DETR approach in detail.

2.2. Multi-scale Context Encoding

As discussed earlier in Sec. 1, given the diverse nature
of unknown objects that can possibly occur in an image,
detecting objects of different sizes while encoding their
rich context is one of the major challenges in open-world
object detection (OWOD). Encoding such rich context re-
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quires capturing long-term dependencies from large recep-
tive fields at multiple scales of the image. Moreover, having
lesser inductive biases in the framework that make fewer as-
sumptions about unknown objects, occurring during testing,
is likely to be beneficial for improving their detection.

Motivated by the above observations about OWOD task
requirements, we adapt the recently introduced single-stage
Deformable DETR [37] (DDETR), which is end-to-end
trainable and has shown promising performance in stan-
dard object detection due to its ability to encode long-term
multi-scale context with fewer inductive biases. DDETR
introduces multi-scale deformable attention modules in the
transformer encoder and decoder layers of DETR [3] for
encoding multi-scale context with better convergence and
lower complexity. The multi-scale deformable attention
module, based on deformable convolution [5, 36], only at-
tends to a small fixed number of key sampling points around
a reference point. This sampling is performed across multi-
scale feature maps and enables encoding richer context over
a larger receptive field. For more details, we refer to [3,37].
Despite achieving promising performance for the object de-
tection task, the standard DDETR is not suited for detecting
unknown class instances in the OWOD setting. To enable
detecting novel objects, we introduce an attention-driven
pseudo-labeling scheme along with novelty classification
and objectness branches, as explained next.

2.3. Attention-driven Pseudo-labeling

For learning to detect unknown objects without any cor-
responding annotations in the train-set, an OWOD frame-
work must rely on selecting potential unknown instances
occurring in the training images and utilizing them as
pseudo-unknowns during training. The OWOD approach
of ORE [15] selects proposals having high objectness scores
and not overlapping with the ground-truth (GT) known in-
stances as pseudo-unknowns. These proposals obtained
from a two-stage detector RPN are likely to be biased to
the known classes since it is trained with strong supervision
from known classes. Distinct from such a strategy, we intro-
duce a bottom-up attention-driven pseudo-labeling scheme
that is better generalizable and applicable in a single-stage
object detector. Let f denote intermediate D

′
-dimensional

feature maps extracted from the backbone, with a spatial
size h×w. The magnitude of the feature activations gives
an indication of presence of an object in that spatial posi-
tion, and thereby can be used to compute the confidence of
objectness within a window. Let b=[xb, yb, wb, hb] denote
a box proposal with center (xb, yb), width wb and height hb.
The objectness score so(b) is then computed as,

so(b) =
1

hb · wb

xb+
wb
2∑

xb−
wb
2

yb+
hb
2∑

yb−
hb
2

A, (1)

Figure 3. An example illustration showing our attention-driven
pseudo-labeling. An objectness score for each of the M−K ob-
ject queries qe is computed as the mean confidence score in a
region-of-interest, corresponding to its box proposal bi, in the at-
tention feature map A. A top-ku selection is performed on these
M−K scores for obtaining ku pseudo-unknowns.

where A ∈ Rh×w is the feature map f averaged over the
channels D

′
. The object proposals in our framework are

obtained as the bounding boxes b predicted by the regres-
sion branch for the M object query embeddings qe output
by the deformable transformer decoder. For an image with
K known object instances, the objectness score so is com-
puted for the M−K object queries not selected by the bi-
partite matching loss1 of DDETR as best query matches to
the GT known instances. The top-ku queries among M−K
with the high objectness scores so are then pseudo-labeled
as unknown objects with bounding boxes given by their cor-
responding regression branch predictions (see Fig. 3).

2.4. Novelty Classification

The ORE [15] approach introduces an energy-based un-
known identifier for classifying a proposal between known
and unknown classes. However, it relies on a held-out val-
idation set with weak unknown supervision to learn the en-
ergy distributions for the known and unknown classes. In
contrast, our OW-DETR does not require any unknown ob-
ject supervision and relies entirely on the pseudo-unknowns
selected using attention-driven pseudo-labeling described
in Sec. 2.3. Furthermore, the classification branch Fcls

in the standard DDETR classifies an object query embed-
ding qe into one of the known classes or background, i.e.,
Fcls : RD → RC . However, when an unknown object is
encountered, it fails to classify it into a novel class. To over-
come these issues and enable our OW-DETR framework to
be trained with only the selected pseudo-unknown objects,
we introduce a class label for novel objects in the classifi-
cation branch. Query embeddings qe selected as pseudo-
unknowns are then trained with the pseudo-label (set to 0
for ease) associated with the novel class in the novelty clas-
sification branch Fcls : RD → RC+1. Such an introduction
of the novelty class label in classification branch enables qe
to be classified as unknown objects in OW-DETR, which
otherwise would have been learned as background, as in the
standard object detection task. This helps our model to dis-
criminate potential unknown objects from the background.

1Bipartite matching selects one unique object query per GT instance.

9238



Figure 4. Task composition in the OWOD evaluation protocol.
The MS-COCO classes in each task along with the number of im-
ages and instances (objects) across splits are shown.

2.5. Foreground Objectness

As discussed above, the novelty classification branch
Fcls is class-specific and classifies a query embedding qe
into one of the C + 1 classes: C known classes or 1 un-
known class or background. While this enables the learn-
ing of class-specific separability between known and un-
known classes, it does not permit a transfer of knowledge
from the known to the unknown objects, which is cru-
cial in understanding as to what constitutes an unknown
object in the OWOD setting. Furthermore, the attention-
driven pseudo-labeling is likely to be less accurate due to
absence of unknown class supervision resulting in most of
the query embeddings to be predicted on the background.
To alleviate these issues, we introduce a foreground object-
ness branch Fobj : RD → [0, 1] that scores the ‘object-
ness’ [18, 30] of the query embeddings qe in order to bet-
ter separate the foreground objects (known and unknown)
from the background. Learning to score the queries corre-
sponding to foreground objects higher than the background
enables improved detection of unknown objects which oth-
erwise would have been detected as background. Such a
class-agnostic scoring also aids the model to transfer knowl-
edge from the known classes to the unknowns w.r.t. the
characteristics that constitute a foreground object.

2.6. Training and Inference

Training: Our OW-DETR framework is trained end-to-end
using the following joint loss formulation,

L = Ln + Lr + αLo, (2)

where Ln, Lr and Lo denote the loss terms for novelty clas-
sification, bounding box regression and objectness scoring,
respectively. While the standard focal loss [19] is employed
for formulating Ln and Lo, the term Lr is the standard ℓ1
regression loss. Here, α denotes the weight factor for the
objectness scoring. When a set of new categories are intro-
duced for the incremental learning stage at each episode in
OWOD, motivated by the findings in [15, 28, 34], we em-
ploy an exemplar replay based finetuning to alleviate catas-

trophic forgetting of previously learned classes. Specifi-
cally, the model is finetuned after the incremental step in
each episode using a balanced set of exemplars stored for
each known class.
Inference: M object query embeddings qe are computed
for a test image I and their corresponding bounding box
and class predictions are obtained, as in [37]. Let Ct be
the number of known classes at time t in addition to the
unknown class, i.e., Ct= |Kt|+1. A top-k selection is em-
ployed on M ·Ct class scores and these selected detections
with high scores are used during the OWOD evaluation.

3. Experiments
Datasets: We evaluate our OW-DETR on MS-COCO [20]
for OWOD problem. Classes are grouped into set of non-
overlapping tasks {T1, · · · , Tt, · · · } s.t. classes in a task Tλ

are not introduced till t= λ is reached. While learning for
task Tt, all the classes encountered in {Tλ : λ ≤ t} are
considered as known. Similarly, classes in {Tλ : λ > t}
are considered as unknown. As in [15], the 80 classes of
MS-COCO are split into 4 tasks (see Fig. 4). The training
set for each task is selected from the MS-COCO and Pascal
VOC [9] train-set images, while Pascal VOC test split and
MS-COCO val-set are used for evaluation.
Evaluation Metrics: For known classes, the standard mean
average precision (mAP) is used. Furthermore, we use re-
call as the main metric for unknown object detection instead
of the commonly used mAP. This is because all possible un-
known object instances in the dataset are not annotated. Re-
call has been used in [1, 21] under similar conditions.
Implementation Details: The transformer architecture is
similar to DDETR in [37]. Multi-scale feature maps are ex-
tracted from a ResNet-50 [14], pretrained on ImageNet [6]
in a self-supervised manner [4]. Such a pretraining miti-
gates a possible open-world setting violation, which could
occur in fully-supervised pretraining (with class labels) due
to possible overlap with the novel classes. The number of
queries M = 100, while D = 256. The ku for selecting
pseudo-labels is set to 5. Moreover, top-50 high scoring de-
tections per image are used for evaluation during inference.
The OW-DETR framework is trained using ADAM opti-
mizer [17] for 50 epochs, as in [37]. The weight α is set to
0.1. Additional details are provided in the supplementary.

3.1. State-of-the-art Comparison

Tab. 1 shows a comparison of our OW-DETR with
the recently introduced ORE [15] on MS-COCO for the
OWOD problem. We also report the performance of
Faster R-CNN [31] and the standard Deformable DETR
(DDETR) [37] frameworks. The comparison is shown in
terms of the known class mAP and unknown class recall
(U-Recall). U-Recall quantifies a model’s ability to retrieve
unknown object instances in the OWOD setting. Note that
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Table 1. State-of-the-art comparison for OWOD on MS-COCO. The comparison is shown in terms of known class mAP and unknown
class recall (U-Recall). The unknown recall (U-Recall) metric quantifies a model’s ability to retrieve the unknown object instances. The
standard object detectors (Faster R-CNN and DDETR) in the top part of table achieve promising mAP for known classes but are inherently
not suited for the OWOD setting since they cannot detect any unknown object. For a fair comparison in the OWOD setting, we compare with
the recently introduced ORE [15] not employing EBUI. Our OW-DETR achieves improved U-Recall over ORE across tasks, indicating our
model’s ability to better detect the unknown instances. Furthermore, our OW-DETR also achieves significant gains in mAP for the known
classes across the four tasks. Note that since all 80 classes are known in Task 4, U-Recall is not computed. See Sec. 3.1 for more details.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑)
Current
known (↑)

Previously
known

Current
known Both (↑)

Previously
known

Current
known Both

Previously
known

Current
known Both

Faster-RCNN [31] - 56.4 - 3.7 26.7 15.2 - 2.5 15.2 6.7 0.8 14.5 4.2
Faster-RCNN

+ Finetuning Not applicable in Task 1 - 51.0 25.0 38.0 - 38.2 13.6 30.0 29.7 13.0 25.6

DDETR [37] - 60.3 - 4.5 31.3 17.9 - 3.3 22.5 8.5 2.5 16.4 6.0
DDETR

+ Finetuning Not applicable in Task 1 - 54.5 34.4 44.8 - 40.0 17.8 33.3 32.5 20.0 29.4

ORE − EBUI [15] 4.9 56.0 2.9 52.7 26.0 39.4 3.9 38.2 12.7 29.7 29.6 12.4 25.3
Ours: OW-DETR 7.5 59.2 6.2 53.6 33.5 42.9 5.7 38.3 15.8 30.8 31.4 17.1 27.8

Table 2. State-of-the-art comparison for incremental object detection (iOD) on PASCAL VOC. We experiment on 3 different settings.
The comparison is shown in terms of per-class AP and overall mAP. The 10, 5 and 1 class(es) in gray background are introduced to a
detector trained on the remaining 10, 15 and 19 classes, respectively. Our OW-DETR achieves favorable performance in comparison to
existing approaches on all the three settings. See Sec. 3.2 for additional details.

10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [32] 69.9 70.4 69.4 54.3 48 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.2
Faster ILOD [27] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.1
ORE − (CC + EBUI) [15] 53.3 69.2 62.4 51.8 52.9 73.6 83.7 71.7 42.8 66.8 46.8 59.9 65.5 66.1 68.6 29.8 55.1 51.6 65.3 51.5 59.4
ORE − EBUI [15] 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.5

Ours: OW-DETR 61.8 69.1 67.8 45.8 47.3 78.3 78.4 78.6 36.2 71.5 57.5 75.3 76.2 77.4 79.5 40.1 66.8 66.3 75.6 64.1 65.7

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [32] 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.8
Faster ILOD [27] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.9
ORE − (CC + EBUI) [15] 65.1 74.6 57.9 39.5 36.7 75.1 80 73.3 37.1 69.8 48.8 69 77.5 72.8 76.5 34.4 62.6 56.5 80.3 65.7 62.6
ORE − EBUI [15] 75.4 81 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5

Ours: OW-DETR 77.1 76.5 69.2 51.3 61.3 79.8 84.2 81.0 49.7 79.6 58.1 79.0 83.1 67.8 85.4 33.2 65.1 62.0 73.9 65.0 69.4

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [32] 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.2
Faster ILOD [27] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.5
ORE − (CC + EBUI) [15] 60.7 78.6 61.8 45 43.2 75.1 82.5 75.5 42.4 75.1 56.7 72.9 80.8 75.4 77.7 37.8 72.3 64.5 70.7 49.9 64.9
ORE − EBUI [15] 67.3 76.8 60 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.8

Ours: OW-DETR 70.5 77.2 73.8 54.0 55.6 79.0 80.8 80.6 43.2 80.4 53.5 77.5 89.5 82.0 74.7 43.3 71.9 66.6 79.4 62.0 70.2

all 80 classes are known in Task 4 and thereby U-Recall
cannot be computed due to the absence of unknown test an-
notations. Since both Faster R-CNN and DDETR can only
classify objects into known classes but not the unknown,
they are not suited for OWOD setting and U-Recall can-
not be computed for them. For a fair comparison in the
OWOD setting, we report ORE without its energy-based
unknown identifier (EBUI) that relies on held-out valida-
tion data with weak unknown object supervision. The re-
sulting ORE−EBUI framework achieves U-Recall of 4.9,
2.9 and 3.9 on Task 1, 2 and 3, respectively. Our OW-
DETR improves the retrieval of unknown objects, leading to

improved performance with significant gains for U-Recall,
achieving 7.5, 6.2 and 5.7 on the same tasks 1, 2 and 3, re-
spectively. Furthermore, OW-DETR outperforms the best
existing OWOD approach of ORE in terms of the known
class mAP on all the four tasks, achieving significant abso-
lute gains up to 3.6%. While we use the same split as [15]
here for fairness, our OW-DETR also achieves identical
gains on a stricter data split (included in supplementary) ob-
tained by removing any possible information leakage. The
consistent improvement of OW-DETR over ORE, vanilla
Faster R-CNN and DDETR emphasizes the importance of
proposed contributions towards a more accurate OWOD.
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Figure 5. Qualitative results on example images from MS-COCO test set. For each example image, its corresponding attention map A
computed from the intermediate feature maps is shown on its left. The detections obtained from our OW-DETR are overlayed on the known
(yellow) and unknown (purple) class objects. We observe that the attention map activations tend to be higher for regions with foreground
objects, illustrating the benefits of attention-driven pseudo-labeling for the unknown objects. The unknown objects like racket (row 1,
right), umbrella (row 2, left), fire hydrant (row 3, left) are detected reasonably well. Due to the challenging open-world setting, a few
unknown objects are missed, e.g., sink (row 2, middle), table (row 3, right). Nevertheless, these results indicate the promising performance
achieved by our OW-DETR framework in the challenging OWOD setting.

3.2. Incremental Object Detection

As an intuitive consequence of detecting unknown in-
stances, our OW-DETR performs favorably on the incre-
mental object detection (iOD) task. This is due to the de-
crease in confusion of an unknown object being classified
as known class, which enables the detector to incrementally
learn the various newer class instances as true foreground
objects. Tab. 2 shows a comparison of OW-DETR with ex-
isting approaches on PASCAL VOC 2007. As in [27, 32],
evaluation is performed on three standard settings, where a
group of classes (10, 5 and last class) are introduced incre-
mentally to a detector trained on the remaining classes (10,
15 and 19). Our OW-DETR performs favorably against ex-
isting approaches on all three settings, illustrating the bene-
fits of modeling the unknown object class.

3.3. Ablation Study

Tab. 3 shows the impact of progressively integrating our
contributions into the baseline framework for the OWOD
problem. The comparison is shown in terms of mAP for the
known (current and previous) classes and recall for the un-
known class, denoted as U-Recall. All the variants shown
(except Baseline†) include a finetuning step to allevi-
ate the catastrophic forgetting during incremental learning
stage. Here, our baseline is the standard Deformable DETR.

We also show the upper bound performance of an oracle,
i.e., the baseline trained with ground-truth annotations of
the unknown class. The Baseline achieves higher per-
formance on the known classes but cannot detect any un-
known object, since it is trained with only known classes
and is thereby not suited for OWOD. Integrating the nov-
elty classification branch (denoted by Baseline+NC) and
employing the pseudo-unknowns selected by our attention-
driven pseudo-labeling mechanism for training the novelty
classifier enables the detection of unknown instances. Con-
sequently, such an integration achieves unknown recall rates
of 6.0, 4.6 and 4.6 for tasks 1, 2 and 3. Our final frame-
work, OW-DETR, obtained by additionally integrating the
objectness branch further improves the retrieval of unknown
objects in the OWOD setting, achieving U-Recall of 7.5,
6.2 and 5.7 for the same tasks 1, 2 and 3. These results
show the effectiveness of our proposed contributions in the
OWOD setting for learning a separation between knowns
and unknowns through the novelty classification branch and
learning to transfer knowledge from known classes to the
unknown through the objectness branch.
Open-set Detection Comparison: A detector’s ability to
handle unknown instances in open-set data can be measured
by the degree of decrease in its mAP value, compared to its
mAP on closed set data. We follow the same evaluation pro-
tocol of [23] and report the performance in Tab. 4. By ef-
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Table 3. Impact of progressively integrating our contributions into the baseline. The comparison is shown in terms of known class
average precision (mAP) and unknown class recall (U-Recall) on MS-COCO for OWOD setting. Apart from the standard baseline (denoted
with †), all other models shown include a finetuning step to mitigate catastrophic forgetting. We also show the performance of the oracle
(baseline trained with ground-truth unknown class annotations). Although Baseline achieves higher mAP for known classes, it is
inherently not suited for the OWOD setting since it cannot detect any unknown object. Integrating the proposed pseudo-labeling based
novelty classification (NC) with Baseline enables unknown class detection. Additionally integrating our objectness branch into the
framework further improves the retrieval of unknown objects. Note that since all 80 classes are known in Task 4, U-Recall is not computed.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑)
Current
known (↑)

Previously
known

Current
known Both (↑)

Previously
known

Current
known Both

Previously
known

Current
known Both

Oracle 31.6 62.5 40.5 55.8 38.1 46.9 42.6 42.4 29.3 33.9 35.6 23.1 32.5

Baseline† - 60.3 - 4.5 31.3 17.8 - 3.3 22.5 8.5 2.5 16.4 6.0
Baseline Not applicable in Task 1 - 54.5 34.4 44.7 - 40.0 17.7 33.3 32.5 20.0 29.4

Baseline + NC 5.9 58.1 4.6 52.5 32.7 42.6 4.6 36.4 13.4 28.9 30.8 16.3 27.2
Final: OW-DETR 7.5 59.2 6.2 53.6 33.5 42.9 5.7 38.3 15.8 30.8 31.4 17.1 27.8

Table 4. Performance comparison on open-set object detection
task. Our OW-DETR generalizes better by effectively modeling
the unknowns and decreasing their confusion with known classes.

Evaluated on → Pascal VOC 2007 Open-Set (WR1)

Standard Faster R-CNN 81.8 77.1
Standard RetinaNet 79.2 73.8
Dropout Sampling [23] 78.1 71.1
ORE [15] 81.3 78.2
Ours: OW-DETR 82.1 78.6

fectively modeling the unknowns, our OW-DETR achieves
promising performance in comparison to existing methods.
Qualitative Analysis: Fig. 5 shows qualitative results on
example images from the MS-COCO test set, along with
their corresponding attention maps A. The detections for
a known class (in yellow) and unknown class (in purple)
obtained from our OW-DETR are also overlayed. We ob-
serve that unknown objects are detected reasonably well,
e.g., skiis in top-left image, tennis racket in top-right image,
frisbee in bottom-left image. Although few novel objects
are missed (table in bottom-right image), these results show
that our OW-DETR achieves promising performance in de-
tecting unknown objects in the challenging OWOD setting.
Additional results are provided in the supplementary.

4. Relation to Prior Art
Several works have investigated the problem of stan-

dard object detection [2, 11, 13, 19, 25, 26, 29, 31]. These
approaches work under a strong assumption that the la-
bel space of object categories to be encountered during
a model’s life-cycle is the same as during its training.
The advent of transformers for natural language process-
ing [33, 35] has inspired studies to investigate related ideas
for vision tasks [8,10,16,24], including standard object de-
tection [3,37]. Different to standard object detection, incre-

mental object detection approaches [27, 32] model newer
object classes that are introduced in training incrementally
and tackle the issue of catastrophic forgetting. On the other
hand, the works of [7, 12, 22, 23] focus on open-set detec-
tion, where new unknown objects encountered during test
are to be rejected. In contrast, the recent work of [15] tack-
les the challenging open-world object detection (OWOD)
problem for detecting both known and unknown objects
in addition to incrementally learning new object classes.
Here, we propose an OWOD approach, OW-DETR, in a
transformer-based framework [37], comprising the follow-
ing novel components: attention-driven pseudo-labeling,
novelty classification and objectness scoring. Our OW-
DETR explicitly encodes multi-scale contextual informa-
tion with fewer inductive biases while simultaneously en-
abling transfer of objectness knowledge from known classes
to the novel class for improved unknown detection.

5. Conclusions
We proposed a novel transformer-based approach, OW-

DETR, for the problem of open-world object detection.
The proposed OW-DETR comprises dedicated components
to address open-world settings, including attention-driven
pseudo-labeling, novelty classification and objectness scor-
ing in order to accurately detect unknown objects in images.
We conduct extensive experiments on two popular bench-
marks: PASCAL VOC and MS COCO. Our OW-DETR
consistently outperforms the recently introduced ORE for
all task settings on the MS COCO dataset. Furthermore,
OW-DETR achieves state-of-the-art performance in case of
incremental object detection on PASCAL VOC dataset.
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